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Analytical calculation of the Peierls-Nabarro barriers for the Remoissenet-Peyrard
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We derive analytically the pinning potential and the pinning barrier of kinks due to discreteness of lattices
for the Remoissenet-Peyrard substrate potential by means of the residue method. The theoretical analysis in the
low discreteness effect regime is compared in detail with numerical results of Peyrard and Rem{idsenet
Rev. B26, 2886(1982], yielding a very satisfactory agreement.
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[. INTRODUCTION result of the pinning potential, the well-known Peierls-
Nabarro (PN) potential, in the Remoissenet-PeyraiidP)

The influence of lattice discreteness on the properties ofmodel[10], in the limits where dressing corrections of the
nonlinear systems having kink solutions was investigated byink profile are negligible. This parameter is very important
several authorgL—4]. These studies have pointed out a largefor many physical applications in which nonlinear excita-
variety of effects, including modification of soliton velocity tions are invoked to describe real systems. We recover the
and its form and leading sometimes to the pinning of thé?@havior predicted numerically by Peyrard and Remoissenet
soliton on the lattice. In certain systems such as incommen-/]- The results are presented here in the context of disloca-
surate system, 6], the discreteness effects bring not only ation theory but they are also applicable to many other physi-
guantitative change with respect to the continuum model bui:al systems ou;llned in the precedl_ng paragraph.. We first
also a qualitative change: the discrete lattice causes the gigresent the b.a3|c results of the continuum model in Sec. I,
tortion in the incommensurate phase to be both modulateargaiﬁcg n%’e'rri]vjetﬁ'e”é’ \:Jv;tigie()tfh?ng?i%l#;?gr &ﬁgrigg';? 3? i
and pinned to _th_e lattice, pre\_/enting a truly incommensurat ass of the kink. The F?N barrier is also calculated. Finally,
phase from arising and causing the appearance of a 9ap L. v is devoted to concluding remarks.
the phason spectruf®]. Note that except for some numeri-
cal investigationg 7] and the approximated investigations
[8,9] on the deformable sine-Gordon potential of Remoiss-
enet and Peyrardl0], the discrete models that were used to  To begin, let us consider a system of particles of nmass
describe domain walls, incommensurate systems, or adsyharmonically coupled and placed on an infinite one-
tems were restricted to the discretized version ofd#fieand  dimensional(1D) lattice of spacinga. The system is gov-

Il. MODEL DESCRIPTION

sine-Gordon(sG) models[11-13. erned by the discrete Lagrangian
However the deformable potential of Remoissenet and
Peyrard plays an important role in atomic chains. Its use in L=T-U, @

the present work is dictated by our effort to go beyond the

mathematical problem and obtains results that may be useff

for real materials that undergo structural changes such ayven by

shape distortions, variations of crystalline structures, or con- 1

formational changes in some of their physical parameters. T=Aa2 _¢i2 2)

Such materials cannot be satisfactorily described by substrate T2

potentials with constant parameters, for which much work

has already been done in the context of their dynamical beand

havior. Also it is important to note that the Remoissenet- o2

Peyrard substrate potential has been used to describe diffu- _ 0 2,2

si03r/1 of adatoms{14§) as a model for reconstructive surface U—Aa}i: 2a Pt $i)"T oV, 3)

growth [15], and to describe the complicated exchange-

mediated diffusion mechanispi6]. It has also been used to where the overdot indicates the time derivative. The constant

calculate the diffusion coefficient of adsorbates in metallicA~ma sets the energy scale of the system, &dand wq

substrate$9] and the nucleation rate of kink-antikink pairs at are characteristic velocity and frequency, respectively, is

low temperaturg17]. Finally, the deformable spin model the scalar dimensionless longitudinal displacement of tie

Hamiltonian has been recently introduddd], to name only  particle on a 1D lattice. The nonlinear “one-site potential”

a few. V(¢;) is an external potential, representing the combined
Our aim in this paper is to derive the exact analyticalinfluence of the surrounding crystal or macromolecule

here the kinetic and potential energies are, respectively,
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and external effects, such as an electric or magnetic field. Wined by the characteristic length scalgbut also by the
concentrate our attention on that introduced by Remoisseneurvature of the minima of the potentid9]. It is important

and PeyrardRP) [10], to note that wherr tends to—1, even if the neighboring
particles are sufficiently close@trong coupling the kink
V()= (1-r1)2 1-cos¢, @ extension could be just a few lattice spacings and, conse-
|

