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Scaling of the buckling transition of ridges in thin sheets

B. A. DiDonna
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104

~Received 21 August 2001; published 9 July 2002!

When a thin elastic sheet crumples, the elastic energy condenses into a network of folding lines and point
vertices. These folds and vertices have elastic energy densities much greater than the surrounding areas, and
most of the work required to crumple the sheet is consumed in breaking the folding lines or ‘‘ridges.’’ To
understand crumpling it is then necessary to understand the strength of the ridges. In this work, we consider the
buckling of a single ridge under the action of inward forcing applied at its ends. We demonstrate a simple
scaling relation for the response of the ridge to the force prior to buckling. We also show that the buckling
instability depends only on the ratio of strain along the ridge to the curvature across it. Numerically, we find for
a wide range of boundary conditions that ridges buckle when our forcing increases their elastic energy by 20%
over their resting state value. We also observe a correlation between neighbor interactions and the location of
initial buckling. Analytic arguments and numerical simulations are employed to prove these results. Implica-
tions for the strength of ridges as structural elements are discussed.

DOI: 10.1103/PhysRevE.66.016601 PACS number~s!: 46.25.2y, 68.60.Bs, 62.20.Dc
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I. INTRODUCTION

The crumpling of a thin sheet is a phenomenon that
encounter every day, yet the equations governing crump
systems are almost completely intractable without the in
duction of drastic simplifying assumptions@1,2#. At the same
time, this mundane occurrence exhibits some of the m
intriguing behaviors of modern soft matter physics, such
phase transitions@3#, scaling @4#, and energy condensatio
@5#.

For a large class of compressive boundary conditions,
energetically preferred configurations of crumpled th
sheets consist of mostly flat regions bounded by stra
folds and pointlike vertices. Figure 1 shows an example
the resulting network of folds and points in a crumpled sh
of paper. One approach to analyzing such configurations
treat them as patches of unstrained surface bounded b
gions of discontinuous curvature@6#. Boundary layer solu-
tions are then grafted to the regions of sharp curvature,
the total energies of the configurations are compared to
local or global energy minima.

In the last several years the structure and energy
boundary layer solutions around straight folds and isola
vertices in crumpled sheets have been studied in detail,
from a physical perspective@3–5,7–22# and mathematica
perspective@6,23–28#. Related geometries such as thin-fil
blistering @29–33#, thin viscous sheets@34#, thin-film actua-
tors @35#, molecular sheets@36,37#, and the generalization o
crumpling to higher dimensions@5,38–40# have also re-
ceived attention. In particular, the boundary layer aroun
fold was extensively studied by Lobkovsky and co-worke
@4,7,8#. They called the energetically preferred configurati
a ‘‘stretching ridge,’’ since it comes about through the b
ance of bending and stretching energy on the fold line, wh
both energies are of comparable magnitude.

By viewing a crumpled sheet as a collection of ridges a
vertices and adding up the known energetic cost of each u
we may arrive at a reasonable estimate of the total ela
energy in a crumpled sheet. However, part of the picture
1063-651X/2002/66~1!/016601~25!/$20.00 66 0166
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still missing. We know from common experience that t
crumpling of a piece of paper between the hands is a
namic process, with the details of the final shape of the pa
depending strongly on the history of applied forces and
effects of geometric frustration. In order to understand hig
crumpled objects, which are clearly not free to find a glob
minimum of elastic energy, we need to know more about
energetic paths the membrane may take from one crum
state to another.

This work investigates the energetic pathway where
one ridge buckles into several under the action of a comp
sive load. The work builds on Lobkovsky’s scaling analys
of stretching ridges, though we differ in our treatment
applied forces at the tips of the ridge. Using improved sim
lational techniques and greater computing power, we inv
tigate the buckling transition in far more detail than w
previously possible. We then analyze the transition in
framework of stability and bifurcation theory, comparing a
contrasting the transition on the boundary layer to the w
studied subject of thin cylinder stability.

We begin in Sec. II by reviewing the elastic theory of th
sheets, giving a brief derivation of the von Ka´rmán equa-
tions upon which our analysis is based. We then pres
Lobkovsky’s derivation of ridge scaling, and his treatment
small perturbations to resting ridges. He chose a perturba
approach, which assumed linear response to applied for
After describing his method, we present an alternate
proach that integrates applied forces into the original sca
equations. Our approach provides better descriptive po
when considering some special cases of applied forc
since it does not assume that the applied forces are small
then argue that our technique applies well to the highly r
evant case of a ridge with inward point forces applied at
tips. Force scaling exponents are derived for this case.

In Sec. III we present numerical evidence to support o
scaling arguments. We have devised a finite element prog
to increase the accuracy and efficiency with which we c
simulate elastic sheets. This data was also presented
companion paper@19#. For most simulations presented her
©2002 The American Physical Society01-1
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FIG. 1. A typical crumpled
sheet. Image~a! shows a sheet of
paper that has been lightly
crumpled between the hands. Im
age ~b! is the same shee
unfolded—lines and points result
ing from plastic deformation show
the former locations of folds and
vertices in the crumpled state. Im
age courtesy of the authors of@4#.
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the shape and boundary conditions of the grid were chose
simulate a section of a cubical box, as shown in Fig. 2. T
grid covers one edge of the cube and has reflective boun
conditions. Simulating only this edge is equivalent to sim
lating a cube that is constrained to have 16-fold symme
~all fold lines equivalent!. We argue that the reflective bound
ary conditions are representative of the real boundary co
tions for a single ridge in a general crumpled sheet, since
forces that maintain the angle of a given ridge are most o
exerted by the surrounding ridges. In later simulations
change the resting angle of the ridges, so that they do
correspond to the edges of any closed polyhedral surfac
the initial choice of thep/2 dihedral angle corresponding t
a cubic surface was arbitrary. Using data generated by th
simulations, we demonstrate a scaling solution for ridg
with inward forces applied at their ends. We also prov
numerical evidence that the critical strain and curvature
the ridge at the buckling threshold scale with the same
ponents as for the ridges at rest.

Finally, in Sec. IV we consider the buckling transitio
When the ridge is subject to strong enough forcing at its
points, it breaks into several ridges as shown in Fig. 14.
show that this transition is identical to the bifurcation
which thin cylinders buckle. We begin by reviewing th
buckling transition of a cylinder under uniform axial com
pression. Thin cylinders subject to such forcing are obser
to buckle in a regular diamond shaped pattern with azimu
periodicity determined by their thickness and radius. T
first bifurcation is shown to occur at a critical stress, which
inversely proportional to the radius of the cylinder. We app
the relations derived for the cylinder to the geometry of
ridge boundary layer and show that it is consistent with
observed scaling of the ridge buckling transition. We a
show that the small longitudinal curvature along the rid
and the nonuniformity of the curvature and strain on
ridge have only a weak effect on the buckling transition d
rived for the uniform cylinder.

Adopting the hypothesis that the cylinder buckling mo
accurately describes the buckling of stretching ridges,
make two previously untested predictions for the buckl
behavior of ridges. Our first prediction concerns the norm
mode, which is associated with the buckling motion. We
analyze our existing data from Sec. III to isolate the s
normal mode, which becomes unstable as its associ
spring constant passes through zero. Comparing the num
cal results to the theory developed for the cylinder, we sh
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that the rate at which the spring constant approaches
with increasing stress along the ridge is of the same orde
magnitude as for the normal mode associated with cylin
buckling. Our other prediction is that, for a given thickne
to ridge length ratio, the buckling transition will occur at th
same maximum ratio of stress to curvature. To show this,
simulate several variations of the ridge geometry descri
above. Although the different geometries buckle at differe
values of longitudinal stress and transverse curvature, t
all buckle near the same value of the ratio of these par
eters.

We conclude in Sec. V by discussing the implications
this research for the strength of ridges as load bearing
jects. The immediate consequence of our research is
ridges are not as strong as was once thought. Since the r
buckles when the total longitudinal stress along the ridge
reaches a critical value, the preexisting stress found in res
ridges makes them easier to break than stress-free shells
cylinders with the same radius. Strategies for strengthen
ridges are discussed, along with topics for future resea
concerning the buckling transition.

II. PREBUCKLING BEHAVIOR OF RIDGES

A. The von Kármán equations

We consider an idealized thin elastic sheet with unifo
Young’s modulusY. The sheet has a constant thicknessh,
which is much smaller than its spatial extent in the other t
material directions. In the regime where elastic distortio
are small and slowly varying on the scale ofh, stresses along
the thin direction can be neglected in comparison to thos
the long directions. In this regime the thin direction can th
be integrated out of the governing elastic equations@2#, so
that the sheet is completely characterized by its tw
dimensional center surface.

