PHYSICAL REVIEW E 66, 016611 (2002
Surface gravity waves over a two-dimensional random seabed
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We extend homogenization theory to study the two-dimensional evolution of weakly nonlinear waves in a
sea where the bathymetry is random over a large area. A deterministic nonlineadiBgaroequation is
derived for the envelope of a nearly sinusoidal progressive wave train. Randomness is shown to yield a linear
term with a complex coefficient depending on a certain statistical average of the bathymetry. Numerical
solutions are discussed for the diffraction of a Stokes wave in head-sea incidence towards a bathymetry of
given plan form. Effects of the height and plan form of the randomness, as well as wave nonlinearity are
examined analytically and numerically.
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[. INTRODUCTION damping coefficient being the statistical average of the ran-
dom perturbations. Steady nonlinear waves were found ana-
There is a rich literature on the propagation of infinitesi- lytically to suffer exponential attenuatidffiocalization). By
mal waves in randomly disordered media. The techniques olumerical means, transient waves were also studied.
analysis range from perturbation approximatidis-6] to In coastal oceanography, the propagation of sea waves
Feynman diagram§7—10] to analytical theories combined OVver an irregular seabed is of practical interest. A few theo-
with numerical computationid1—13. An important physical ~retical works on weakly nonlinear sea waves have been ad-
consequence is Anderson localizat[dd], in which disorder ~ vanced by using diagrammatic methd@$,26 or perturba-
leads to exponential attenuation in space for nearly all fretion analysis [27,28. Recently, we have extended the
quencies, in contrast to periodic media where Bragg scatteRomogenization theory to the one-dimensional propagation
ing is effective only within certain frequency-bands. of slowly modulated, unidirectional water waves over a
In recent years many theories on nonlinear waves in ranweakly random seabd@9]. In this paper, we make a further

dom media have also appeared. Devillard and Souillakil ~ €xtension to a random sea bed of two—dirpensional plan form.
have studied the one-dimensional nonlinear Sdimger A spatially two-dimensional nonlinear Scliiager equation
equation with a random potential. For a slab of randomnesi$ derived for the wave envelope, where a deterministic po-
of thicknessL, they found that the transmitted wave dimin- tential arises whose complex coefficient is a certain average
ishes exponentially with increasingif nonlinearity is weak.  involving the random bathymetry. Analytical formulas of the
For strong nonlinearity, the attenuation is only polynomial.coefficient are obtained. Moreover, the forward propagation
Extensions of this work for incident solitons and other typesand diffraction of uniform incident waves by an area of ran-
of random potentials have been advanced by many researcom seabed is studied numerically, to examine the physical
ers (e.g., Refs[16—20). For extensive reviews, see Refs. €ffects of the mean-square height and overall geometry of
[21,22. A theory for the Korteweg—de Vrig&dV) equation  the random area, as well as nonlinearity.
with a weak random potential has also been studied in Ref.
[23]. In these mathematical models, a common feature is that Il. THE WAVE ENVELOPE EQUATION
the final differential equation has one or more stochastic co- o : . .
efficients. The derivation here is a direct extension of the known

Suggested by the perturbation theories of Keller and Kara"Iapproach for the classical case of a horizontal seabed. As

[3,4] on one-dimensional infinitesimal waves, we have re-usual, the three-dimensional fluid motion is assumed to be

cently used the method of multiple scales to examine thc’;‘m’iSCid gnd irrotational. The. governing Laplaqe equatic_)n
spatial attenuation of weakly nonlinear and dispersive Wavegnq nonlinear boundary conditions for the V§I00|ty potential
by random irregularitie§24]. The standard technique of ho- ¢(x,z,t) and the free surface displacemer(tx,t) are well
mogenization, well known for periodic media, was found toknown (e.g., Ref[30]). Focusing attention on gently sloping
be effective for a weakly nonlinear string embedded in arvaves and bathymetric irregularities, we define the small pa-
elastic surrounding with a weakly random elasticity. The enfametere as the typical slope of both the free surface and the
velope of unidirectional narrow-banded waves is found to beseabed roughness, i.&y~kb=0(e)<1. On the seabed
governed by a nonlinear Schiioger equation with aleter-  z= —h+sb(>?), where the mean depth is constant, but
ministic potential amounting to damping, with the complex b(x) is a random function ok with zero mean; the normal
velocity must vanish,
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alongz= —h. To allow for slow modulations due to narrow —gn,=¢m+tH,, z=0, (8)
bandwidth of frequencies, weak nonlinearity and slow spatial
attenuation, we introduce the multiple scale variabgs where we denote partial derivatives with respedtaodz by

