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Surface gravity waves over a two-dimensional random seabed

Jo”rgen H. Pihl,* Chiang C. Mei,† and Matthew J. Hancock‡
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We extend homogenization theory to study the two-dimensional evolution of weakly nonlinear waves in a
sea where the bathymetry is random over a large area. A deterministic nonlinear Schro¨dinger equation is
derived for the envelope of a nearly sinusoidal progressive wave train. Randomness is shown to yield a linear
term with a complex coefficient depending on a certain statistical average of the bathymetry. Numerical
solutions are discussed for the diffraction of a Stokes wave in head-sea incidence towards a bathymetry of
given plan form. Effects of the height and plan form of the randomness, as well as wave nonlinearity are
examined analytically and numerically.
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I. INTRODUCTION

There is a rich literature on the propagation of infinite
mal waves in randomly disordered media. The technique
analysis range from perturbation approximations@1–6# to
Feynman diagrams@7–10# to analytical theories combine
with numerical computations@11–13#. An important physical
consequence is Anderson localization@14#, in which disorder
leads to exponential attenuation in space for nearly all
quencies, in contrast to periodic media where Bragg sca
ing is effective only within certain frequency-bands.

In recent years many theories on nonlinear waves in r
dom media have also appeared. Devillard and Souillard@15#
have studied the one-dimensional nonlinear Schro¨dinger
equation with a random potential. For a slab of randomn
of thicknessL, they found that the transmitted wave dimi
ishes exponentially with increasingL if nonlinearity is weak.
For strong nonlinearity, the attenuation is only polynomi
Extensions of this work for incident solitons and other typ
of random potentials have been advanced by many resea
ers ~e.g., Refs.@16–20#!. For extensive reviews, see Ref
@21,22#. A theory for the Korteweg–de Vries~KdV! equation
with a weak random potential has also been studied in R
@23#. In these mathematical models, a common feature is
the final differential equation has one or more stochastic
efficients.

Suggested by the perturbation theories of Keller and Ka
@3,4# on one-dimensional infinitesimal waves, we have
cently used the method of multiple scales to examine
spatial attenuation of weakly nonlinear and dispersive wa
by random irregularities@24#. The standard technique of ho
mogenization, well known for periodic media, was found
be effective for a weakly nonlinear string embedded in
elastic surrounding with a weakly random elasticity. The e
velope of unidirectional narrow-banded waves is found to
governed by a nonlinear Schro¨dinger equation with adeter-
ministic potential amounting to damping, with the comple
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damping coefficient being the statistical average of the r
dom perturbations. Steady nonlinear waves were found a
lytically to suffer exponential attenuation~localization!. By
numerical means, transient waves were also studied.

In coastal oceanography, the propagation of sea wa
over an irregular seabed is of practical interest. A few th
retical works on weakly nonlinear sea waves have been
vanced by using diagrammatic methods@25,26# or perturba-
tion analysis @27,28#. Recently, we have extended th
homogenization theory to the one-dimensional propaga
of slowly modulated, unidirectional water waves over
weakly random seabed@29#. In this paper, we make a furthe
extension to a random sea bed of two-dimensional plan fo
A spatially two-dimensional nonlinear Schro¨dinger equation
is derived for the wave envelope, where a deterministic
tential arises whose complex coefficient is a certain aver
involving the random bathymetry. Analytical formulas of th
coefficient are obtained. Moreover, the forward propagat
and diffraction of uniform incident waves by an area of ra
dom seabed is studied numerically, to examine the phys
effects of the mean-square height and overall geometry
the random area, as well as nonlinearity.

II. THE WAVE ENVELOPE EQUATION

The derivation here is a direct extension of the kno
approach for the classical case of a horizontal seabed
usual, the three-dimensional fluid motion is assumed to
inviscid and irrotational. The governing Laplace equati
and nonlinear boundary conditions for the velocity poten
f(xW ,z,t) and the free surface displacementh(xW ,t) are well
known ~e.g., Ref.@30#!. Focusing attention on gently slopin
waves and bathymetric irregularities, we define the small
rameter« as the typical slope of both the free surface and
seabed roughness, i.e.,kh;kb5O(«)!1. On the seabed
z52h1«b(xW ), where the mean depthh is constant, but
b(xW ) is a random function ofxW with zero mean; the norma
velocity must vanish,

fz2«“b•“f50, z52h1«b. ~1!