We assume that our sheet has no intrinsic strain or cu
ture, so we may define on it material coordinatesxW,R2. The
embedding of the sheet intoR3 can then be expressed a
some functionrW(xW ) of the material coordinatesxW . The strain
is defined as the change in length elementdl under the em-
bedding,

dl825dl212g i j dxidxj , ~2.1!

so that
1-2
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SCALING OF THE BUCKLING TRANSITION OF . . . PHYSICAL REVIEW E 66, 016601 ~2002!
FIG. 2. Typical elastic sheet used in this study.~a! The resting configuration of the simulated sheet with no external forces. It also s
the reflection planes to which the sheet edges are constrained.~b! How the simulated sheet is equivalent to one edge of a cube, when
mirror images of the sheet across the reflective planes are drawn in. The thickness of the sheet is 0.0004 of the edge length and
ratio is 1/3. Darker shading represents higher strain energy density. The entire simulated sheet is uniformly darkened to distingui
its mirror images in~b!. Slight numerical symmetry breaking between the left and right sides of the diamond created slight mismat
the inferred surfaces on other faces, such as the right-hand face. The numerical grid is visible as a quiltlike texture. It has a finer s
edges and corners where curvature is larger.
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g i j 5
]rW

]xi
•

]rW

]xj
2d i j . ~2.2!

The most general quadratic form for the stretching ela
energy density in terms of the strain can be written as

LS5
Yh

2~12n2!
~g i j g i j 1n« ik« j l g i j gkl!, ~2.3!

where n is the Poisson ratio and« i j is the antisymmetric
tensor.

The stress is defined as the variation ofLS with strain,
s i j 5]LS /]g i j , so we can writeLS5 1

2 s i j g i j with

s i j 5
Yh

12n2 @g i j 1n« ik« j i gkl#. ~2.4!

Because of the nonzero thickness of the sheet, ther
also an energy cost associated with the bending of the s
out of its local material plane. Bending is quantified by t
extrinsic curvature, which can be expressed as the com
nent of the second derivative ofrW normal to the local mate
rial frame,

Ci j 5
]rW

]xi]xj
•nW . ~2.5!

The inverse values of the eigenvalues of the curvature te
are the local principal radii of curvature of the sheet. Ge
metric constraints@41,42,43# require that the curvature tenso
should satisfy

] iCjk5]kCji ~2.6!
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for a sheet with a flat metric.
The most general quadratic form for the energy dens

associated with bending can be written as

LB5
1

2
~kCi j Ci j 1kG« ik« j l Ci j Ckl!, ~2.7!

where the coefficient ofkG is the familiar Gaussian curva
ture.

To establish the connection between the curvature ene
and the bulk elastic moduli, we introduce the so-call
Monge coordinates. These coordinates locally paramet
the center surface of the sheet by

rW~xW !5~x1u, y1v,w!, ~2.8!

wherex andy are the material coordinates andu, v, andw
are small deviations from the flat, unstrained state.

Microscopic considerations of the finite sheet thickne
@2# yield an energy functional forw,

Lw5
Yh3

24~12n2!
@~] i] jw!21n« ik« j l ~] i] jw!~]k] lw!#.

~2.9!

To lowest order inw, Eq. ~2.5! givesCi j 5] i] jw, so we can
immediately make the identificationLB5Lw with

k5
Yh3

12~12n2!
,

kG5
Yh3n

12~12n2!
. ~2.10!
1-3
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B. A. DiDONNA PHYSICAL REVIEW E 66, 016601 ~2002!
The equations of equilibrium can be found by setting
variation @44# of the total energy of the sheet to zero. In t
presence of an external pressure fieldP, the condition for an
energy extremum becomes

d F E LS1E LwG1E Pdw50. ~2.11!

Grouping terms for in-plane and out-of-plane displaceme
yields the equilibrium conditions

] js i j 50, ~2.12!

Yh3

12~12n2!
¹2¹2w2] j~s i j ] iw!5P. ~2.13!

Therefore the equilibrium condition can be written as

k¹2Cii 5s jkCjk1P. ~2.14!

Equations~2.12! and~2.14! are not enough to completel
specify the system, so another equation of state is neces
An appropriate equation is Gauss’s fundamental theorem
surfaces@41,42#,

detCi j 5] i] jg i j 2¹2 tr g i j , ~2.15!

which relates strain to Gaussian curvature. Together,
force equations~2.12! and ~2.14! along with the constrain
equations~2.6! and ~2.15! are enough to completely dete
mine the equilibrium configurations of a sheet up to arbitr
translations and rotations. Equations~2.14! and ~2.15! are,
respectively, called the force and geometric von Ka´rmán
equations@44#.

As a consequence of Eq.~2.6!, the curvature tensor can b
written as the derivative of a continuous curvature poten

Ci j 5] i] j f . ~2.16!

Here the potentialf (xW ) is not identical to the local functionw
used above, but is approximately equal to it for nearly
surfaces. Also, Eq.~2.12! is automatically satisfied if we
write s i j in terms of a stress potentialx,

s i j 5« ik« j l ]k] lx. ~2.17!

In terms of the potentialsx and f, the von Kármán equa-
tions assume the very compact form

k¹4f 5@x, f #1P, ~2.18!

1

Yh
¹4x52

1

2
@ f , f #, ~2.19!

where the bracket product represents

@a,b#5«am«bn~]a]ba!~]m]nb!. ~2.20!
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B. Ridge scaling solution

We wish to use the von Ka´rmán equations to study the
boundary layer around a folding line in an elastic sheet. T
fold plus boundary layer configuration is what Lobkovs
and co-workers termed the ‘‘stretching ridge’’@4,8#. An in-
tuitive picture of the structure of the boundary layer is p
sented in Fig. 3. As we showed in the preceding section,
thin sheets the bending elastic modulus is less than
stretching modulus by a factor ofh2. Therefore, for very thin
sheets with relatively free boundary conditions@45# minimal
energy configurations are mostly strain free, with large
formations concentrated around folding lines. Very close t
folding line, the curvature approaches a scale where ben
and stretching energies are once again comparable and
local configuration is determined by a balance between th
two energies.

Conceptually, as Fig. 3 presents, the stretching ridge
be approached from the limit of zero thickness, where
curvature at the folding line becomes singular. The bound
conditions that create the fold are pointlike vertices at poi
A andB, which are maintained at a sharp curvature. As
thickness of the sheet increases, it is energetically favora
for the middle section of the ridge to have a lower curvatu
at the expense of stretching along the length of the ridge.
boundary layer around the fold thus acquires a saddle
shape as shown in Figs. 3~c! and 3~d!. The width of the
boundary layer is of the same order as the transverse ra
of curvatureR and is much less than the length of the rid
X.

Now we proceed to apply the von Ka´rmán equations to
the stretching ridge. This system has two well-defined typi
length scales—the sheet thicknessh and the ridge lengthX.
We can, therefore, rescale the von Ka´rmán equations into
a more convenient dimensionless form by expressing
lengths in units ofX and all energies in units ofk. The von
Kármán equations then become

¹4 f̄ 5@ x̄, f̄ #1 P̃,

l2¹4x̄52
1

2
@ f̄ , f̄ #. ~2.21!

Here x̄, f̄ , and P̄ represent the stress potential, curvatu
potential, and external normal forces in respective natu
units of kX22, X, andkX23. All derivatives are taken with
respect to the dimensionless variablesx/X andy/X. The di-
mensionless small parameterl is given by

l5
Ak/Yh

X
5

1

A12~12n2!
S h

XD . ~2.22!

We consider a sheet with edge boundary conditions su
cient to create a single ridge and no normal forces (P50).
We define our coordinate frame so that the origin is at
center point of the ridge and the center line of the ridge
parallel to thex̂ material direction. Sincel comes into the
von Kármán equations multiplying the stress source term,
1-4
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SCALING OF THE BUCKLING TRANSITION OF . . . PHYSICAL REVIEW E 66, 016601 ~2002!
FIG. 3. The stretching ridge boundary layer. Images~a! and~b! show the geometry of a sheet with one sharp fold.~a! is a side view, while
~b! is a cross section of the fold at the midpoint of the sheet. Images~c! and~d! show a representation of the ‘‘stretching ridge’’ configuratio
in which the boundaries of the sheet are still required to make a sharp angle. Image~d! shows the same cross section that is shown
~b!—this image illustrates how the curvature across the fold line is lessened in the ridge configuration, and the region of large curv
a width of the order of the maximum radius of curvature. Image~c! shows how the softening of the curvature requires stretching the s
along its midline. The geometry shown here, used for the arguments presented in@4#, requires extensional strain along the midline—oth
geometries can have a net compressive strain along the midline, but the driving balance between curvature and strain remains th@8#.
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possible configurations of a thin elastic sheet are well
scribed by a stress-free,l50, folding solution plus boundary
layers at the fold lines. Lobkovsky’s insight in@8# was to try
a scaling solution for the boundary layer of a single ridg
which matched thef̄ scaling of the outer, sharp fold solution
For a fold of dihedral anglep22a across the liney50, f̄

5auy/Xu. Accordingly, on the boundary layerf̄ should scale
with the same power ofl as the dimensionless transver
coordinatey/X. He, therefore, tried a scaling solution of th
form

f̃ 5lb f̄ , x̃5ldx̄, ỹ5lby/X, x̃5x/X, ~2.23!

where the tildes denote dimensionless, scale-free coordin
and functions. Takingb,0 gives the proper limiting case o
sharp curvature at zero thickness. Substitution into the
caled von Ka´rmán equations withP̄50 and retention of only
the largest terms yields

l3b
]4 f̃

] ỹ4 5lb2d@ x̃, f̃ #,

l22d14b
]4x̃

] ỹ4 52
1

2
l0@ f̃ , f̃ #. ~2.24!