X Y= e2x andt.=et.  t,=e2t subscripts. All forcing terms-,, G,,, H,, andl, are ex-
=&X, 2= v 1=¢&lL, 2= e . . .
We also assume that the correlation length of the randorf’?reSSIble in terms of the lower order solutions
depth perturbations is of the order of the typical wavelength.‘ﬁ”—l’ -

From linearized theories, it is known that the length scale of IAt the lljadmgf order, tne forC|_ng teriné ffrl ﬂleHbo_u(r;dary
attenuation due to random scattering is of the orde?léa ue gljlro en; Ol arer? zer(t), "e'dF,l_t it o
O(1ke2). In order that such effects are significant, we as-~ 0'Mally, randomness has yet no direct effects, so #ha

sume thab is characterized by two scales, one for the Iocaland n, are equal to their stafistical averages, denoted by

fluctuations and one for the global extent of the random reﬁ‘ﬁl) and<’?1>' respeptlvely. The random components, de-
. - - noted by primes, vanish:

gion, i.e.,b=b(x,X,).

After introducing the perturbation expansions for the ve- $,=7,=0. (9)
locity potential¢ and free surface heigh,
5 We take the homogeneous solution to be a monochromatic
p=¢1tedote st ..., (20 wave train propagating in the directionxfrom left to right,

— 2
T ENTE T ® n=(n)= gei‘/”rc.c.: Re{A€"} (10)
a set of perturbation equations for ascending orders is
obtained, which are similar to those for the simpler case of gnd
horizontal seabed30]. We follow Eq. (29) for the two- ‘
dimensional problemx;z) with a one-dimensional bathym- ¢1=<¢1)=¢1O+(¢11e“f’+ c.c)
etry b(x,x,), and separate the unknown potential and surface
height of thenth order in two parts, the mean and the random o w(meimc c) (11
fluctuation from the mean, 19 2w costikh) o
ba=(d)+ .. pa={(n)+ 1. (4) (see, e.g., Ref[30]). Here, A(X;,Xp;t;,t;) denotes the
o ) ) ) leading-order wave amplitude anf=k-x— ot=kx— ot is
$|m|Iar separation of the perturbation equations at each ordgpe  wave phase [31]. The zeroth harmonic ¢
yields a set of boundary value problems for the mean and for. ¢1o(>21,>22,t1,t2, ...) represents the long-wave potential.

the random fluctuations. At the leading ord®f=°) t_here is The angular frequency is related to the wave numbkia
no random part; the mean is taken to be a train of plan(-ghe dispersion relation

progressive waves of amplitudeover a horizontal bottom,
governed by homogeneous equations. Information on the w?=gktanhkh). (12)
evolution of A is found by examining the solvability of the

inhomogeneous problems for the mean at higher orders and At the second orde®(¢), the forcing terms are:

by solving the problems for the random fluctuations.

Specifically, from the Laplace equation, we obtain at or- Fo=—2V-Vi¢y,
fer , Go= —{m1 L1 +[(V 1)+ $7, 1+ 21},
VZ+ % én=Fn, —h<z<0. (5)  where the linear operatat is defined in Eq(6) and
1=V -(bV¢y), (13

On the mean sea surface, we have
which is a random function of andx,. In addition, from the

J \ ,
ﬁd)nz(gﬁJrE) $.,=G,, z=0, (6) Bernoulli equation, we have
1
_- 2, 42
which incorporates both kinematic and dynamic require- Ha=5[(V )"+ ¢1,1+ dat, + mdaa.
ments. Thenth order seabed condition is

Again, the potentialp, and the forcing functiong, andG,

can be expressed as the sum of statistical averages and ran-
dom fluctuations. Becausgg)=0, we find that(F,)=F,,
(Gy)=G,, (Hy)=H,, and(l,)=0. Thus, the randomness
Once the velocity potential is found, the free surface heightloes not affect the mean components at odés). Solv-
follows from the dynamic conditioithe Bernoulli equation  ability of the first harmonic ¢,,) gives the well-known law

of zero pressure, of wave action conservation

Idn
Jz

ln, z=-—h. (7)
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A e, g 14 O K
O =0, (14 o g MEED
G(|x—x"|,z)=—i wz—cosr[k(erh)]
where ?-I—Sil’lhz(kh)
do 1 2kh 15 wZK I
—— 2 ———cogky(z+h)],
T 5 owh )
is the group velocity. 9 —sirf(kqh)
The random component is caused by the interaction of the
incident plane wave and the random perturbations on the (21)
seabed, 1
whereH{M=J,+iY, denotes the Hankel function of the first
Iy kind andKj, is the modified Bessel function.
—=1,=V-(bV¢,), z=-h. At the third orderO(&?), only the equations for the sta-