Taylor expansions about the mean allow us to apply the
surface conditions alongz50 and the bottom condition
©2002 The American Physical Society11-1
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alongz52h. To allow for slow modulations due to narrow
bandwidth of frequencies, weak nonlinearity and slow spa
attenuation, we introduce the multiple scale variablesxW1

5«xW , xW25«2xW , . . . andt15«t, t25«2t, . . . .
We also assume that the correlation length of the rand

depth perturbations is of the order of the typical waveleng
From linearized theories, it is known that the length scale
attenuation due to random scattering is of the or
O(1/k«2). In order that such effects are significant, we a
sume thatb is characterized by two scales, one for the lo
fluctuations and one for the global extent of the random
gion, i.e.,b5b(xW ,xW2).

After introducing the perturbation expansions for the v
locity potentialf and free surface heighth,

f5f11«f21«2f31 . . . , ~2!

h5h11«h21«2h31 . . . , ~3!

a set of perturbation equations for ascending orders in« is
obtained, which are similar to those for the simpler case o
horizontal seabed@30#. We follow Eq. ~29! for the two-
dimensional problem (x,z) with a one-dimensional bathym
etry b(x,x2), and separate the unknown potential and surf
height of thenth order in two parts, the mean and the rando
fluctuation from the mean,

fn5^fn&1fn8 , hn5^hn&1hn8 . ~4!

Similar separation of the perturbation equations at each o
yields a set of boundary value problems for the mean and
the random fluctuations. At the leading orderO(«0) there is
no random part; the mean is taken to be a train of pl
progressive waves of amplitudeA over a horizontal bottom
governed by homogeneous equations. Information on
evolution of A is found by examining the solvability of th
inhomogeneous problems for the mean at higher orders
by solving the problems for the random fluctuations.

Specifically, from the Laplace equation, we obtain at
der n,

S“21
]2

]z2D fn5Fn , 2h,z,0. ~5!

On the mean sea surface, we have

Lfn[S g
]

]z
1

]2

]t2D fn5Gn , z50, ~6!

which incorporates both kinematic and dynamic requi
ments. Thenth order seabed condition is

]fn

]z
5I n , z52h. ~7!

Once the velocity potential is found, the free surface hei
follows from the dynamic condition~the Bernoulli equation!
of zero pressure,
01661
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2ghn5fnt1Hn , z50, ~8!

where we denote partial derivatives with respect tot andz by
subscripts. All forcing termsFn , Gn , Hn , and I n are ex-
pressible in terms of the lower order solution
fn21 , . . . ,f1.

At the leading order, the forcing terms for the bounda
value problem off1 are all zero, i.e.,F15G15I 15H150.
Formally, randomness has yet no direct effects, so thatf1
and h1 are equal to their statistical averages, denoted
^f1& and ^h1&, respectively. The random components, d
noted by primes, vanish:

f185h1850. ~9!

We take the homogeneous solution to be a monochrom
wave train propagating in the direction ofx from left to right,

h15^h1&5
A

2
eic1c.c.5Re$Aeic% ~10!

and

f15^f1&5f101~f11e
ic1c.c.!

5f102
g

2v

cosh@k~z1h!#

cosh~kh!
~ iAeic1c.c.! ~11!

~see, e.g., Ref.@30#!. Here, A(xW1 ,xW2 ;t1 ,t2) denotes the
leading-order wave amplitude andc5kW•xW2vt5kx2vt is
the wave phase @31#. The zeroth harmonic f10

5f10(xW1 ,xW2 ,t1 ,t2 , . . . ) represents the long-wave potentia
The angular frequencyv is related to the wave numberk via
the dispersion relation

v25gk tanh~kh!. ~12!

At the second orderO(«), the forcing terms are:

F2522“•“1f1 ,

G252$h1Lzf11@~“f1!21f1z
2 # t12f1tt1

%,

where the linear operatorL is defined in Eq.~6! and

I 25“•~b“f1!, ~13!

which is a random function ofxW andxW2. In addition, from the
Bernoulli equation, we have

H25
1

2
@~“f1!21f1z

2 #1f1t1
1h1f1zt .

Again, the potentialf2 and the forcing functionsF2 andG2
can be expressed as the sum of statistical averages and
dom fluctuations. Becausêb&50, we find that^F2&5F2 ,
^G2&5G2 , ^H2&5H2, and ^I 2&50. Thus, the randomnes
does not affect the mean components at orderO(«). Solv-
ability of the first harmoniĉ f21& gives the well-known law
of wave action conservation
1-2
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]A

]t1
1cg

]A

]x1
50, ~14!

where

cg5
]v

]k
5

v

2k S 11
2kh

sinh~2kh! D ~15!

is the group velocity.
The random component is caused by the interaction of

incident plane wave and the random perturbations on
seabed,

]f28

]z
5I 285“•~b“f1!, z52h.