In the l→0 limit the two sides of each equation must sca
identically. Solving for the exponents yields
01660
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3
, d5

2

3
. ~2.25!

This translates tol1/3 scaling of the boundary layer width
l21/3 scaling of the transverse ridge curvature, andl2/3 scal-
ing of the strain along the ridge length. So, to within facto
of order unity, the radius of curvature across the ridge isR
'Xl1/3, and the total width of the boundary layer should
about the same. Also, if we assume that most of the ela
energy is concentrated on the boundary layer, a region
area l1/3X2, then integration of the energy functionals
Eqs.~2.3! and~2.7! yields total bending and stretching ene
gies, which scale askl21/3.

C. Response to external forces

In deriving the ridge scaling exponents, Lobkovsky a
co-worker posited a set of ‘‘minimal’’ boundary conditions
create a ridge—purely normal forces are applied as neces
at the edges of the sheet to maintain straight, sharp fo
Relying on these boundary conditions as necessary, he
rived functional forms for many of the geometric and en
getic quantities of interest on the ridge@7,8#. However, the
derivation of the generic scaling exponents presented in S
II B does not rely on any specific boundary conditions, a
so these exponents should apply to a much broader clas
ridge configurations than just the ‘‘minimal’’ ridge.

These scaling arguments still place a few limitations
generic ridges. An important ingredient in the ridge scali
derivation is that there are only two length scales, the thi
1-5
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B. A. DiDONNA PHYSICAL REVIEW E 66, 016601 ~2002!
nessh and the ridge lengthX. This is the essence of ou
notion of an unperturbed, resting ridge—the boundary c
ditions do not impose another length scale on the proble

To quantify the response of ridges to external forces,
must study how the unperturbed ridge evolves as ano
length scale is added to the system. Our common experie
of gazing at a crumpled sheet of paper tells us that real e
tic ridges do not live in isolation, but are influenced by oth
ridges around them as well as by the global geometry of
sheet. Since ridge scaling is witnessed under such circ
stances, the governing equations must be fairly insensitiv
most small perturbations.

Previous efforts@7# to study the response of ridges
external forcing relied on a perturbative scheme, which
sumed linear response to small forces. The response o
ridge to in-plane external forcing at the edges of the sh
was deduced by first solving for the stress field that suc
force would produce in a flat sheet, and then using this
lution to modify the equations governing the ridge. A rid
scaling solution was then substituted into the modified v
Kármán equations and series expanded in the magnitud
the external force. This technique had the weakness tha
resulting expressions for the force response had an und
mined exponent~though the possible values of the expone
were limited!. The technique was also very complicated.

We use a less specific, more intuitive approach to st
the overall response of a ridge to external forcing. Instead
solving for the detailed behavior of the ridge strain and c
vature as the force is applied, we focus on how the forc
must be rescaled to have an equivalent effect on ridge
different length ratiosl. For example, forces applied norm
to the sheet enter the von Ka´rmán equations through the term
P in the force equation. If we add the dimensionless form
this term back to the ridge scaling form of the equation@Eq.
~2.24!#, we find

l21
]4 f̃

] ỹ4 5l21@ x̃, f̃ #1 P̄, ~2.26!

where we have used the ridge scaling values forb andd. In
order for the solutions tof̃ and x̃ to remain scale invariant
the fieldP must obey the scaling form

P̄5l21P̃~ x̃,ỹ!, ~2.27!

whereP̃ is a dimensionless, scale-free function ofx̃ and ỹ.
Conversely, the existence of the scale-free functionP̃ gives a
relation between two equivalent external forces on ridges
different l,

P̃15S l1

l2
D 21

P̄2 . ~2.28!

Thus we assume that with proper rescaling of our app
forces, the fieldsf and x obey the samel scaling laws on
forced ridges as on the resting ridge. This notion allows u
make strong statements about the complex evolution of
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ridge shape with applied forcing. Still, the flexibility of ou
approach is greatly limited by the requirement implicit in E
~2.27! that the spatial dependence of the applied force a
scales@46# with l. A perturbation scheme with which we ar
not free to fix the location of our perturbing force seems
be of limited physical interest. However, this scheme is s
ficient to study some special cases that are particularly
portant. For example, it is well suited to the problem of
ridge with external point forces applied at its vertices, sin
the spatial location of the equivalent forcing will clearly r
main fixed asl is varied. The other benefit of this scheme
that it does not rely on assumptions of linear response, s
describes the force response over changes of order uni
the fieldsf andx.

Point forces applied at ridge vertices

External forcing applied to the sheet enters the v
Kármán equations via the termP or via boundary conditions
at the sheet’s edges. We described the proper rescalingP
in the preceding section, in this section we calculate the
caling of a particular kind of in-plane forcing at the she
boundaries. Here and in the remainder of this work we c
sider an external potential that applies point forces to b
vertices at the ends of a ridge. Since the applied forces h
only d function spatial extents and are applied at points t
remain stationary under ridge scaling, we do not expect th
to destroy the spatial scaling of the ridge solution. Theref
we may reasonably expect to find that the equilibrium co
figuration of a ridge under a given compressive force
identical to rescaled configurations of ridges with differe
material thicknesses and properly rescaled external fo
magnitudes.

To calculate the proper rescaling of the forces on the v
tices for a similarity solution, we consider our forcing as
boundary condition consisting mainly of an in-plane po
force. This force amounts to a point stress at the edge of
sheet with the form

sxx
~o!5Fod~y!. ~2.29!

So, to find similar scaled configurations of the sheet,
must scalesxx

(o) the same waysxx scales on the ridge. Sinc
gxx scales asl2/3,

sxx;Yhgxx;kl24/3X22g̃xx , ~2.30!

whereg̃xx is a dimensionless, scale-free function. To expr
sxx

(o) in a similar fashion, we first substitute the scale-freey
variable ỹ5l21/3y/X, so thatd(y)5l21/3X21d( ỹ). Thus,
the proper scale-free force can be written in terms ofFo as

Fo5
kl21

X
F̃o . ~2.31!

For reasons that will become clear in Sec. III, we can
measure the force applied to our ridge with very good ac
racy. However, we can measure the inward displacemenD
of the ridge ends caused by this forcing. These two quanti
1-6
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SCALING OF THE BUCKLING TRANSITION OF . . . PHYSICAL REVIEW E 66, 016601 ~2002!
may be related by assuming that the work done by equiva
rescaled forces, given approximately byFoD, scales the
same as the total energy of the resting ridge configurat
The total energy of a resting ridge scales askl21/3, so
equivalent values ofFoD/k will scale asl21/3. Given the
scaling ofF̃o from Eq. ~2.31!, the scale-freeD̃ must be re-
lated to the actual displacement by

D5l2/3XD̃. ~2.32!

This scaling result has the predictable implication that
macroscopic strainD/X scales identically togxx , the local
longitudinal strain on the ridge.

III. SIMULATIONS

A. Numerics

We simulate an elastic sheet using a fixed triangular g
with variable grid spacing~see Fig. 5!. Strains and curvature
are taken to be constant across the face of each trian
Strain is calculated on each triangle by measuring the r
tive deviation of its vertices from their predefined strain-fr
positions. The curvature is calculated on each triangle fr
the relative heights normal to the triangle surface of the th
triangles that share sides with it~see Fig. 4!. The relative
heightszi of the six points~a!–~f! are fit to a function of the
form

zi5a11a2xi1a3yi1a4~xi !
21a5xiyi1a6~yi !

2, i 51,6,

~3.1!

wherexi andyi are the material coordinates of the vertice
Curvatures follow immediately from the identification

Cxx52a4 , Cxy5a5 , Cyy52a6 . ~3.2!

FIG. 4. Finite elements for stretching and bending. The strain
each triangle is computed from the change in relative position
its vertices. Curvature on one triangle is computed from the rela
heights, normal to the triangle surface, of the vertices of the trian
plus the additional vertices of its nearest-neighbor triangles.
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These six simultaneous equations for thezi in terms ofaj are
inverted at program initialization to save later computatio
time.

The edges of the grid are constrained to lie in reflect
planes of the minimal unit pictured in Fig. 5. For calculatio
of the curvature on triangles bordering these planes, the
angles see mirror images of themselves across the pla
The mutual attitudes of the reflection planes are such that
sheet would meet them all at normal angles if it were p
fectly flat except for one sharp 90° fold between two opp
site corners. As shown in Fig. 2, the single ridge with th
geometry is conceptually identical to one edge of a cu
surface, provided the surface is constrained to be symme
Two corners of the sheet are the vertices of the ridge
forms along the fold line when the elastic energy is mi
mized.