9z tistical averag€ ¢3) are needed:

Hence, ¢, contains only the first time harmonic, 2

J
- - VZi+ — (pa)=(F3), —h<z<0, (22)
do=ye '“'+c.c., my=mse '“+cc. (16 Jz
The boundary-value problem fab}, is governed by L{¢3)=(G3), z=0, (23)
N p3)
9 - -
p+v2 $y»=0, —h<z<0, o, (s, z=-h, (24)
z

where the operatof is defined in Eq(6). Using the fact that

d 5| L ¢, and 7, are deterministic, the forcing functions @(&?)
9.~ 0" $1=0, z=0, can be simplified to
» B (Fa)=—[Vi1+2V Vo1 +2V-Vi(r)],
— =V [0V (1€ )]
1
gkA (G3)=— [<772>£z¢1+ nLA b2)+ 5 5L
=———.V[b(x)ek*], z=-h.
2w costikh) +2(V by V(o) + b1 b2) )i+ ml(V 1)*+ 3,11,
' . ) : > oo ! 1 J
To solve for¢,,, we define Green's functioG(x,z;x") by + > Ve, V+ ¢1ZE) [(Vy)2+ ¢§Z]+2<¢2>ttl
2 — _
V*G+G,,=0, —h<z<0, (7 +2¢12¢120,+2V 11V b1+ 2V b1V oy
2
w
G~ EQZ 0, z=0, (18) T2V 1 Vi1t 271 b1, T 2haee, T Puey, |-
G,= 6(i—x"), z=—h. (19  Sinceds, (1), and(4,) are independent df(X,X5), (F3),

and (G3) are formally identical to those for a horizontal

In addition, G is required to behave as an outgoing wave as€abed30]. The bed roughnesis(x,x,) only affects(ls).
infinity. The solution fore), is found by using Green’s theo- From Ed.(13), we have, on the mean seaked —h,

rem,
(13)=(V-(bV ¢2))| ;= -n=(V-[b(V(d2)+ V) )| ,=n
’ gA > ’ > AKX Fa o/ = . ! ——h-
¢zﬁm[ k-V'[b(x")e**1G(|&],2)dx’, (V- (Y $2))l2-—n (25)

(20 In view of Eq.(20), the right-hand side above contains only
o the first harmonic and can be written in the form
where, for brevityé=x—x’". The Green'’s function is shown _
below, while the derivation is outlined in the Appendix, (I3)=ip costtkh)A€’+c.c., (206
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whereB(x,) is a complex coefficient that is discussed in the k? dpro | Iio

following section. ay,= .
. . . at dx
We now separatel ¢3> into different harmonics: 2w cosff(kh) It !

(d3)= (30 +((Pspe’+c.c)+--- The factor 2 /k®cy=© can be found in Ref30] (Fig. 8.2,
L p. 659.
=(¢a0+(€F(xp,2t)+cc)+---,  (27) Finally, combining Eqs(14) and (29) yields
where randomness only affects the first harmonic in view of
EQ. (26). In particular,{ ¢30) is governed by equations unaf- ad d _ w" PA ¢4 PPA )
fected by the bathymetry, and hence the solvability condition | gt, +Cga_xl Atie) - 2 22 2K gy2 +ag|A[FA
for { p4g) is formally the same as that for a horizontal seabed ! !
[Ref.[30], Eq. (2.36), p. 613; ]
—a,A—BA} =0. (30)

Pro h( P, (920510) _ w¥cost(kh) d|A[?

2 2 2 H
M e N1 2ksintr(kh) % This is a nonlinear two-dimensional Scdioger equation
w2 A2 modified by the linear term with the complex and determin-
- — . istic coefficientB= B, +iB;, which represents the effects of
4 sinit(kh) dt the random bathymetry. Before studying its properties, we

(28)  Need to evaluate this coefficient.