1+r%+2r cose;’ quently, the discreteness effects on soliton dynamics and
thermodynamics properties could not be negle¢g4.

where|r|<1. Asr varies, the amplitude of the potential re-

mains constant with degenerate minimar2 and maxima IIl. CALCULATION OF THE PINNING POTENTIAL

(2n+ 1), while its shape changes. At=0, the model re-

duces to the well-known sG model. In order to analyze the influence of the lattice effects on

In the continuum soliton limit, the system described bythe kink dynamics, we use the ansafz= ¢(ia—X(t))
the Lagrangian(l) possesses kink solutiong(x— vt) = ¢;(X(t)), where the dynamical variabl¥(t) represents
= ¢(s), verifying the differential equation the position of the center of mass of the kirk.(X(t)) are
the continuum soliton solutior{&£g. (6)] at the sitei and the

1/d¢o 2_72\/ Ao cof (1 2/c2) 12 discrete corrections or dressing of the continuum solitons for
2\ds) d2 (¢), do=Colwo, y=(1=v/cg) "% the radiated phonons emitted by solitons during their propa-

(5)  gation are assumed to be small. This approximation limits

the range of validity only fod,>a. In the continuum limit,

whered is the characteristic length scale of the systefis  X(t) is proportional to timde.g.,X(t) =vt, wherev is the
the Lorentz contraction factor, andis the continuum space kink velocity] but this is not the case in the discrete lattice,
variable withx=ia, while v is the velocity. From Eq(5),  where the translational invariance of kink motion is broken

one obtains two families of implicit kink solutiof4.0]: by the periodic variation of the kink parameter.
Substitutinge; (X(t)) into the Lagrangiar{1), we obtain
_ 2\1/2 _ o 2\12 7172 i
7<_f): +sgn(— w){utanl Z(l;)} the reduced form
d$ a’+tarf( ¢l2) o
o2 12 L=5MX*—U(X), 9
=1
*tanh a2+tan2(¢/2)} ] 63 \yhereM, defined by
. (1) _ . A 2
with dY=dya and for—1<r=<0, Mo=AaY %) 10
ys 1—a? 12 : g
L = _ _ 2\1/2 —1
4@ *sgr(m ¢)( (1=a) ™ tanh ) 7=—> taﬁ’(d,/z)} is the effective mass of the kink. The potential eneldfyX)

) depends orX through ¢;(X(t)). With the use of the con-
1 rz] (6b) tinuum limit and the differential equatiof®), it appears that
) 1

bl
tanh 7 2 tarf( /2 the potential energy (X) is given by

with d¥=d,/a and for O<r<1, where a=(1—|r|)/(1
+|r|). The sign(+) corresponds to the kink solution while
the sign(—) corresponds to the antikink solution. The kink
rest energy E) and rest mass\) are given by whereV(¢) is the underlying potential of the system defined
in Eq. (4). Also the effective kink mass can be rewritten in a
more suggestive form as

U<X>=2Aaw32i V[ ¢i(X)], (1)

8A
By =8ACoweG! (1) and M{"=4-G"(r), (=12,

2Aa
" Me="p 2 VIi(X)]. (12)
with o
212 The numerical computation of these two expressions
G(r)=(1- o®)2tan ! (1-a%) } shows a periodic variation wit_b(, with period proportional
to the lattice constard. According to this result, we use the
Fourier series expansion to write
G (r)=a(1- a?)Y?tanh [ (1- a?)¥?], (8
Ay < 2mnX

where the superscripts(t)” and “(2)” stand for —1<r > V[ i(X)]= >+ > | an COS( a
<0 and O<r<1, respectively. The parametet§’(¢{=1,2) ' n=t
are the “pseudo-kink-widthT10]. Forr =0, Egs.(6) reduce ~[2@nX
to the usual sG kink. Whentends to 1d{?) tends to infinity. +by, sm( ) (13