Hence,f28 contains only the first time harmonic,

f285f218 e2 ivt1c.c., h285h218 e2 ivt1c.c. ~16!

The boundary-value problem forf218 is governed by

S ]2

]z2
1“

2D f218 50, 2h,z,0,

S g
]

]z
2v2Df218 50, z50,

]f218

]z
5“•@b“~f11e

ikW•xW !#

5
gkWA

2v cosh~kh!
•“@b~xW !eikW•xW#, z52h.

To solve forf218 , we define Green’s functionG(xW ,z;xW8) by

“

2G1Gzz50, 2h,z,0, ~17!

Gz2
v2

g
G50, z50, ~18!

Gz5d~xW2xW8!, z52h. ~19!

In addition,G is required to behave as an outgoing wave
infinity. The solution forf218 is found by using Green’s theo
rem,

f218 5
gA

2v cosh~kh!
E kW•“8@b~xW8!eikW•xW8#G~ ujW u,z!dxW8,

~20!

where, for brevity,jW[xW2xW8. The Green’s function is shown
below, while the derivation is outlined in the Appendix,
01661
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G~ uxW2xW8u,z!52 i

v2

2g
H0

(1)~kujW u!

v2h

g
1sinh2~kh!

cosh@k~z1h!#

2
1

p (
n

v2

g
K0~knujW u!

v2h

g
2sin2~knh!

cos@kn~z1h!#,

~21!

whereH0
(1)5J01 iY0 denotes the Hankel function of the firs

kind andK0 is the modified Bessel function.
At the third orderO(«2), only the equations for the sta

tistical averagêf3& are needed:

S“21
]2

]z2D ^f3&5^F3&, 2h,z,0, ~22!

L^f3&5^G3&, z50, ~23!

]^f3&
]z

5^I 3&, z52h, ~24!

where the operatorL is defined in Eq.~6!. Using the fact that
f1 andh1 are deterministic, the forcing functions atO(«2)
can be simplified to

^F3&52@“1
2f112“•“2f112“•“1^f2&#,

^G3&52F ^h2&Lzf11h1Lz^f2&1
1

2
h1

2Lzzf1

12~“f1•“^f2&1f1z^f2&z! t1h1@~“f1!21f1z
2 # tz

1
1

2 S“f1•“1f1z

]

]zD @~“f1!21f1z
2 #12^f2& tt1

12f1zf1zt1
12“1f1•“f1t12“f1•“f1t1

12“f1•“1f1t12h1f1ztt1
12f1tt2

1f1t1t1G .
Sincef1 , ^h2&, and^f2& are independent ofb(xW ,xW2), ^F3&,
and ^G3& are formally identical to those for a horizonta
seabed@30#. The bed roughnessb(xW ,xW2) only affects^I 3&.
From Eq.~13!, we have, on the mean seabedz52h,

^I 3&5^“•~b“f2!&uz52h5^“•@b~“^f2&1“f28!#&uz52h

5^“•~b“f28!&uz52h . ~25!

In view of Eq. ~20!, the right-hand side above contains on
the first harmonic and can be written in the form

^I 3&5 ib cosh~kh!Aeic1c.c., ~26!
1-3
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whereb(xW2) is a complex coefficient that is discussed in t
following section.

We now separate,f3. into different harmonics:

^f3&5^f30&1~^f31&e
ic1c.c.!1•••

5^f30&1~eicF~xW2 ,z,t2!1c.c.!1•••, ~27!

where randomness only affects the first harmonic in view
Eq. ~26!. In particular,^f30& is governed by equations una
fected by the bathymetry, and hence the solvability condit
for ^f30& is formally the same as that for a horizontal seab
@Ref. @30#, Eq. ~2.36!, p. 613#:

]2f10

]t1
2

2ghS ]2f10

]x1
2

1
]2f10

]y1
2 D 5

v3 cosh2~kh!

2k sinh2~kh!

]uAu2

]x1

2
v2

4 sinh2~kh!

]uAu2

]t1
.

~28!