Thus, long waves are forced by the slow modulation of the Il THE COEEFICIENT
short-wave envelope. As for the first harmonicdnp;>, we ) B
substitute Eqs(26) and (27) into Egs.(22)—(24), to obtain Inserting Eqs(20) into (16) yields

the inhomogeneous boundary-value problem,

7F =9 bR G(R 5| 2) o
F_k2|::|:31, —h<z<0, 2" 2w coshkh) '
z
+c.c., (31
IF wZF 1G 0
- - == ’ Zz=0, H i
dz g g ¢ whose gradient can be straightforwardly calculated. From

Egs.(25) and(31), we obtain, after some algebra,

JF
—=iBAcoshkh), z=-h,
oz P (I V- (bVep)|,— 4

where (F31) ,(Ggz,) are the complex first harmonic ampli- costikh) costikh)
tudes of[F3] and[G3], and are given in .Re1{30] [Egs. igAg ko -
(2.37 and (2.38, p. 613. Since the inhomogeneous :_—f K-ViC(de k¥
boundary-value problem above has a nontrivial homoge- 2w cosi(kh)
neous solutiong,;, we invoke the solvability condition to . R R .
obtain X(k-VEEDG (1€l,—hdé+cc, (32
(i+c I\ aril - W' A cg A whereé=x—x'; G'(|é],—h) denotes the derivative with
oty Iox, 2 ox§ 2K (9)/5 respect to the scalafr=|§|, V¢ denotes the gradient opera-
tor with respect tog, and C(€)=(b(x)b(x")) is the two-
+ | A2A— a,A— BA | =0. (290  point covariance function that may also depend on the slow
coordinatex,. This dependence will not be displayed for
The coefficients are brevity.
Note that
, o ¢ o ( 2khcosr(2kh)) )
ak? @ 2k sini(2kh) /" k- V& =k- §=kcose, (33
wk?[ coshl{4kh)+8—2 tantt(kh)]
*1= 16 sinf(kh) ’ where 6 is the angle of¢ relative tok that is along the
positive X axis. Thus, from Eqs(26), (32), and (33), we
and obtain
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gk
2w costt(kh)

x [ & veci@e oot 06 (8,
2
w—h+sinr12(kh)
kzcg TO+E Tn a)%
" ?—sinz(knh)

= , (34

2[kh+ sinh(kh)coslikh)]?

where

o=~k J k-VéC(&e ™ ¢lcos o)H{ (K| €| dE (35)

and

Th=— %kf K-ViC(£e * lcog B)K, (ko€ dé.

PI'SICAL REVIEW E 66, 016611 (2002
Im{7o}=— szj:fC’(é)Jl(k§)[Jo(k§) —Ja(k§)]d¢

+27k3 J:gC(ff)Jf(kf)df- 37

Similarly, the real parts of Eq$35) and(36) can be simpli-
fied to

Re{ro}=mk? f: §CT (&)Y 1(kE[Io(ké) — Io(kE) JdE

2k f Ce@Vikoukode (@39

and

Tn=— ZKKnJ:EC’(f)Kl(knf)[Jo(kE) —Jo(k§)]d¢

K, [ “EC@Ky ek de 39

(36) which is real.

For explicit results, we consider the Gaussian covariance

For two-dimensional random media, the isotropic model R -
is commonly used for simplicity. Its covariané& depends C(é)=ad%(xy)e” *¢, (40
only on the distance between two points, i€5C(¢). It

follows that

VIC(&)e K E]=[(V|E)C' (&) —iKC(&)Je ¢,

wherea(iz) is the root mean square height of random per-
turbations andx is the reciprocal of the correlation length.
Substituting Eq.(40) and the dimensionless variablés
=aé, k=kla, andk,=k,/a into Egs.(37), (38), and(39)

Inserting this and Eq€33) into (35) and using polar coordi- Yields

nates yields

|m{70}:—sz:f;[cos?(e)c'(g)

—ik cosAC(&)]e kécos0y, (k&) edadé

o 1
=—Wk2f0 §CT(8)da(kE)5—

X f (1—cos 20)e ™ 'kecosiggd & — 27k

- (—i)
x| “econme 2

X f cosfe kécosigad ¢,

Since

Jn(K| §|) — %fﬁ eik\é\cosa cogno)de,

-

we further obtain

Im{ 7o}
ko?