On the other hand, whendecreases and tends tal, d¥
tends to zero. Thus, the kink extension is not only deterwith
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2 (a 2mnX
an=5f02i vwi(xncos( S )dx,
2 2mnX (14
a _(2mn
bn:afozi V[¢i(X)]sm( - )dx.
This summation(13) can be rewritten as
Ay < o~ 27nX
2 VIg(X]=5+ 3 |An|cos( i), 19

wherea,, andb,, are the real and imaginary partsAf with
modulus|A,|. HenceA, is given by
2 (a N )
An=antiby=_ | 3 VIei(X)Je G™Xm2idX.
0i=1
(16a
By using the transformatiod=ia— X, Eq. (16@ becomes

5 (N-DP2

y
" Aj=—(N-1)/2

2 (N-1)/2 (N=1)/2+1
__2 f N j e
alJ-(Nn-1r2-1 —(N=1)/2

(i—1)a .
f V[d)(z)]e](ZTan/a)dZ

ia

(N=1)/2 )
+ J ]V[fﬁ(z)]e'(“z“’a)dZ, (16b)
(N=1)/2—-1
which reduces tgwith N— o)
- 2 [*= ,
An=af dZ V[ ¢(Z)]el?™Za), (17a
Also ¢, is defined by
on=tan [ —"| =argA,). (17b
n

QM= (4m2d3n/a)

sinh(27n\,/a)cog2mn\/a)+] sin(27nk,/a)cosi2mn\,/a)

PHYSICAL REVIEW E 66, 016606 (2002

It appears from Eq913), (17), and(22) that the problem
of the calculation of the potential energy and the kink mass
in the discrete system is reduced to that of the integration of
the quantity

Q- | “azvs@iemiomza a9

sinceA,=(2/a)Q,. We can evaluate it either by the saddle-
point method or by knowing the residues of the integrand
associated with poles located in the above half-plane since
V[ ¢(2Z)] tends to zero whei tends to*c. When one relies
upon the residue method, the problem is to find the singular
points of the functionV[¢(Z)]. These singular points,
which in this case are branch points, are located at

ds1=*]IN[(1—a)/(1+ a)]+2m,

(19)
bs2==jIN[(1-a)/(1+a)]+(2m+ 1),

wheremis an integer. These points correspond inzipéane
to

Z@=x\(1+2m) and Z{M=(A;+]jry)(1+2m)
(209

with

A =(dom/2)(1—a®)Y?,  \,=(dy7/2)a,

A=(dom/2)al[1+ (1—a?)*?] (20b)

obtained by substituting Eg$19) into the implicit kink so-
lution (6). From the residues theorem

©

Qn=ijF(Z)dZ=27-rj }_}0 R(ZnF), (213

where R(Z,,,,F) is the residue of the functiof(Z) at Z
=Z.,, we obtain after some lengthy calculation

G(r),

Q@)= (47%d3n/a) GA(r),

(219

o
[1+(1—a?®)Y?]sinh(27n)/a)

sintP(2n\,/a) +sirf(27wn\,/a)

(21b

With the help of Egs(11), (12), (15), and(16), the poten-
tial energy and the kink effective mass can be evaluated.

For example, substituting,, into Eq.(15) and the result-
ing equation(15) into Eq. (11) yields the potential energy

where Ggrl) are the numerical constants depending on the

potential defined in Eq(8). The fundamental harmonic is

readily calculated and yields

Ag")ZS_%G(e)(r),

- 0=1,2. (22)

- 2mnX
UOX)=E"+ E',l Ul cog(TJr@g“) (23)
=

with
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U 16m2d3wiA nGY(r) ‘
no a [sint?(27n\,/a) +sir(27nn, /a) ]
(249
...... dje,=1.112
tan2@7n\q/a) —— da=12
(1) = - - — =
tanen tanh(27n\,/a)’ (24b) *
and
0 0 0‘2 04 0.6 D“S 1l 1J2 1‘4 l‘é 1‘8 2
U@ — 16m°Adiw? naG?(r) Xfa
no a [1+(1—a®)Y?]sinh27nA/a)’ FIG. 1. Pinning potential(X)/U, in dimensionless unitW,
(240 =Acywg) as a function ofX/a in two unit cells forr=—-0.7 and
different values of the discretization parametgra.
tane!? =0. (240