Thus, long waves are forced by the slow modulation of
short-wave envelope. As for the first harmonic in,f3., we
substitute Eqs.~26! and ~27! into Eqs.~22!–~24!, to obtain
the inhomogeneous boundary-value problem,

]2F

]z2
2k2F5F31, 2h,z,0,

]F

]z
2

v2

g
F5

1

g
G31, z50,

]F

]z
5 ibA cosh~kh!, z52h,

where ^F31& ,^G31& are the complex first harmonic ampl
tudes of @F3# and @G3#, and are given in Ref.@30# @Eqs.
~2.37! and ~2.38!, p. 613#. Since the inhomogeneou
boundary-value problem above has a nontrivial homo
neous solutionf11, we invoke the solvability condition to
obtain

S ]

]t2
1cg

]

]x2
DA1 i H 2

v9

2

]2A

]x1
2

2
cg

2k

]2A

]y1
2

1a1uAu2A2a2A2bAJ 50. ~29!

The coefficients are

v95
]2v

]k2
5

cg
2

v
2

v

2k2 S 11
2kh cosh~2kh!

sinh~2kh! D ,

a15
vk2@cosh~4kh!1822 tanh2~kh!#

16 sinh4~kh!
,

and
01661
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a25
k2

2v cosh2~kh!

]f10

]t1
2k

]f10

]x1
.

The factor 2a1 /k3cg5Q can be found in Ref.@30# ~Fig. 8.2,
p. 654!.

Finally, combining Eqs.~14! and ~29! yields

S ]

]t1
1cg

]

]x1
DA1 i«H 2

v9

2

]2A

]x1
2

2
cg

2k

]2A

]y1
2

1a1uAu2A

2a2A2bAJ 50. ~30!

This is a nonlinear two-dimensional Schro¨dinger equation
modified by the linear term with the complex and determ
istic coefficientb5b r1 ib i , which represents the effects o
the random bathymetry. Before studying its properties,
need to evaluate this coefficient.

III. THE COEFFICIENT b

Inserting Eqs.~20! into ~16! yields

f285
gAe2 ivt

2v cosh~kh!
E kW•“8@b~xW8!eikW•xW8#G~ uxW2xW8u,z!dxW8

1c.c., ~31!

whose gradient can be straightforwardly calculated. Fr
Eqs.~25! and ~31!, we obtain, after some algebra,

^I 3&
cosh~kh!

5
“•^b“f28&uz52h

cosh~kh!

52
igAei (kx2vt)

2v cosh2~kh!
E kW•“j@C~jW !e2 ikW•jW#

3~kW•“jujW u!G8~ ujW u,2h!djW1c.c., ~32!

wherejW5xW2xW8; G8(ujW u,2h) denotes the derivative with
respect to the scalarj5ujW u, “

j denotes the gradient opera
tor with respect toj, and C(jW )5^b(xW )b(xW8)& is the two-
point covariance function that may also depend on the s
coordinatexW2. This dependence will not be displayed fo
brevity.

Note that

kW•“jujW u5kW•
jW

j
5k cosu, ~33!

where u is the angle ofjW relative to kW that is along the
positive x axis. Thus, from Eqs.~26!, ~32!, and ~33!, we
obtain
1-4
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b52
gk

2v cosh2~kh!

3E kW•“j@C~jW !e2 ikW•jW#cos~u!G8~ ujW u,2h!djW

5

k2cgS t01(
n

tn

v2h

g
1sinh2~kh!

v2h

g
2sin2~knh!

D
2@kh1sinh~kh!cosh~kh!#2

, ~34!

where

t052kE kW•“j@C~jW !e2 ikW•jW#cos~u!H1
(1)~kujW u!djW ~35!

and

tn52
2

p
knE kW•“j@C~jW !e2 ikW•jW#cos~u!K1~knujW u!djW .

~36!

For two-dimensional random media, the isotropic mo
is commonly used for simplicity. Its covarianceC depends
only on the distance between two points, i.e.,C5C(j). It
follows that

“@C~j!e2 ikW•jW#5@~“ujW u!C8~j!2 ikWC~j!#e2 ikW•jW.

Inserting this and Eqs.~33! into ~35! and using polar coordi-
nates yields

Im $t0%52k2E
0

`E
2p

p

@cos2~u!C8~j!

2 ik cosuC~j!#e2 ikj cosuJ1~kj!jdudj

52pk2E
0

`

jC8~j!J1~kj!
1

2p

3E
2p

p

~12cos 2u!e2 ikj cosududj22pk3

3E
0

`

jC~j!J1~kj!
~2 i !

2p

3E
2p

p

cosue2 ikj cosududj.

Since

Jn~kujW u!5
~2 i !n

2p E
2p

p

eikujW ucosu cos~nu!du,

we further obtain
01661
l

Im $t0%52pk2E
0

`

jC8~j!J1~kj!@J0~kj!2J2~kj!#dj

12pk3E
0

`

jC~j!J1
2~kj!dj. ~37!