=2mfoe*R2J1(KR)[RJO(KR)—RJZ(KR)
0

+ kJ;(kR)]dR, (41)

Retrol _ 5 e f “Re ®Y,(kR)[Rdy( kR) ~ RI(xR)

ko2 0
+xJ1(kR)]dR, (42
and
Th > _R2
=4k, | Re " Ki(k,R[RI(«kR)—RIL(xkR)
ko? 0

+kdy(kR)]dR. (43)

The right-hand sides of Eq$41), (42), and (43) are just
functions of k=k/a andkh. A similar result has been ob-
tained in Ref[29] for a one-dimensional bathymetry, where
the depth contours are parallel,

7_02 =4+ mre < erfi()+iVmr(1+e ™),  (44)

ko
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AR /€K

4

FIG. 1. Localization length to depth ratidL,,./h correspond- FIG. 2. (AK)rp/(£%k) as a function okh with o/h=1, for 1D
ing to the 1D(broken and 2D(solid) theories, for fixed roughness (broken and 2D(solid) theories. Numbers adjacent to curves indi-
steepnessro=1 and variousxh. Numbers adjacent to curves in- cate the corresponding value ef.
dicate the corresponding value a@h.

T KptiK)? Kntik
n2=4—2Kn\/;Rﬂ’exp(¥)erfc< n2

ko

] Lioc=— — (48)

£°p;

(45) and is plotted in Fig. 1. Larger (strong disorder corre-
sponds to large8; and leads to fast attenuation. If the total

where erfik) =i erf(ix) is a real valued function of. length of the randomness is finilg then the transmitted
Finally, we define the normalized* by wave amplitude is obtained from E@7) simply by replac-
) ing X, by L. The transmission coefficient decreases exponen-
“’_h + sint?(kh) tially with L, implying localization. A similar result has been
To ™ g obtained in Ref.[29] for a one-dimensional bathymetry,
EJF = @ th— where 7 {and Ty are given. by Eqgs(44) and(45). From Fig.
28 ' sir?(kqh) 1, the typical one-dimensionélD) values forl . are some-
B* = = , what smaller than the 2D values, implying that 1D random-
cgk(ka)2 [kh+ sinh(kh)costkh)]? ness is a more effective damper. This is reasonable, as the

(46)  flow can only pass 1D random undulations from above,
whereas it also can circumvent 2D random undulations from
the sides.

We remark that the exponential attenuation is independent

IV. AHALF PLANE OF RANDOMNESS of nonlinearity. This is in contrast with studies on the non-

The main purpose of this paper is to examine the envelophin€ar Schrainger equation with a random potential, where
evolution over a random seabed of two-dimensional plafionlinearity has the effect of delocalization, e.g., changing
form. For simplicity, we shall only consider a uniform Stokes € spatial attenuation pattern from exponential to polyno-
wave arriving fromx~ —oo, incident on a random bathym- mial [1_5]' ) .
etry that is confined to the region>0. Within this region of In view of Egs.(10) and(47), we find thatg contributes
disorder, is taken to be a finite constant. As a preliminary, to an increase in wave number. The total increase is the sum

we recall first that a classical Stokes wave over a smootff contributions from randomness and from nonlinearity,
seabed of constant depth has a uniform and stationary ampli-

which depends only ok/a andkh.

2 2 .2
tudea and a phase that depends anif the region of ran- Ak=(AK)rpt+ (AK) = e°pr &g a-2Bxz/cq
domness is infinite in width, i.e; ©<y; <o, then Eq.(30) Cqy Cy
reduces to (49

ngAx2=—(,Br+i,3i)A+a1|A|2A, X,>0. It is known thata;>0 (see Fig. 8.2, p. 654 in Ref30]

Where®:2al/k‘°’cg is plotted. Hence, increasing nonlin-
The solution is a modified Stokes wave exponentially attenuearity (ao) reduces the wave number and increases the

ated(localized in the direction of propagation, wavelength, thereby increasing the group and phase speeds.
This is a well-known result for Stokes waves. In this case,

Bl BrXs 2Bk I randomness also affectak),, . Since the wave amplitude
A=age Tz Teex 'c_+'2_,3ie "2, (40 s attenuated by randomnesak)y, diminishes with propa-
g gation distance. Randomness contributes more directly to the
wherea, is the amplitude ak,=0, the border line of the change in wave number viaAK)gp. As shown in Fig. 2,
region of randomness. From Edg46) and (47), the dimen- (Ak)gp is always positive, implying that the wavelength in
sional localization distance is the forward direction is shortened by random perturbations.

.Ofla(z) _
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Since o/h=1 is fixed, increasingxh is equivalent to in-

creasingea, implying steeper random roughness that is seen
to shorten the waves. Also, 1D randomness has a stronger

effect than 2D randomness, as is the case for the localizatio
distance.