The gridding was determined in two steps: first the d
sired area was gridded with an equilateral triangular latti
then the positions of the grid points were remapped by
simultaneous transformation

x85 f ~x,y!, y85g~x,y!, ~3.3!

where f and g are fifth-order polynomials@47#, which are
constrained to be stationary on the edges and along
midline of the grid. Our mapping provided a fourth-ord
smooth gradient in grid spacings on the flat faces of the ri
while concentrating the lattice spacing at the vertices b
factor of 103 and across the ridge line by a factor of 102

compared to the flat regions far from the ridge. The conc
trations factors were chosen arbitrarily, within the limits
the mapping, to make the gridding near the vertices as fin
possible, since this is the region of the largest gradients
curvatures and strain. The gridding is visible in Fig. 5.

n
of
e
le

FIG. 5. Simulational geometry. An equilibrium configuration
the simulated sheet~white grid! is shown for a thickness aspec
ratio l of 1023. The dark planes mark the location of the reflecti
planes to which the sheets edges are confined. PointsA andB are
the center points of the repulsiver 28 potential used to press on th
vertices of the simulated ridge.
1-7
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B. A. DiDONNA PHYSICAL REVIEW E 66, 016601 ~2002!
Bending and stretching energies were assigned to the
vature and strains on each triangle using the forms for ela
energy presented in@48#

eB5
1

2
kA~Cii Cj j 2« ik« j l Ci j Ckl!, ~3.4!

eS5
3

16
GA~g i i g j j 12g i j g i j !, ~3.5!

where« i j is the antisymmetric tensor,k is a bending modu-
lus, G is the two-dimensional Young’s modulus, andA is the
area of the triangle. The stress-energy expression is ap
priate for a material with a Poisson ratio of 1/3. The coe
cient of the Gaussian curvature energy is not consistent
that given by Eq.~2.10! for a uniform elastic material, bu
was chosen to maintain consistency with the simulations
Lobkovsky and co-workers in@4,7,8#. The direct contribution
of the Gaussian curvature to the bending energy is much
than that of the mean curvature. Separate simulations ver
that changing the value of the Gaussian curvature coeffic
had no discernable effect on our data. The physical thickn
h of the sheet is equal to (3/4&)Ak/G.

Pushing on the tips of the ridge is accomplished by int
ducing repulsive potentials of the formV(r )5CP /urW2xW pu8
centered around two points, one on each line to whic
vertex is constrained~pointsA andB in Fig. 5!. The center
points are located at a distanceX from one another and sym
metrically placed with respect to the middle of the ridg
These points lie where the vertices would be if the sh
were sharply creased—relaxation of the ridge curvat
draws the vertices inward from these points for an unfor
resting ridge. The benefit of this potential is that it ac
mainly on a small but finite area around the vertex. In ear
simulations, simple pushing of the vertex itself led to t
local collapse of the vertex tip without applying any force
the main part of the ridge.CP was varied to apply differen
loading.

An inverse gradient routine@49# was used to minimize the
total elastic and potential energy of the sheet as a functio
the coordinates of all the lattice points for given paramet
k, G, andCP .

Using this routine we found minimum energy configur
tions for ridges of aspect ratiol ranging from 1.2531023 to
1.7731025. The upper bound onl was determined by the
range of validity of the ridge scaling solution—above th
value the width of the ridge becomes comparable to that
sheet. At the other extreme, forl,1025, the radius of cur-
vature at the ridge line becomes comparable to the spacin
our lattice and the simulation ceases to be accurate.

B. Findings

The plot in Fig. 6 shows scaling of the total elastic ene
in the ridge versusl for ridges at rest (CP50) and at the
buckling threshold. The data shown here is for ridges w
dihedral anglep/2. Scaling of the total elastic energy for th
resting configuration is consistent with akl21/3 dependence
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in agreement with prior theory and simulation@4,8#. Figure 6
also shows that the elastic energy measured at the buck
threshold exhibitsexactly the samescaling as on resting
ridges. This suggests that the ridge scaling developed for
resting ridge is still applicable to the ridge with forces a
plied at its end points. As we predicted in Sec. II C 1, th
particular form of the forcing potential should not destroy t
length scaling of the ridge. The inset in Fig. 6 shows that
energy correction at the buckling threshold is nearly a c
stant fraction of the total ridge elastic energy.

Scaling of the force response is verified by the existe
of a similarity solution for the ridge shape as a function of
displacementD ~see Fig. 7!. We considered scaling of th
equilibrium value ofCyy along a line in the material coordi
nates, which bisects the simulated ridge line. As a con
quence of the scaling exponents presented in Eq.~2.23!, for
an unforced ridge the plot ofCyyl

1/3 versusyl21/3 along
this line should be independent ofl. Extending this result to
forced ridges, we found numerically that the rescaled cro
ridge curvature profiles were also identical for forced ridg
with the same equilibrium value ofDl0.67. This D rescaling
exponent is very close to the theoretical value of 2/3 deriv
above. Plot~a! in Fig. 7 shows values ofCyy along a line in
the material coordinates, which bisects the simulated ri
line, for several different sheet thicknesses and two differ
values of rescaled ridge tip displacementD. For comparison,
the unscaledCyy versus y for a particular rescaledD is
shown in Fig. 7~b!.

With our generic treatment of the ridge force response
can rescale the observed configuration at one thicknes
that for the simultaneously rescaled thicknesses and app
forces. It must be noted, however, that scaling of the rid
response to forcing does not imply identical scaling of t
buckling threshold. Buckling of the ridge signals a bifurc
tion in the allowed equilibrium configurations at a critic
applied load@50,51#. This is a completely separate topi
which we treat in Sec. IV. There, we introduce a model

FIG. 6. Energy of ridges at rest and at the buckling thresho
Straight lines are least squares fits to a scaling formy5axb . In this
plot l ranges from1.2531023 to 1.7731025 . The plot shows
the total elastic energy (EB1ES) in the sheet after minimization
The scaling exponent fit for the resting ridge values~lower line!
was 20.32, the fit at the buckling threshold was20.31. The inset
shows the difference between threshold energy and resting en
in units of the resting energy. This energy ratio is best fit by
scaling exponent of 0.0560.02 and is consistent with a consta
ratio.
1-8
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SCALING OF THE BUCKLING TRANSITION OF . . . PHYSICAL REVIEW E 66, 016601 ~2002!
the buckling transition, which reproduces the observed s
ing of the critical energy without assuming ita priori.

1. Dihedral angle scaling

In addition to the simulational data presented above
ridges with dihedral anglep/2, we also simulated the forc
response up to the buckling point for ridges with differe
angles. In this section, we present data for ridges with th
ness aspect ratiosl from 1.2531023 to 2.531024 and with
dihedral angles fromp/2 to 7p/10. In each of these simula
tions, the sheet had equal side lengths as before and was
by reflective boundary conditions, similar to those describ
above, to form a ridge between two corners.

Lobkovsky showed@8# that for ridges with dihedral angle
p22a the elastic energy scales aska7/3. The best scaling fit

FIG. 7. Similarity solution for the ridge response to forcin
Both plots showCyy , the curvature across the ridge line, versus
y material coordinate on the line that bisects the ridge line. The d
is for sheets with seven different values ofl, ranging from 1.25
31023 to 1.2531024. Plot ~a! showsCyy(l/l1)1/3 vs y(l/l1)21/3

for the ridges at rest and for ridges with inward vertex displacem
D(l)5D1

(c)(l/l1)0.67, whereD is measured from the resting verte
positions,l1 is the aspect ratio for the thickest sheet andD1

(c) is the
vertex displacement at the buckling threshold for the thickest sh
The profiles with the large central peak are the buckling thresh
values.~The small dimple in the derivatives of the data aty50 is a
numerical artifact due to a discontinuity in the gridding dens
across the ridge line. For finer gridding this dimple goes aw
while all other local values of curvature remain constant.! Plot ~b!
shows unscaledCyy versusy for the buckling threshold profiles
plotted in ~a!.
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to the resting energy of our ridges had an exponent of 2
~see Fig. 8!. Interestingly, for all dihedral angles and thick
nesses studied, we found that the total elastic energy a
buckling threshold was always approximately 20% grea
than the resting ridge energy. The constancy of this ratio
discussed in Sec. IV D 1, once we have derived the buck
criterion.

We also found for all cases studied that the total energ
the ridge as a function of tip displacementD was well fit by
the quadratic functional form

E5Eo1
1

2
G~D2Do!2, ~3.6!

whereEo is the resting ridge energy andDo is a numerically
fit zero offset. Typical values ofDo were found to be within
10% of the resting ridge zero offset. The value ofG was
found to be nearly independent of the dihedral angle, but w
well fit by the scaling formG'3.2l21.65k/X2 ~see Fig. 9!.
For comparison, the elastic energy of a thin strip of lengthX
and widthw whose ends are compressed inward by lengthD
is approximately given byE' 1

2 Yh(D/X)2Xw. If we take
the width to be the ridge widthw5Xl1/3 and substitute
Yh5k/h25kl22/X2, then the energy becomesE
' 1

2 l25/3k/X2D2. Thus the compressibility of a thin flat stri
with a width of the order of the ridge width is also of ord
l25/3k/X2.