Similarly, the real parts of Eqs.~35! and~36! can be simpli-
fied to

Re$t0%5pk2E
0

`

jC8~j!Y1~kj!@J0~kj!2J2~kj!#dj

22pk3E
0

`

jC~j!Y1~kj!J1~kj!dj ~38!

and

tn522kknE
0

`

jC8~j!K1~knj!@J0~kj!2J2~kj!#dj

14k2knE
0

`

jC~j!K1~knj!J1~kj!dj, ~39!

which is real.
For explicit results, we consider the Gaussian covaria

C~j!5s2~xW2!e2a2j2
, ~40!

wheres(xW2) is the root mean square height of random p
turbations anda is the reciprocal of the correlation length
Substituting Eq.~40! and the dimensionless variablesR
5aj, k5k/a, andkn5kn /a into Eqs.~37!, ~38!, and~39!
yields

Im $t0%

ks2
52pkE

0

`

Re2R2
J1~kR!@RJ0~kR!2RJ2~kR!

1kJ1~kR!#dR, ~41!

Re$t0%

ks2
522pkE

0

`

Re2R2
Y1~kR!@RJ0~kR!2RJ2~kR!

1kJ1~kR!#dR, ~42!

and

tn

ks2
54knE

0

`

Re2R2
K1~knR!@RJ0~kR!2RJ2~kR!

1kJ1~kR!#dR. ~43!

The right-hand sides of Eqs.~41!, ~42!, and ~43! are just
functions ofk5k/a and kh. A similar result has been ob
tained in Ref.@29# for a one-dimensional bathymetry, whe
the depth contours are parallel,

t0

ks2
541pke2k2

erfi~k!1 iApk~11e2k2
!, ~44!
1-5
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tn

ks2
5422knAp ReH expS ~kn1 ik!2

4 DerfcS kn1 ik

2 D J ,

~45!

where erfi(x)5 i erf(ix) is a real valued function ofx.
Finally, we define the normalizedb* by

b* 5
2b

cgk~ks!2
5

t0

ks2
1(

n

tn

ks2

v2h

g
1sinh2~kh!

v2h

g
2sin2~knh!

@kh1sinh~kh!cosh~kh!#2
,

~46!

which depends only onk/a andkh.

IV. A HALF PLANE OF RANDOMNESS

The main purpose of this paper is to examine the envel
evolution over a random seabed of two-dimensional p
form. For simplicity, we shall only consider a uniform Stok
wave arriving fromx;2`, incident on a random bathym
etry that is confined to the regionx.0. Within this region of
disorder,s is taken to be a finite constant. As a prelimina
we recall first that a classical Stokes wave over a smo
seabed of constant depth has a uniform and stationary am
tude a and a phase that depends ona. If the region of ran-
domness is infinite in width, i.e.,2`,y1,`, then Eq.~30!
reduces to

icgAx2
52~b r1 ib i !A1a1uAu2A, x2.0.

The solution is a modified Stokes wave exponentially atte
ated~localized! in the direction of propagation,

A5a0e2b i x2 /cgexpS i
b rx2

cg
1 i

a1a0
2

2b i
e22b i x2 /cgD , ~47!

wherea0 is the amplitude atx250, the border line of the
region of randomness. From Eqs.~46! and ~47!, the dimen-
sional localization distance is

FIG. 1. Localization length to depth ratio«2Lloc /h correspond-
ing to the 1D~broken! and 2D~solid! theories, for fixed roughnes
steepnessas51 and variousah. Numbers adjacent to curves in
dicate the corresponding value ofah.
01661
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Lloc5
cg

«2b i

~48!

and is plotted in Fig. 1. Larges ~strong disorder! corre-
sponds to largeb i and leads to fast attenuation. If the tot
length of the randomness is finiteL, then the transmitted
wave amplitude is obtained from Eq.~47! simply by replac-
ing x2 by L. The transmission coefficient decreases expon
tially with L, implying localization. A similar result has bee
obtained in Ref.@29# for a one-dimensional bathymetry
wheret0 andtn are given by Eqs.~44! and~45!. From Fig.
1, the typical one-dimensional~1D! values forLloc are some-
what smaller than the 2D values, implying that 1D rando
ness is a more effective damper. This is reasonable, as
flow can only pass 1D random undulations from abo
whereas it also can circumvent 2D random undulations fr
the sides.

We remark that the exponential attenuation is independ
of nonlinearity. This is in contrast with studies on the no
linear Schro¨dinger equation with a random potential, whe
nonlinearity has the effect of delocalization, e.g., chang
the spatial attenuation pattern from exponential to poly
mial @15#.