V. AWEDGE OF RANDOMNESS

Consider first a random region in the shape of a slende
wedge or a triangle, whose vertex is at the origin. With
AAl gt = 0Al dt,= dAldx,=0 but 9A/dy,#0, Eq. (30) re-
duces to the damped nonlinear Salinmer equation

c
9
2kA

vy =~ (BeHiBA+ as|AlA.

iCgA,+ (50)

Mathematically, the coordinate, is timelike andy; is

spacelike. In order to assess the effect of nonlinearity and

randomness, we redefine the small parametes the apex
angle, so that the sides of the triangle gre fex, x>0.
Under the renormalization

B:A/Ao, X:kXZ, Y:kyl, (51)
the region of randomness is given My |X| and Eq.(50)
becomes

kAo

€

kO’ 2 2
2iBX+BYY=—(?) B*B+ ) 0|B|’B. (52

B* is finite and constant in the region of randomnéss
<|X| and zero outside, and

cosh{4kh) +8— 2 tanif(kh)

@ (kh)=
4 sintf(kh)

1+ sink(Zkh))

which is positive and decreases monotonically with increas
ing kh (see Fig. 8.2, p. 654 in Ref30]). The parabolic
equation (52) is solved by a finite difference numerical
schemd 32].

Since® >0, the nonlinear Schrbinger equation without
the damping term is of defocusing type, and is stable t
sideband disturbances ¥ and Y are regarded as time and
space variables, respectively. To interpret certain numeric
results later, we recall first the known analytical solution rep
resenting a darKenvelope-holg soliton wheng=0 (e.g.,
Ref. [33]),

2iy 1 a(kAg/e)VZBb(Y —cX)sin(y)
e"’'+e e~ 12[(kAg)/e]?ObX+ia

1+ e(kAo 1£)\V2@b(Y —cX)sin(y)
(53

The envelope has the largest depression along the Yaxis
=cX and approaches asymptoticalhg'® as (Y —cX)—ce.

a
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<@

a)

n

%%

r

(

X

b)

75544

“

10

//47/‘ 2
////////7;;/////////////” 7
A
iy ,/

FIG. 3. Wave envelope over an infinite wedge-shaped region of
randomness|¥|<X) in the linear limitkAqy/e=0.0, for different
roughness height@) ka/e=0.5 and(b) ka/e=1.0.

k 0 k 0
c= ?Ao\gb cog 7)2 iTAO\@(lmmin)za (54)

where (B|min)2=b?cog(y) is the maximum depth of the
envelope-hole alony=cX.

We consider first the propagation of a Stokes wave train
over a wedge-shaped region of randomness bounded by
=+ X. For both infinite (6<X<«) and finite (0<X<5)
wedges, we plot the modulus of the enveld@ for kh
=0.7, kla=3 (hence pB*~1.654+1.618), kAy/e
=0,0.5,1 anko/e=0.5,1, in order to examine the effects of

Jandomness height and nonlinearity. Due to symmetry, only

rralf of the wedge is shown for>0.

The case of an infinite wedge is shown in Figs. 3-5. For
the linearized limit withkAg/e =0, the effect of increasing
the roughness height is shown in Fig. 3. The height of the
envelope is seen to decrease monotonically in the disordered
regionY<X, as expected. Higher roughness accentuates the
attenuation, so that waves are nearly absent in a centered
wedge alongX>5. Diffraction fringes are pronounced out-
side the wedgey>X. With moderate nonlinearityFig. 4),
the rate of attenuation is slightly reduced inside the wedge
and diffraction is weakened outside. For the case of strong
nonlinearity(Fig. 5), attenuation and diffraction are both fur-

The parametey represents a phase change across the solitother reduced, in qualitative agreement with existing theories

hole so that the envelope towardsy{cX)——o is
be(®*27) The slopec of the axis is related tb and y by

01661

for random potentials where disorder causes weaker localiza-
tion.
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a)

7

20
15

X 6

b)

7 7
I

6 %
X ) 7,

FIG. 4. Wave envelope over an infinite wedge-shaped region of FIG. 5. Wave envelope over an infinite wedge-shaped region of
randomness|¥|<X) for medium nonlinearitkA,/e =0.5 and dif-  randomness|{|<X) for strong nonlinearitykA,/e=1.0 and dif-
ferent roughness heighta) ka/e=0.5 and(b) ka/e=1.0. ferent roughness heighta) ka/e=0.5 and(b) ko/e=1.0.