IV. THE BUCKLING TRANSITION

Detailed study of the buckling transition is complicate
by an apparent discontinuity between prebuckled and p
buckled states. When a sheet of paper or a tin can is buc
new ridges appear suddenly, often accompanied by the p
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,

FIG. 8. Scaling of ridge energy witha. Data is shown for ridges
with thickness aspect ratiol ranging from 1.2531023 to 2.5
31024. The dihedral angles of the ridges are given byp22a. The
energy values for each thickness were rescaled by the pred
energy scaling factorl1/3 so they all lie on a common line. Point
on the lower line were for ridges at rest and points on the upper
were for ridges at the buckling threshold. The lines are fits to
data for thicknessl55.631024. The a scaling exponents for this
thickness were 2.31 for resting ridges and 2.29 for ridges at t
buckling threshold. The thinnest sheets~, symbols! do show some
deviation from the top line fit.
1-9
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B. A. DiDONNA PHYSICAL REVIEW E 66, 016601 ~2002!
ping sound of energy release@52#. In simulations we find that
ridges buckle at a repeatable value of inward tip displa
ment, but immediately after the buckling transition, the mi
mal energy configuration of the sheet contains a fully form
new ridge. This is counter to our intuition that the transiti
should be continuous@50,51#, in which case the immediatel
postbuckled state would be only infinitesimally different th
the prebuckled. More importantly, our inability to obser
intermediate stages in the growth of the buckled state
vents us from directly seeing the shape of the assumed
mal mode against which the ridge becomes unstable.

In this section we study the buckling transition in grea
depth, through more detailed analysis of the simulational
sults presented earlier. The consequences of our analysis
lead us to run further, more specialized simulations. Our
is to tie the observed behavior at the ridge buckling thresh
to well-known results concerning the buckling of thin elas
cylinders.

We begin by reviewing the salient features of thin cyli
der buckling. Under uniform axial compression applied at
ends, a thin elastic cylinder will pass from a state of unifo
uniaxial curvature to an axially periodic diamond shap
buckling pattern~see Fig. 10!. Although the details of the
geometry are different, we show that the buckling of elas
cylinders or sections of a cylinder is determined by elas
terms analogous to those that dominate the behavio
stretching ridges—namely, the cross-ridge curvature and
ridge-line strain. We proceed to apply the analysis develo
for the cylinder to elastic ridges, finding that the scaling
predicts for the buckling transition is consistent with o
simulational observations. We then do a normal-mode an
sis of the buckling transition to determine the scaling of
lowest mode as it approaches the point where the sin
ridge configuration becomes unstable. We numerically co
pute the lowest several normal modes for ridges under v
ous degrees of compression, and show the appearance
mode with a swiftly decreasing eigenvalue, which we belie
accounts for the buckling instability. Quantitative aspects
this mode’s shape and its approach to zero eigenvalue
discussed.

FIG. 9. Scaling ofG with a. The compressibility modulusG was
calculated for ridges with thickness aspect ratiosl from 1.25
31023 to 1.2531024 and with dihedral angles fromp/2 to 7p/10.
The line is a scaling fit for data with dihedral anglep/2 and has an
exponent of21.65.
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Finally, we argue that the apparent differences betw
the elastic cylinder and the stretching ridge are inconsequ
tial in regard to the buckling instability. The main distin
guishing trait of the stretching ridge is that it maintains hi
internal stresses even when it is at rest. We show that
critical load at which the ridge buckles is determined by t
ridge curvature and the total stress along the length of
ridge, including the preexisting stress and the additio
stress resulting from the applied load. To demonstrate
the buckling transition only depends on two parameters,
transverse curvature and the total longitudinal stress,
present data from several additional simulations with diff
ent geometries. Though these simulated sheets buckle a
ferent total stresses and curvatures, they all buckle at
same ratio of these two quantities. We also discuss an
served universality of the additional energy required to bre
a ridge.

As a last note, we address the jump in position and ene
at the buckling transition. Even though the appearance
unstable modes for cylinders is the result of a continuo
bifurcation in phase space, cylinders also jump disconti
ously in energy upon buckling. We justify this jump in term
of the nonlinear growth of the buckling mode. We also arg
that the final wavelength of the buckling pattern on a rid
need not be the wavelength of the instability.

A. Stability of thin elastic cylinders

Our treatment of the stability of thin elastic cylinders a
sections of a cylinder under a compressive load mainly
lows that presented in@53#. To avoid additional boundary
conditions, we make our argument for a complete cylinde
however, the stability condition we find is local, so it can
directly applied to an angular section of a cylinder with t
same local stress and curvature fields. We discuss local b
ling and angular shell sections at the end of this section.

We consider an elastic cylinder of thicknessh, lengthL,
radiusR, and Young’s modulusY. To assess the stability o
the cylinder under a compressive forceF52pRs uniformly

FIG. 10. Diamond shaped buckling mode for a thin cylind
This image is from@59#. It shows an aluminum cylinder buckled b
application of straight downward forces at its ends.~Special thanks
to G. Lord for providing image.!
1-10
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SCALING OF THE BUCKLING TRANSITION OF . . . PHYSICAL REVIEW E 66, 016601 ~2002!
applied along its edges, we consider the stability of the fo
von Kármán equation, Eq.~2.14!, against infinitesimal dis-
placements. The forceF is conveniently expressed so that t
resulting longitudinal stress in the unbuckled cylinder iss.
Under the application of the force at its ends, the cylind
will naturally undergo some compression along its leng
which will in turn cause it to expand radially. We are n
concerned with these distortions, but only consider them
the equilibrium solution to the von Ka´rmán equations to
which we add an infinitesimal displacement, which will gro
into a buckled solution. We define a local coordinate syst
everywhere on the cylinder with thex direction along its
length,y direction azimuthal, andz direction normal to the
surface. Infinitesimal displacements in these three direct
are labeledu, v, andw, respectively. In this frame,ẑ points
radially inwards.

Because our cylinder already has a curvature fieldCyy
51/R, the relation between the additional displacementsu,
v, andw and the resulting strain and curvature fields is not
simple as for flat sheets. Up to an additive constant, the lo
embedding of the cylinder intoR3 is given by

rW~xW !5S x1u,~y1v !~12w/R!,w1
1

2

~y1v !2

R D .

~4.1!

This expression accounts for the rotation of our local fram
as demonstrated in Fig. 11. Referring to Eqs.~2.2! and~2.5!,
the expression for theadditional strain and curvature due t
our infinitesimal displacements are, to first order inu, v, and
w,

gxx8 5
]u

]x
, gyy8 5

]v
]y

2
w

R
, gxy8 5

1

2 S ]u

]y
1

]v
]xD , ~4.2!

Cxx8 5
]2w

]x2 , Cyy8 5
]2w

]y2 1
1

R

]v
]y

, Cxy8 5
]2w

]x]y
1

1

R

]v
]x

.

~4.3!

Here the primes denote the infinitesimal corrections to
equilibrium fields. For equilibrium small displacements, t
terms in Eq.~4.3! involving derivatives ofv are typically
much smaller than those involving derivatives ofw, so they
are neglected in the following treatment. The solutions
find for u, v, andw are consistent with this approximatio
for the values ofh/R considered.

FIG. 11. Coordinates in cylinder frame.
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Empirically, thin elastic cylinders typically buckle in
diamond pattern such as that shown in Fig. 10. The long
dinal and azimuthal periodicities of these patterns vary.
test the stability of the shell against these buckling mod
we consider a family of infinitesimal displacement of th
form

u5Aeirx /R cos~Ny/R!,

v5Beirx /R sin~Ny/R!,

w5Ceirx /R cos~Ny/R!, ~4.4!

where the periodicitiesr andN are free variables. This form
of the buckling mode neglects boundary effects, and so
most accurate for a very long cylinder, for whichR/r @L.

We neglect higher-order corrections due to the geome
von Kármán equation in our consideration of infinitesim
displacements, but the force von Ka´rmán equation is not
valid unless the additional constraint of in-plane force eq
librium is satisfied. From Eq.~2.12!, this requires] is i j8 50.
Using the relation of stress to strain from Eq.~2.4! combined
with Eq. ~4.2!, this yields two equations,

]x
2u1

12n

2
]y

2u1
11n

2
]x]yv2

n

R
]xw50,

11n

2
]x]yu1

12n

2
]x

2v1]y
2v2

1

R
]yw50. ~4.5!

These equations can be used to solve forA andB in terms of
C, yielding

A

C
52 ir

nr 22N2

~r 21N2!2 ,
B

C
5N

~21n!r 21N2

~r 21N2!2 . ~4.6!

The equilibrium cylinder configuration becomes unsta
to the combined displacements in Eq.~4.4! when the result-
ing normal force, calculated from the force von Ka´rmán
equation, goes to zero. To linear order in the small displa
ments, this condition will be met when the terms linear inA,
B, andC satisfy

k¹2Cii8 5
1

R
syy8 1sCxx8 . ~4.7!