However, sinceM@>M) | the kink massM{?(X) is re-
Similarly, the substitution of Eq5) into Eq.(12) yields ~ duced o its fundamental ha.rmormgz).. Whenr <0, one
the effective kink mass: notes the presence of the sine term in Mg expression

and the phase'? in the cosine term of both the potential

UM(X) and the masM (M(X). It appears that, in the system

+<P$1€)> (25  with large length scaled,>a) and/or for the substrate po-
tential close to the sine-Gordon one—{0), the hyperbolic

2mnX

ML (X)= Mg€)+n§:‘,l ML cos(

with sine function in the denominator ¢f{") dominates the sine
function, thus the harmonic of order more than 2 is negli-
" 16’7T2A naG(l)(r) glble Hence
""" [sinff(2mhon/a) +sin2(27r>\1n/a)]“(22’6a UDX)=EP+UP cog2mxiat o) (29

and the kink mass is reduced to its fundamental harmonic
(2 16m%A naG?(r) M) (since MP>MY). However, when the system is
T @ [1+(1-adPsinzann/a)’ 28D highly discrete ¢lp/a<1) and/or for the substrate potential

with a very sharp bottom or flat top { — 1), the hyperbolic

The parameters!") and EL”) that appear in Eq€23) and  Sine function in the denominator (bjﬁ,_l) tends to zero and
(25) are the kink rest mass and kink rest energy in the conthe sine function predommates. In this case, the harmonic of
tinuum limit [10], respectively, defined by Eq7). In this ~ order more than 1 dominates the harmonic of order 1. Thus,
limit, these quantities are constant parameters. However, i€ potential presents more than one minima within one unit
the discrete lattices, these parameters depend on the ki@l Figure 1illustrates this behavior and shows examples of
position in the lattice. Therefore, it appears that the discreté1® variations of the PN potential (X) for different values
lattice is the source of periodic modulation of kink param-©Of d. The PN potential23) can no longer be satisfactorily
eters(mass and energyas the kink propagates along the described by the approximate equatigag) and (29). .
lattice. As a consequence, a kink in the discrete lattice has a Next we consider the pinning barrier. Note that the peri-
periodically varying effective mass and moves in a periodicodic modulation of the potentidl)(X) as the kink propa-
potential energy. gates along the lattice is the source of the periodic pinning
Equation(23) represents the total potential energy of thePotential experienced by this kink. The amplitude of this
discrete system and can be regarded as the Peierls-Nabafigtential energy is the well-known PN barriggy [1]. In the
energy, while Eq.(25) represents the effective kink mass case of a substrate potential with a flat bottor-0), this
whenr >0, and the phase'? in the argument of the cosine barrier can be accurately deduced from EZy). It yields

term is zero. Due to the presence of the hyperbolic sine func- EQ@ _ o2 (30)
tion in the denominator of)(®, the harmonics of second PN- L
order and more are negligible. Thdn(*)(X) reduces to When r <0, but still greater than-0.5 and/or the length
scaledy>a (weak discrete systexnthe PN barrier is also
27X iven b
U@ (X)=E@ + U@ cos( T) . @pn IVvenhy
Ebh=2U, (3
Also, the kink effective mass has the same behavior, which is deduced from E¢29). When the kink kinetic en-

ergy is not sufficient, it can be trapped by the PN potential,
(29) after which it oscillates in the PN equilibrium site with the
PN frequency with PN defined as follows:

27X
MP(X)=MP+MP cos(T :
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FIG. 2. Variation of the pinning barrieEpy, in eV, with the
parameter of hydrogen adsorbed on a tungsten surface3 A,
m=1uma, c,=5208 m/s,wy=3x10%rd/s; see Ref[17]), as a
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We now turn our attention to a qualitative and quantitative
comparison of our theoretical results with the numerical
simulations of Peyrard and Remoissef@t In fact, Peyrard
and Remoissenet have calculated numerically the pinning
potential and pinning barrier in the RP model and pointed out
the following.