The case of a truncated wed@e triangle is even more
interesting. For zero nonlinearity, there is a recovery of
waves in the wake of the triangleXt=5) where there is a)
again no disorder. An envelope depressibaole) is seen to
form for higher roughness, while diffraction is strong outside
Y>X (Fig. 6). With moderate nonlinearity, attenuation is L5

///,‘I‘im
Al
LI 7
i i

111y}
77 7 s
I Uittty 0
v sce et VI iy
i i i)

7
7777

lt?ypﬁorl]glsc?r ri;eti ci\}/.i(?ent. T);u?s, delocfsg.ati)cm is accompanied ’ H’WNWW{{{{({{{{{{{{/// 4 40

tially the analytical dark solitons represented by E8Q3). 0
First, in Table I, the computed slope of an envelope hole,

. : . b)

Csiope: IS cCOMpared with the theoretical slopﬁg‘min, calcu-
lated from Eq.(54) using the computedB,,;,|, for the six 4
otk)]s_err]vablebholetzf:bT?edotlis;r]epgncie? are ab?l(th t2% or less, L5 " ;‘;’;“""""l"5557555}}}}}””"’72%}}};;#
which can be attributed to the discreteness of data. it

Second, corresponding to Fig. (08, where kAy/e Bl g5 W ///// m%%%%m%;//////
=kole=1, we plot in Fig. 9 the local profiles of the six 0 /////// ””””///////,,,l,/!{l//// 50
largest depressions at the statiods-50,60,70,80,90,100. 0 """||||||||||||||||]||||||m /////////// 40
For each depression, the computed profiles at all six stations 10 I[HII[HIHWW ' 20 %
fall on the same curve, which is indistinguishable from the X 20 [W[W 0 Y
theoretical profile of the same amplitude. This confirms that 300

the depressions observed are dark solitons.

Thus, while inside the region of disorder randomness FIG. 6. Wave envelope over a triangular region of randomness
causes localization and nonlinearity causes delocalizatiof0<X<5, [Y|<X) for the linear limitkA;/e=0.0 and roughness
dark solitons emerge in the ordered wake by nonlinearityheights(@) ko/e=0.5 and(b) ka/z=1.0.
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TABLE . Inclinations of the dark solitons in Fig.(B). Csjopeis
the slope measured from the numerically computed envelope
trough.c|B|min is the theoretical slope based on the height of the
computed envelope trougfB|min- Cieast scatteriS the slope used to
obtain the least scatter in Fig. 9.

Dark soliton
number from

X axis Cslope |B|min CIBlmin Cieast scatter

1 0.1125 0.0629 0.1157 0.1141

2 0.4157 0.2300 0.4227 0.4175

3 0.7337 0.4045 0.7433 0.7325

4 1.2308 0.6785 1.2467 1.2275

5 1.5000 0.8356 1.5355 1.5100

6 1.7209 0.9425 1.7320 1.7200

shown by a theory of Korteweg-deVries type and by experi-
ments[34].

VI. A QUARTER PLANE OF RANDOMNESS

Our final example is concerned with a quarter plane of

FIG. 7. Wave envelope over a triangular region of randomnesgjisorder (0<X<, —oc<Y<0), which is representative of
(0<X<5,[Y|<X) for moderate nonlinearitykAo/e=0.5 and  the corner of a large rectangular domain. The parameters are
roughness height®) ka/e=0.5 and(b) ka/e=1.0. kh=0.7, k/a=3 (hencep*~1.654+1.618) and kA,/e

=kol/e=1. As shown in Fig. 10, deep inside the zone of
This feature is reminiscent of the propagation of long waveglisorder ¢ negative and large the problem is one-
from one constant depth, over a slope and onto another shalimensional inX and localization is exponential. For finite
lower and constant depth. Distortion over the slope is knowrY>0 and very largeX, flattening of |B| in Y across the
to be followed by disintegration into several solitons, astransition is accompanied by a slow decay|Bf in X, as

a)

mzﬂ;;;;fr’f/’r’f’r’/’r’rf?ff/%f?/////(

___

50

40

b)

expected from the parabolic nature of the Sclmger equa-
tion (52).

VIl. CONCLUDING REMARKS

In this paper we have treated two-dimensional wave dif-
fraction and localization of weakly nonlinear surface water
waves over a partly random bathymetry. The evolution equa-
tion is shown to be of the nonlinear ScHinger form with a
new linear term whose complex coefficient is deterministic

B!