In view of Eqs.~10! and ~47!, we find thatb contributes
to an increase in wave number. The total increase is the
of contributions from randomness and from nonlinearity,

Dk5~Dk!RD1~Dk!NL[
«2b r

cg
2

«2a1a0
2

cg
e22b i x2 /cg.

~49!

It is known thata1.0 ~see Fig. 8.2, p. 654 in Ref.@30#
whereQ52a1 /k3cg is plotted!. Hence, increasing nonlin
earity («a0) reduces the wave number and increases
wavelength, thereby increasing the group and phase spe
This is a well-known result for Stokes waves. In this ca
randomness also affects (Dk)NL . Since the wave amplitude
is attenuated by randomness, (Dk)NL diminishes with propa-
gation distance. Randomness contributes more directly to
change in wave number via (Dk)RD . As shown in Fig. 2,
(Dk)RD is always positive, implying that the wavelength
the forward direction is shortened by random perturbatio

FIG. 2. (Dk)RD /(«2k) as a function ofkh with s/h51, for 1D
~broken! and 2D~solid! theories. Numbers adjacent to curves ind
cate the corresponding value ofah.
1-6
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Since s/h51 is fixed, increasingah is equivalent to in-
creasingas, implying steeper random roughness that is se
to shorten the waves. Also, 1D randomness has a stro
effect than 2D randomness, as is the case for the localiza
distance.

V. A WEDGE OF RANDOMNESS

Consider first a random region in the shape of a slen
wedge or a triangle, whose vertex is at the origin. W
]A/]t15]A/]t25]A/]x150 but ]A/]y15” 0, Eq. ~30! re-
duces to the damped nonlinear Schro¨dinger equation

icgAx2
1

cg

2k
Ay1y1

52~b r1 ib i !A1a1uAu2A. ~50!

Mathematically, the coordinatex2 is timelike and y1 is
spacelike. In order to assess the effect of nonlinearity
randomness, we redefine the small parameter« as the apex
angle, so that the sides of the triangle arey56«x, x.0.
Under the renormalization

B5A/A0 , X5kx2 , Y5ky1 , ~51!

the region of randomness is given byY,uXu and Eq.~50!
becomes

2iBX1BYY52S ks

« D 2

b* B1S kA0

« D 2

QuBu2B. ~52!

b* is finite and constant in the region of randomnessY
,uXu and zero outside, and

Q~kh!5
cosh~4kh!1822 tanh2~kh!

4 sinh4~kh!S 11
2kh

sinh~2kh! D
.0,

which is positive and decreases monotonically with incre
ing kh ~see Fig. 8.2, p. 654 in Ref.@30#!. The parabolic
equation ~52! is solved by a finite difference numerica
scheme@32#.

SinceQ.0, the nonlinear Schro¨dinger equation without
the damping term is of defocusing type, and is stable
sideband disturbances ifX and Y are regarded as time an
space variables, respectively. To interpret certain numer
results later, we recall first the known analytical solution re
resenting a dark~envelope-hole! soliton whenb50 ~e.g.,
Ref. @33#!,

B5b
e2ig1e(kA0 /«)A2Qb(Y2cX)sin(g)

11e(kA0 /«)A2Qb(Y2cX)sin(g)
e2 i /2[(kA0)/«] 2QbX1 ia.

~53!

The envelope has the largest depression along the axY
5cX and approaches asymptoticallybeia as (Y2cX)→`.
The parameterg represents a phase change across the so
hole so that the envelope towards (Y2cX)→2` is
bei (a12g). The slopec of the axis is related tob andg by
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c5
kA0

«
AQ

2
b cos~g!56

kA0

«
AQ

2
~ uBumin!

2, ~54!

where (uBumin)
25b2 cos2(g) is the maximum depth of the

envelope-hole alongY5cX.
We consider first the propagation of a Stokes wave tr

over a wedge-shaped region of randomness bounded bY
56X. For both infinite (0,X,`) and finite (0,X,5)
wedges, we plot the modulus of the envelopeuBu for kh
50.7, k/a53 ~hence b* '1.65411.618i ), kA0 /«
50,0.5,1 andks/«50.5,1, in order to examine the effects o
randomness height and nonlinearity. Due to symmetry, o
half of the wedge is shown forY.0.