First, the shape of the pinning potential by the moving
kink depends on the shape of the one-site potential; it is
sinusoidal in the case of the sG potential shape with a spatial
periodicity equal to the lattice constant as assumed by Currie
et al.[20], and may exhibit two minima within a unit cell in
the case of the RP potential. This aspect of their results can
be interpreted by Eq23). Figure 1 illustrates this behavior.
However, Fig. 1 shows that the periodicicity of the pinning
potential is still equal to the lattice constant. This failure can
be justified by the fact that the appearance of two minima
with equal magnitude within a unit cell is obtained in the

highly discrete system. So, in the high discreteness effect
regime, we do not have analytical solutions for the discrete

RP model.

Second, the magnitude of the discreteness effects is
strongly dependent on the shape of the substrate potential,
their variation as a function of the discretization parameter
do is also very sensitive to the shape of the substrate poten-
tial, and that very large kink may be pinned by discreteness
effects. Here also, these results can be interpreted by Eq.
(23). Figure 2 is an example of this illustration.

Finally, there is no oscillation in the pinning barrigpy,
wherer=0, and asd, increasesEpy decreases. However,
whenr <0, there appears an oscillationlipy. For this, our

functi f[dashed is the t ted It obtained f Egs. . -
unction of[dashed curve is the truncated result obtained from qSresult[see Eq(21)] shows an oscillatory behavior &y as

eter:

Moreover, whenr<0.5 and/ordy<a (highly discrete sys-

212
4’7TU(1)

( (2)

tem), the PN barrier is given by

Epn=max{U“(X) |- min U (X)],

where makU(X)] and mifu®“(X)] are the maximum and
the minimum values ot ((X) whenX varies from zero to

2_
RUPVIC
S

(30) and (31) while the full curve is the result of Eq.33)] (a)
deformable parameterwith dy/a=1.5, (b) dimensionless discreti-
zation parameterd,/a for three values of deformable param-

(D) r=-0.7;(2 r=0; and(3) r=+0.7.

(32

(33

a function of dy with a pseudoperiod proportional to
2alm\1—a?=2a(1+]|r|)/ = 4|r].

Hence, substantial aspects of the results of Peyrard and
Remoissenef7] have been obtained. However, due to the
fact that we have neglected the dressing correction of the
kink profile in the lattice, the result is limited in the range
where the continuum soliton profile can be obtained. If we
assume that the discreteness parameter is given by the kink
width d®, for negative values of, the range of validity of
our resultd®>a yields |r|<[(dg/a) — 1]/[(do/a) + 1].

IV. CONCLUSION

In summary, we have studied analytically the discreteness

a, respectively. Here, one must take into account the higkeffects on the kink dynamics of a one-dimensional system
harmonic of the PN potential in the calculation of the PNwith the RP substrate potential. The PN potential has been

potential. Figure 2 shows the variationsEdy as a function

derived. It turns out that the discreteness effect depends not

of the deformable parameter which determines the shape only on the kink width, but also on the shape of the substrate
of the substrate potential. It appears that the discreteness gfotential. In the substrate with a sharp botton»Q), the
fects strongly depend on the shape of the substrate potentiglinning barrier can be accurately approximated by the am-

They are minimal for the sine-Gordon profile0), but

plitude of the first harmonic of the Fourier series expansion

increase rapidly when the shape of the potential becomesf the pinning potential, but the shape of this potential may

more abrupteither with a sharp or flat toplt is important to
note that forr>0, the spatial extension of the kink &%

deviate from the sinusoidal one. Also, when the substrate
potential has a flat bottom with deformable parameter

=dy/a so that, wherr—1, very large kinks are needed to <0.5, this approximation is still valid. However, when

avoid discreteness effects.

< 0.5 this approximation may fail, and one should take into
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account the higher harmonics in the analytical expression ahteresting and more accurate to pursue the study of the dis-
the PN potential. The higher harmonic terms may contributereteness effects by taking into account the dressing of the
significantly to increase the value of the PN barrier. Despitekink. The account of this problem leads to noticeable modi-
the significant results obtained in this paper, it would befication of the kink profile and dynamics.
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