Using Eq.~2.4! to expresssyy8 in terms ofgyy8 andgxx8 , the
above equation can be written in terms of the small displa
ments as

k¹2~]x
2w1]y

2w!1s]z
2w2

12k

Rh2 S ]yv1n]xu2
w

RD50,

~4.8!

where we have used Eq.~2.10! to express all elastic modul
in terms ofk.
1-11



g
ie
t

y
sa

to
-
n
g
an
e-
ni
al-
ch
on
-

-

es

a-

s.
si-

put

the

B. A. DiDONNA PHYSICAL REVIEW E 66, 016601 ~2002!
Substituting the buckling form of Eq.~4.4! directly in Eq.
~4.8!, and using Eq.~4.6! to eliminateA, B, andC yields the
bifurcation condition

12~12n2!R2k

h2 r 41~r 21N2!2@k~r 21N2!22sR2r 2#50.

~4.9!

If we define

h5
r 2

~r 21N2!2 , ~4.10!

we can write Eq.~4.9! as

12~12n2!R2k

h2 h22sR2h1k50. ~4.11!

Solving for s yields

s5

F12~12n2!S R

h D 2

h211Gk
R2h

. ~4.12!

This function has a minimum inh when

h[hcl5@12~12n2!#21/2
h

R
, ~4.13!

wherehcl is the ‘‘classical’’ buckling value ofh. The corre-
sponding minimum value ofs is denoted asscl ,

scl54A3~12n2!
k

Rh
. ~4.14!

This is referred to as the ‘‘classical’’ value of the bucklin
stress@53,54#. The classical stress is the smallest appl
load under which the cylinder can buckle, provided tha
solution for the corresponding value ofh is allowed@55#.

Our limit of a thin sheet corresponds to the limithcl
→0. The variablesr andN are not uniquely determined b
this stability treatment, beyond the requirement that they
isfy Eq. ~4.10!. However, for each set ofr andN there is a
unique value ofh and, therefore, ofs>scl , determined
from Eq. ~4.12!, at which the cylinder becomes unstable
buckling with that mode. Ifr and N are taken to be con
tinuum variables, then there is an entire family of solutio
that satisfiesh5hcl . In real cylinders the preferred bucklin
wave numbers are determined by boundary conditions
initial imperfections. Azimuthal periodicity and the requir
ment that the wavelength be commensurate with the fi
length of real cylinders severely limits the number of
lowed solutions for cylinders that are relatively thick. In su
cases, there may only be a handful of allowed combinati
of r andN for which h'hcl , with the corresponding thresh
old instability value ofs close to scl . Also, it has been
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shown@54# that initial curvature imperfections in the cylin
der can break the degeneracy inr andN.

Without yet placing any constraints on the allowed valu
of r andN, we explore the limits imposed by Eqs.~4.10! and
~4.13!. Solving Eq.~4.10! for the wave numberr in terms of
N andh gives

rAh5
1

2
@16~124N2h!1/2#. ~4.15!

Thus r can take values between zero andh21/2 and N can
range from zero to 1/2h21/2. Possible combinations ofrAh
andNAh are shown in Fig. 12. For most allowed combin
tions of r andN, r is of the order ofh21/2. For smallr and
Nh1/2 we can expand the lower root of Eq.~4.15!, finding
r'h1/2N2. Substituting the value ofhcl from Eq. ~4.13!
gives two limits for largeR/h,

AR/h>r>N2Ah/R, ~4.16!

where for the lower limitN!AR/h. Implications of both
bounds for ridge buckling will be described in later section

For comparison with later results, we note that the clas
cal breaking stress given in Eq.~4.14! implies a breaking
strain of order

gxx5@3~12n2!#21/2
h

R
'0.61

h

R
, ~4.17!

where we have assumedsyy'0 and have usedn51/3 to
correspond with our simulations. Thus, the total energy in
required to buckle the cylinder is

1

2 E gxxsdA54p~12n2!
kL

R
, ~4.18!

which is of the same order as the energy required to bend
cylinder out of a flat sheet,

1

2 E kCyy
2 dA5p

kL

R
. ~4.19!

FIG. 12. Relation betweenr, N, and h. The solid line is the
higher root of Eq.~4.15!, while the dashed line is the lower root.
1-12
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SCALING OF THE BUCKLING TRANSITION OF . . . PHYSICAL REVIEW E 66, 016601 ~2002!
As we mentioned above, the threshold condition for c
inder buckling can also be considered as a local condition
an angular section of a cylinder. The form of the buckli
displacements, which we posited in Eq.~4.4!, is a global
motion, but we can construct a localized wave pac
from combinations of these modes. Especially for sho
wavelength modes, there are many different modes with
respondingh near hcl , so a localized packet can be co
structed with critical stress very close toscl . The only
requirement for this to work is that the width of the packet
at least a couple of times longer than the principal buckl
wavelength. From Eq.~4.16!, the smallest packet mus
therefore, have a width of at least 2pR/r 52pAhR. All of
the buckling motion may be localized within such a se
contained wave packet, so the buckling threshold condi
should be determined only by aspects of the cylinder defi
within the wave packet. In this instance, it is appropriate
rewrite Eq.~4.17! with the local curvatureCyy in place of
1/R, so the local buckling condition forn51/3 is

gxx /Cyy50.61h. ~4.20!

Thus, if the ratio of strain to curvature locally surpasses
threshold value in Eq.~4.20! over a region of spatial exten
greater than 2pAhR, local buckling can occur just at tha
point. Experimentally, cylinders are often observed to be
buckling locally instead of all at once, due to inhomogen
ities in the cylinder material and uneven forcing@54#.

B. Application to ridge stability

It is immediately apparent that the elastic terms that do
nate the buckling behavior of cylinders are analogous
those that determine the scaling behavior of ridges. The l
est terms in the stability condition, Eq.~4.7!, are those pro-
portional to the transverse curvature 1/R and the longitudinal
strain s. Likewise for the ridge, the balance between t
transverse curvature and longitudinal strain determine
ridge’s shape and energetics both at rest and under com
sion. Furthermore, if we substitute the scaling form of t
ridge curvature 1/R5Cyy;l21/3/X into Eq. ~4.17! for the
critical strain of the cylinder under applied load, we fin
gcr;l2/3, which is exactly the scaling we observed for t
ridge in Sec. III B.

We, therefore, anticipate that the buckling mode of
ridge should be roughly the same as that of a cylinder
material thicknessh, length L5X, and radiusR5l1/3X,
whereX is the ridge length andl is the thickness aspect rati
defined in Sec. II A. We picture the boundary layer of t
ridge as behaving like an angular section of a cylinder, w
some semirigid boundary conditions at the edges where
boundary layer meets the ridge flanks. This picture ma
two assumptions: first that the real buckling mode of
ridge is localized on the boundary layer and second that
longitudinal curvature on the ridge line does not change
critical strain scaling. The first assumption is supported
numerical evidence in the following section. Also, the rid
line is observed to absorb nearly all the stress of our app
load without noticeably changing the shape of the rid
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flanks, so it is plausible that the boundary layer only sees
rest of the sheet as a set of boundary conditions.

In the remainder of this section, we calculate the corr
tion to the buckling stress resulting from the nonzero lon
tudinal curvature. For ridges with typical aspect ratiol
51023 or less we anticipate that the longitudinal curvature
too small to have a pronounced effect on the buckling tr
sition. We argued earlier that the longitudinal radius of c
vature goes to zero asl1/3X, so for an aspect ratio ofl
51023 this radius of curvature already is of order 10X. The
buckling wavelength cannot be longer than the ridge, so
buckling deformational mode should not be strongly affec
by the smaller curvature.

In order to treat the longitudinal curvature rigorously, w
repeat the derivation of the preceding section for a surf
with curvatureR1 in they material direction and2R2 in the
x direction. We takeR2@R1 . These curvature fields canno
globally describe a real surface, but for smallR2 , we may
picture a surface such as that in Fig. 13, whereR1 is nearly
constant over the length of the object. For such a surface
strain-displacement relations analogous to Eq.~4.2! become

gxx8 5
]u

]x
1

w

R2
, gyy8 5

]v
]y

2
w

R1
, gxy8 5

1

2 S ]u

]y
1

]v
]xD
~4.21!

and the in-plane strain equilibrium equations become

]x
2u1

12n

2
]y

2u1
11n

2
]x]yv2

n

R1
]xw1

1

R2
]xw50,

11n

2
]x]yu1

12n

2
]x

2v1]y
2v2

1

R1
]yw1

n

R2
]yw50.

~4.22!

If we substitute the buckling mode from Eq.~4.4! into the
above equations, the ratios of buckling coefficients beco

A

C
5

2 ir

~r 21N2!2 S nr 22N22
R1

R2
@~21n!N21r 2# D ,

B

C
5

N

~r 21N2!2 S ~21n!r 21N22
R1

R2
~nN22r 2! D .

~4.23!

FIG. 13. Distorted cylinder with one large and small curvatu
1-13



-
cu

f

r,

ck
e
i

an
g
dg
ft

id
ou

om
s
a

ce
rg
so
e
e
o

or
at

nal
e
e
ss

into
e

i-
er

er
he
ar

tio

ess.
he
a

B. A. DiDONNA PHYSICAL REVIEW E 66, 016601 ~2002!
Equation~4.8! for force balance of the infinitesimal dis
placement gains several additional terms from the later
vature,

k¹4w1s]x
2w2

12k

R1h2 S ]yv1n]xu2
w

R1
1n

w

R2
D

1
12k

R2h2 S ]xu1n]yv2n
w

R1
1

w

R2
D50. ~4.24!