The case of an infinite wedge is shown in Figs. 3–5. F
the linearized limit withkA0/« 50, the effect of increasing
the roughness height is shown in Fig. 3. The height of
envelope is seen to decrease monotonically in the disord
regionY,X, as expected. Higher roughness accentuates
attenuation, so that waves are nearly absent in a cent
wedge alongX.5. Diffraction fringes are pronounced ou
side the wedgeY.X. With moderate nonlinearity~Fig. 4!,
the rate of attenuation is slightly reduced inside the wed
and diffraction is weakened outside. For the case of str
nonlinearity~Fig. 5!, attenuation and diffraction are both fu
ther reduced, in qualitative agreement with existing theor
for random potentials where disorder causes weaker loca
tion.

FIG. 3. Wave envelope over an infinite wedge-shaped region
randomness (uYu,X) in the linear limit kA0 /«50.0, for different
roughness heights~a! ks/«50.5 and~b! ks/«51.0.
1-7
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The case of a truncated wedge~a triangle! is even more
interesting. For zero nonlinearity, there is a recovery
waves in the wake of the triangle (X.5) where there is
again no disorder. An envelope depression~hole! is seen to
form for higher roughness, while diffraction is strong outsi
Y.X ~Fig. 6!. With moderate nonlinearity, attenuation
slowed, while recovery in the wake and formation of env
lope holes are more evident~Fig. 7!. For strong nonlinearity,
these tendencies are very pronounced~Fig. 8! and six enve-
lope holes are evident. Thus, delocalization is accompa
by hole formation.

We now give evidence that the envelope holes are es
tially the analytical dark solitons represented by Eq.~53!.
First, in Table I, the computed slope of an envelope ho
cslope, is compared with the theoretical slopecuBumin

, calcu-

lated from Eq.~54! using the computeduBminu, for the six
observable holes. The discrepancies are about 2% or
which can be attributed to the discreteness of data.

Second, corresponding to Fig. 8~b!, where kA0 /«
5ks/«51, we plot in Fig. 9 the local profiles of the si
largest depressions at the stationsX550,60,70,80,90,100
For each depression, the computed profiles at all six stat
fall on the same curve, which is indistinguishable from t
theoretical profile of the same amplitude. This confirms t
the depressions observed are dark solitons.

Thus, while inside the region of disorder randomne
causes localization and nonlinearity causes delocalizat
dark solitons emerge in the ordered wake by nonlinea

FIG. 4. Wave envelope over an infinite wedge-shaped regio
randomness (uYu,X) for medium nonlinearitykA0 /«50.5 and dif-
ferent roughness heights~a! ks/«50.5 and~b! ks/«51.0.
01661
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of FIG. 5. Wave envelope over an infinite wedge-shaped region
randomness (uYu,X) for strong nonlinearitykA0 /«51.0 and dif-
ferent roughness heights~a! ks/«50.5 and~b! ks/«51.0.

FIG. 6. Wave envelope over a triangular region of randomn
(0,X,5, uYu,X) for the linear limitkA0 /«50.0 and roughness
heights~a! ks/«50.5 and~b! ks/«51.0.
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This feature is reminiscent of the propagation of long wa
from one constant depth, over a slope and onto another s
lower and constant depth. Distortion over the slope is kno
to be followed by disintegration into several solitons,

FIG. 7. Wave envelope over a triangular region of randomn
(0,X,5, uYu,X) for moderate nonlinearitykA0 /«50.5 and
roughness heights~a! ks/«50.5 and~b! ks/«51.0.

FIG. 8. Wave envelope over a triangular region of randomn
(0,X,5, uYu,X) for strong nonlinearitykA0 /«51.0 and rough-
ness heights~a! ks/«50.5 and~b! ks/«51.0.
01661
s
al-
n
s

shown by a theory of Korteweg-deVries type and by expe
ments@34#.

VI. A QUARTER PLANE OF RANDOMNESS

Our final example is concerned with a quarter plane
disorder (0,X,`, 2`,Y,0), which is representative o
the corner of a large rectangular domain. The parameters
kh50.7, k/a53 ~henceb* '1.65411.618i ) and kA0 /«
5ks/«51. As shown in Fig. 10, deep inside the zone
disorder (Y negative and large! the problem is one-
dimensional inX and localization is exponential. For finit
Y.0 and very largeX, flattening of uBu in Y across the
transition is accompanied by a slow decay ofuBu in X, as
expected from the parabolic nature of the Schro¨dinger equa-
tion ~52!.