&%

FIG. 9. Comparison of the six largest envelope holes found in

Fig. 8b) for X=50,60,70,80,90,100 with theoretical dark soliton
envelopes. The variable on the abscissasY —Cjaast scatteXs

FIG. 8. Wave envelope over a triangular region of randomnessvherecq,s: scatten liSted in Table I, is the slope used to obtain the

(0<X<5, |Y|<X) for strong nonlinearitk Ay /e =1.0 and rough-
ness heights$a) ko/e=0.5 and(b) ka/e=1.0.

least scatter in the fit to the theoretical envelopes above. The unit on
the ordinate is 0.2.
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2

w
1 (=X cosh{ kz) +—sinh «z)

s . Jo(x|€))dx
ECOSHKh)—KSInf(Kh)
w? .
1 _ k cosh{xz) +—sinh(«2)
- D) | €
vl o . HE(x|€))dx
Ecosmch)—xsmr(;ch)
w? )
1 _ kcoshixz) +—sinh(«2z)
- (@) | €
FIG. 10. Wave envelope over a quarter plane region of random- + A7)y w? _ Hg (x[é])dx,
ness (6<X<w», —w<Y<0) with kAy/e=ko/e=1.0. ECOSH xh) =« sinh(kh)

(A1)

and depends on the statistical average of the random ﬂucwﬁihereézi—i’ and Hg1) and ng) are Hankel functions of

tions [35]. While the disorder induces exponential attenua-, qar zero of the first and second kinds, respectively.

tion in space, nonlinearity is seen to slow down the attenua- |, the complex plane ok, the integrands have real poles
tion within, and to reduce the diffraction outside, the zone ofy; , — + k, wherek is the positive real root of the dispersion
disorder. If the random bathymetry has a finite area, da”ﬁelation(lZ), and imaginary poles at ik, , wherek, are the
solitons are created in the wake, similar to the fission of longyositive real roots of
solitons in shallow water governed by Boussinesg/KdV theo-
ries.

For oceanographic applications, an important task is to w?=gik,taniik,h)=—gk,tan(k,h), n=123....
study random nonlinear waves of broad frequency band over
a bathymetry with random fluctuations superposed on a

gentle mean slope. The combination of geometrical optics-,r0 ensure outgoing waves at infinity, the integration path

multiple scattering, and nonlinear diffraction should be aalong the positive _real axis _must be indented below the real
worthy challenge in wave dynamics. pole atx, for both integrals in Eq(AL).

Finally, the present method of homogenization, i.e., mul- Note that ag —,
tiplescale expansions, appears to be very efficient to treat

weak disorder, and can be extended to fully three- 2
dimensional problems such as the scattering of sound by a H{P(kr)~ me'[”’(”’z)],

dilute cloud of bubbles, treated by a diagrammatic theory by
[ 2 .
(2) A | T a—i[kr—(7/2)]
Hy”(&r) p e .

Ref. [36].
: , o Thus, for the integral in Eq(A1) involving H{", we intro-
We acknowledge with gratitude the financial support byduce a closed contour in the first quadrant by adding a cir-

US Army Corps of Engineers, Waterways Experiment Sta-cular arc of infinite radius and a vertical path, circum-
tion, Vicksburg, Mississippi(Grant No. DACW 39-99-C- venting all polesik,, along the positive imaginary axis. For
0033, Dr. Donald Resjp U.S. Office of Naval Research the integral in Eqn(Al) involving H® e introducé a
(Grant No. N00014-89J-3128, Dr. Thomas Sweamd U.S. o 0 . .
National Science Foundatioi@Grant No. CTS-0075713, Dr. closed contour n the fourth qyadrant by_ adding a_Iarge “r
John Foss and Dr. C. F. Ched.H.P. also acknowledges the cular arc and an indented vertical p&h circumventing all

. . . . poles —ik,, along the negative imaginary axis. By standard
financial support of the Danish Technical Research Counci pplication of the residue theorem, we evaluate the two con-
(STVF Grant No. 990 3128

tour integrals. The line integrals along the circular arcs van-
ish by Jordan’s lemma. To the line integr&ls andC_, the
net contributions come from the infinitesimal semicircles
APPENDIX: GREEN'S FUNCTION around the imaginary poles and lead to an infinite series. The
net contributions from the vertical segments between the
Using polar coordinates and the Hankel transform,semicircles vanish by pairwise cancellation fradi+ and
Green'’s function is formally found as C_ . The result is Eq(21).
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