Solving as before yields the equation

12~12n2!R1
4k

h2 S r 2

R1
2

N2

R2
D 2

1~r 21N2!2@k~r 21N2!2

2sR1
2r 2#50. ~4.25!

If we define

h85

r 22
R1

R2
N2

~r 21N2!2 , s85
r 2s

r 22
R1

R2
N2

, ~4.26!

we can proceed as before to find the lowest allowed value
s8 as a function ofh8. The corresponding value fors is

s54A3~12n2!

r 22
R1

R2
N2

r 2

k

Rh
. ~4.27!

This stress islower than the breaking stress for a cylinde
but will approach the same value forR1 /R2→0. This justi-
fies our above assumption that the minorCxx curvature has a
weak effect on the buckling threshold.

C. Numerical investigation of buckling modes

As mentioned above, our initial observations of the bu
ling transition came from detailed simulations in which w
approached the buckling threshold with very small steps
inward vertex displacement. In all cases, the buckling tr
sition was accompanied by a downward jump in total rid
energy and a large decrease in the strain along the ri
There was no noticeable change in the vertex position a
buckling. This assures us that the sudden jump is not a
by any work done on the ridge due to the springiness of
potential.

The transition to the buckled state was of course acc
panied by the appearance of additional ridges and vertice
our simulated sheets. Since the new ridges and vertices
peared in regions that were not finely gridded on our latti
they were often accompanied by curvatures that were la
on the local scale of inverse lattice spacing. For this rea
we do not claim that the buckling patterns we observ
match in detail the real buckling pattern of a physical she
though they should be qualitatively correct. The types
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buckling pattern we observed are illustrated in Fig. 14. F
relatively thick sheets, the initial buckled state was like th
in Fig. 14~a!—one new ridge appeared across the origi
ridge, with a length of the order of the unbuckled ridg
width, positioned at about two-fifths of the way along th
original ridge. In simulations with the same sheet thickne
but larger steps in a hard-wall potential position~so that the
initial step across the buckling threshold pushed deeper
the buckled state!, the first observed buckled state was lik
that in Fig. 14~b!, with two new ridges positioned symmetr
cally about the midpoint of the original ridge. For thinn
sheets like that shown in Fig. 14~c! the buckling pattern
consisted of a number of smaller ridges. As with the larg
ridges in~a! and ~b!, these smaller ridges had lengths of t
order of the original ridge width and were clustered ne

FIG. 14. Observed postbuckling configurations. Images~a! and
~b! show the buckling pattern for ridges with thickness aspect ra
l51.2531023. The configuration shown in~a! was at the smallest
step past the buckling threshold that we simulated for this thickn
Image ~b! shows a ridge with tip displacement further past t
threshold value. Image~c! shows a buckled configuration for
ridge with thickness aspect ratiol5231024. Lighting and shading
were chosen to emphasize physical features.
1-14
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SCALING OF THE BUCKLING TRANSITION OF . . . PHYSICAL REVIEW E 66, 016601 ~2002!
locations about two-fifths of the way along the original ridg
This is consistent with the buckling patterns on a tetrahed
seen in@7#. In that system, which is closely related to o
own, buckling was accompanied by the appearance of
large transverse ridges, which were symmetrically spa
about one quarter of the way along the original ridge. In@7#,
only highly buckled states of the tetrahedron were observ
so we cannot be sure of where the new ridges initia
formed on the tetrahedron~we have observed our own ridge
to change position slightly with the growth of the buckle
state!. This issue is revisited in Sec. IV D 2.

Normal modes

Since there seems to be some randomness involved in
selection of the postbuckled state accessible to our sim
tions, and since directly after buckling the system pas
through nonequilibrium states of intermediate energy, wh
we cannot directly observe, we desire to learn what we
about the buckling mode before the ridge buckles. Prior
buckling, the infinitesimal displacements given in Eq.~4.4!
would result in a restoring force normal to the surface o
posing the growth of the buckling mode. As the stresss
approaches the buckling stressscl , this restoring force goes
to zero. Because the boundary conditions of a cylinder o
ridge enforce selection rules on the allowed buckling wa
lengths, the buckling mode must be part of a discrete sp
trum of eigenmodes for motion of the sheet. Very near
transition, the buckling mode is very soft, and at some po
before the associated eigenvalue goes to zero, it must
the lowest normal-mode eigenvalue.

Ignoring the small corrections calculated in Sec. IV B, w
can surmise how quickly the buckling mode approaches z
eigenvalue with applied stress by expanding Eq.~4.8! around
s5(scl2sd). For nonzerosd , the left-hand side of Eq
~4.8! will not equal zero, but will instead equal the restorin
force per unit area linear in the buckling mode amplitud
which we denote byPd . If we also ignore the small change
in transverse curvature 1/R with the applied stress, then th
scl term cancels all the terms on the left-hand side of E
~4.8! except thesd term, and we are left with

Pd5sd]x
2w5

2Csdr 2

R2 eirx /R cos~Ny/R!, ~4.28!

where we have substituted the form for the buckling mo
from Eq.~4.4!. The work required to cause this displaceme
is then

Wd5E Pdw'uPdwuRX, ~4.29!

whereR is the ridge radius of curvature,X is its length, and
we again assume that the buckling motion is confined to
ridge boundary layer. The resulting expression is quadrati
the displacement amplitudeC, and so by our previous ansa
we can identify it with the spring constant of the eigenmo
which leads to buckling, byWd[1/2KdC2. Expressingsd in
units of scl , we can write
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Kd'
k

R2

X

h
s̃dr 2, ~4.30!

s̃d[sd /scl . ~4.31!

Finally, if we substitute the scaling form of the ridge curv
ture for 1/R and the limiting scalings of the classical buc
ling value of wave vectorr, the expected spring constant o
the buckling mode becomes

Kd'H k

X2 l27/3s̃d , r;AR/h ,

k

X2 N4l21s̃d , r;Ah/RN2, N!AR/h.

~4.32!

Clearly, for l<1023 the factor ofl27/3 will become very
large, so the shortest-wavelength buckling modes will
proach zero very quickly on the scale of the ridge para
eters. Even the lower value ofl21N4 should be a pro-
nounced feature in the normal-mode spectrum for anyN of
order unity.

We can also calculate the possible wavelengths of
buckling modes on the ridge line by substituting the scal
dependencies into the two limits ofr presented in Eq.~4.16!.
The high wave-number cylinder buckling mode hasr
;AR/h;l21/3, while the low wave-number mode hasr
;Ah/RN2;l1/3N2. Thus, the limiting wavelengths of th
classical buckling mode are

zcl5
2pR

r
;H 2pXl2/3, r;AR/h ,

2pXN22, r;Ah/RN2, N!AR/h.

~4.33!

So for an aspect ratio ofl51023 the shortest buckling
wavelength is of orderX/20. The longer wavelength is inde
pendent ofl. On the ridge, the transverse wave numberN
does not have a lower bound, but the longitudinal wa
length zcl will presumably be a half-integer fraction of th
ridge length. We, therefore, expect that the longest of th
buckling wavelengths will be of the order of the ridge leng
For zcl5X, the corresponding value ofN is N5A2p'2.5.

Numerically we looked for the buckling mode among t
lowest normal modes of our simulated sheets for equilibri
configurations from zero forcing up to the buckling thres
old. We found the modes by analytically calculating the m
trix of second derivatives of the total elastic energy f
the equilibrium positions of the sheet, and then using
block-Lanczos algorithm@56# to find several of the lowes
eigenmodes of this matrix. The eigenvalue corresponding
the buckling mode is precisely the spring constantKd de-
fined above. We used the Underwood implementation of
block-Lanczos algorithm, which is freely available on th
NetLib online archive@57#. The block-Lanczos method i
efficient at finding extremal eigenvalues and eigenvectors
large sparse matrices—our matrices were large by virtue
the large lattice size, but sparse since local curvature
1-15
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B. A. DiDONNA PHYSICAL REVIEW E 66, 016601 ~2002!
strain fields at any lattice point are determined by relat
positions of other grid points only up to a distance of ne
next-nearest neighbors. The numerical values of elemen
our second derivative matrices for very thin sheets diffe
by up to four orders of magnitude, so convergence of
Underwood routine was slow, taking up to several days
recover eight eigenmodes on a 700-MHz Linux-based co
puter.