VII. CONCLUDING REMARKS

In this paper we have treated two-dimensional wave d
fraction and localization of weakly nonlinear surface wa
waves over a partly random bathymetry. The evolution eq
tion is shown to be of the nonlinear Schro¨dinger form with a
new linear term whose complex coefficient is determinis

s

s

TABLE I. Inclinations of the dark solitons in Fig. 8~b!. cslope is
the slope measured from the numerically computed envel
trough. cuBumin

is the theoretical slope based on the height of
computed envelope trough,uBumin . cleast scatteris the slope used to
obtain the least scatter in Fig. 9.

Dark soliton
number from

x axis cslope uBumin cuBumin
cleast scatter

1 0.1125 0.0629 0.1157 0.1141
2 0.4157 0.2300 0.4227 0.4175
3 0.7337 0.4045 0.7433 0.7325
4 1.2308 0.6785 1.2467 1.2275
5 1.5000 0.8356 1.5355 1.5100
6 1.7209 0.9425 1.7320 1.7200

FIG. 9. Comparison of the six largest envelope holes found
Fig. 8~b! for X550,60,70,80,90,100 with theoretical dark solito
envelopes. The variable on the abscissa isj5Y2cleast scatterX,
wherecleast scatter, listed in Table I, is the slope used to obtain th
least scatter in the fit to the theoretical envelopes above. The un
the ordinate is 0.2.
1-9
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PIHL, MEI, AND HANCOCK PHYSICAL REVIEW E 66, 016611 ~2002!
and depends on the statistical average of the random fluc
tions @35#. While the disorder induces exponential attenu
tion in space, nonlinearity is seen to slow down the atten
tion within, and to reduce the diffraction outside, the zone
disorder. If the random bathymetry has a finite area, d
solitons are created in the wake, similar to the fission of lo
solitons in shallow water governed by Boussinesq/KdV th
ries.

For oceanographic applications, an important task is
study random nonlinear waves of broad frequency band o
a bathymetry with random fluctuations superposed on
gentle mean slope. The combination of geometrical opt
multiple scattering, and nonlinear diffraction should be
worthy challenge in wave dynamics.

Finally, the present method of homogenization, i.e., m
tiplescale expansions, appears to be very efficient to t
weak disorder, and can be extended to fully thre
dimensional problems such as the scattering of sound b
dilute cloud of bubbles, treated by a diagrammatic theory
Ref. @36#.
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APPENDIX: GREEN’S FUNCTION

Using polar coordinates and the Hankel transfor
Green’s function is formally found as

FIG. 10. Wave envelope over a quarter plane region of rand
ness (0,X,`, 2`,Y,0) with kA0 /«5ks/«51.0.
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G5
1

2pE0

`
k cosh~kz!1

v2

g
sinh~kz!

v2

g
cosh~kh!2k sinh~kh!

J0~kujW u!dk

5
1

4pE0

`
k cosh~kz!1

v2

g
sinh~kz!

v2

g
cosh~kh!2k sinh~kh!

H0
(1)~kujW u!dk

1
1

4pE0

`
k cosh~kz!1

v2

g
sinh~kz!

v2

g
cosh~kh!2k sinh~kh!

H0
(2)~kujW u!dk,

~A1!

wherejW[xW2xW8 andH0
(1) andH0

(2) are Hankel functions of
order zero of the first and second kinds, respectively.

In the complex plane ofk, the integrands have real pole
at k56k, wherek is the positive real root of the dispersio
relation~12!, and imaginary poles at6 ikn , wherekn are the
positive real roots of

v25gikn tanh~ iknh!52gkn tan~knh!, n51,2,3, . . . .

To ensure outgoing waves at infinity, the integration pa
along the positive real axis must be indented below the
pole atk, for both integrals in Eq.~A1!.

Note that asr→`,

H0
(1)~kr !;A 2

pkr
ei [kr 2(p/2)],

H0
(2)~kr !;A 2

pkr
e2 i [kr 2(p/2)].

Thus, for the integral in Eq.~A1! involving H0
(1) , we intro-

duce a closed contour in the first quadrant by adding a
cular arc of infinite radius and a vertical pathC1 circum-
venting all polesikn along the positive imaginary axis. Fo
the integral in Eq.~A1! involving H0

(2) , we introduce a
closed contour in the fourth quadrant by adding a large
cular arc and an indented vertical pathC2 circumventing all
poles2 ikn along the negative imaginary axis. By standa
application of the residue theorem, we evaluate the two c
tour integrals. The line integrals along the circular arcs v
ish by Jordan’s lemma. To the line integralsC1 andC2 , the
net contributions come from the infinitesimal semicircl
around the imaginary poles and lead to an infinite series.
net contributions from the vertical segments between
semicircles vanish by pairwise cancellation fromC1 and
C2 . The result is Eq.~21!.

-
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