Figure 15 shows the evolution of the eight lowest eige
values as a function of vertex displacement for a ridge w
aspect ratiol5231023. The eigenvalue evolution is qual
tatively the same for thinner sheets as well. Over a la
range of inward vertex displacement, the lowest modes
have nearly constant eigenvalues. The modes contain a
sortment of motions that are either global or localized on
boundary layer or the ridge flanks. As the vertex displa
ment~and, therefore, the ridge stress! is increased, the eigen
values corresponding to long-wavelength modes localized

FIG. 15. Evolution of modes. Both graphs plot values of t
effective spring constantsKd as a function of ridge tip displacemen
for eigenmodes of a ridge with aspect ratiol5231023. The ridge
tip displacement is nearly linear in the ridge strain and stress, so
these graphss̃d'(0.22D)/0.2. The top graph plots the eight low
est eigenvalues at several different ridge tip displacements~under
application of inward external forces at the tips!. The dashed line in
~a! has a slope of approximately (43102)k/X2s̃d . The lower
graph is a closeup of the lowest four eigenvalues very close to
buckling threshold. The dashed line in~b! has a slope of approxi
mately 106k/X2s̃d @for comparison to scaling values, (0.002)21

553102 and (0.002)27/3523106#. The labeled pointsA and B
correspond to the modes pictured in Figs. 16~a! and 16~b!, respec-
tively.
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the ridge begin to drop more steeply. For example,
strongly sloped line in the upper right corner of Fig. 15~a!
corresponds to the mode shown in Fig. 16~a!. The eigenvalue
for this mode has a slope of the order of243102 @in units
of (k/X2)/ŝd#, which is just one order greater than the min
mum slope predicted by Eqs.~4.32! and ~4.33! for the
l21N4 scaling associated with long modes of waveleng
X (N5A2p). Similar modes, with wavelengths 2X/3, X/2,
2X/5, etc., were found higher in the eigenmode spectru
Near the buckling threshold, these modes were also see
approach zero eigenvalue with slopes greater than, but o
order of, that for the wavelengthX slope described above
The computational time required to calculate higher mo
prevented us from studying them in greater detail, but th
behaved fundamentally the same as the mode shown in
16~a!.

or

e

FIG. 16. Representative eigenmodes. In both images, thex andy
coordinates are the material coordinates of the sheet, while tz
coordinate is the eigenmode motion normal to the ridge surface
these sheets the ridge line extends from the upper left to lower r
corners. The top image shows a longer-wavelength mode, w
covers the length of the ridge. The eigenvalue and tip displacem
for this mode are labeled by pointA in Fig. 15~a!. The bottom
image shows a short-wavelength mode. The eigenvalue and tip
placement for this mode are labeled by pointB in Fig. 15~b!.
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SCALING OF THE BUCKLING TRANSITION OF . . . PHYSICAL REVIEW E 66, 016601 ~2002!
None of these modes ever reaches the value zero be
the ridge buckles, however. Instead a very localized, sh
wavelength mode like that pictured in Fig. 16~b! appears
suddenly, with a very sharply dropping eigenvalue, just
fore the ridge buckles. The evolution of the eigenvalue as
ciated with this mode is shown in Fig. 15~b!. The short-
wavelength mode has a wavelength of the order of the lat
spacing and is asymmetric about the center point of
ridge. For ridges with aspect ratiol5231023, Eq. ~4.33!
gives a minimum wavelength of approximatelyX/10, which
is of the same order as the midridge local lattice spac
Thus the observed short-wavelength mode is of the orde
the minimum allowed wavelength, and should, therefo
have a spring constant near that predicted by Eq.~4.32! for
l27/3 scaling ofKd . As Fig. 15~b! shows, the final slope o
the eigenvalue as it approaches zero is indeed of the r
order of magnitude to fit the cylinder buckling theory.

Both the long- and short-wavelength modes seem to o
the scaling of cylinder buckling modes as they approach
stability. That the short-wavelength mode reaches zero eig
value first in every case could be due to some suppressio
the long mode, either by boundary conditions or by t
changing geometry of the boundary layer along its leng
Also, the short-wavelength mode may well be enhanced
lattice effects, and therefore should be more prone to ca
buckling. The short-wavelength mode is also enhanced b
high localization; since the stress and curvature are not
form along the ridge~see Fig. 17!, localized patches of the
ridge line will meet the stress to curvature threshold cr
rion, Eq. ~4.14!, before it is satisfied globally. In any cas
the theory developed for cylinders at the beginning of S
IV allows for both these families of modes to approach z
spring constant just before the ridge buckles. The obse
tions of these modes and their matching eigenvalue slo
strengthens the connection between ridge and cylinder b
ling.

The spatial extent along the ridge of the short-wavelen
mode envelope was observed to be independent of the s
thickness. The longitudinal wavelength of the buckling w
at the lattice spacing. Figure 17~b! shows that the strain to
curvature ratio on the midline itself surpasses the class
buckling threshold value by nearly 20%. However, as F
17~c! shows, this ratio drops away quickly in the directio
transverse to the ridge line. Thus the line plotted in F
17~b! is a very localized maximum profile. The bucklin
envelope has a width of the order of the ridge width, and
strain to curvature ratio should be supercritical over t
width before buckling occurs. The minimum cylinder buc
ling wavelength shrinks asl2/3 as the sheet gets thinne
while the ridge widthR shrinks asl1/3, so the cylinder buck-
ling mode should be increasingly dependent only on lo
curvature and strain fields asl→0. Therefore the short
wavelength localized mode should continue to be the p
ferred buckling mode for thinner sheets. Numerically t
time required to compute eigenmodes grew very quickly
we decreased the thickness aspect ratiol, so we were not
able to track the evolution of the short-wavelength modes
significantly thinner sheets.
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D. Other geometries

1. Different ridge angles

Most of our in-depth buckling mode data analysis h
been performed on ridges with dihedral anglep/2. However,
the equation we derived for the critical stress@Eq. ~4.14!#
only depends on two parameters of the ridge shape—
transverse curvature and the material thickness. In orde
show that this relation holds for more general geometries,
again consider ridges with different dihedral angles. As
Sec. III B 1, our simulations used sheets with the same

FIG. 17. Curvature and strain profiles on ridge. Plot~a! shows
the curvature in terms ofh21 ~1 symbol! and strain magnitude~3
symbol! as a function of position along the ridge line for a ridge
its buckling threshold. The ridge has a thickness aspect ratio ol
55.531024. Plot ~b! shows the ratio of curvature to strain magn
tude along the ridge line for the same ridge at rest~h symbol! and
at the buckling threshold~s symbol!. The location and extent of the
localized vibrational mode from Fig. 16~b! is highlighted. Plot~c!
shows the ratio of curvature to strain magnitude across the mi
of the ridge for the same ridge at rest~h symbol! and at the buck-
ling threshold~s symbol!. The horizontal lines in~b! and ~c! are
the classical buckling values of the strain to curvature ratio p
dicted by Eq.~4.20!.
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B. A. DiDONNA PHYSICAL REVIEW E 66, 016601 ~2002!
and length to width ratio, but the location and orientation
the reflective planes for the edge boundary conditions w
changed~the connection between reflective planes and di
dral angle is illustrated in Fig. 5!. The energy of ridges with
dihedral anglep22a scales asa7/3, so adjusting this angle
changes the curvature across the ridge significantly. Still
Fig. 18 shows for ridges with dihedral angles ranging fro
p/2 to 7p/10, the ratio of strain to curvature along the rid
at the buckling threshold was the same for ridges with
same aspect ratiol. This is true despite the variation in th
buckling strain by a factor of 2 between the largest a
smallest angled ridges. This further affirms the cylind
buckling hypothesis.

This observation may also explain the insensitivity of t
observed fractional change in energy between resting rid
and those at the buckling threshold. Another consequenc
Lobkovsky’s treatment in@8# is that the longitudinal strain
and transverse curvature on the ridge line scale with the s

FIG. 18. Curvature and strain profiles. Plot~a! shows the ratio of
strain magnitude to curvature along the ridge line at the buck
threshold for five different dihedral angles and three different thi
nesses. The ridges had dihedral angles ranging fromp/2 to 7p/10.
Regardless of ridge angle, the values of the strain/curvature
tend to be grouped for ridges with the same thickness aspect r
In the top groupingl51.2531023, in the middlel5831024,
and for the bottom groupingl5531024. Plot ~b! shows the buck-
ling threshold values of the strain magnitude along the ridge line
ridges withl51.2531023 and dihedral angles ranging fromp/2
~top line! to 3p/10 ~bottom line!. The horizontal lines in~b! are the
classical buckling values of the strain to curvature ratio predicted
Eq. ~4.20! for each thickness.
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power ofa. Since our ridges always buckle at the same va
of the ratio of strain to curvature, the identical scaling
these quantities witha implies an identical fractional chang
in their values~and, therefore, the total energy of the ridg!
between the resting and buckling threshold states. We ex
this behavior to extend to a dihedral angle up top, though
we have not demonstrated it.

2. Longer ridge flanks

So far, we have simulated ridges on a grid whose ed
formed a perfect square, as shown in Fig. 19~a!. The ridge
line extended between two corners of this grid, so its sim
lated flanks were right triangles. The nonvertex corners
the grid were a distanceX/2 from the center of the ridge line
where X is the ridge length. As a variation on this ridg
geometry, we also simulated ridges with flanks that w
twice as long as those for the typical simulations, using
grid shown in Fig. 19~b!. On this grid the nonvertex corner
were a distanceX from the center of the ridge line. Th
boundary conditions were again reflective planes that w
oriented to give the ridge ap/2 dihedral angle.

We simulated ridges with thickness aspect ratiol ranging
from 1.2531023 to 1.2531024. For these ridges we onc
again found that the buckling threshold energy was appro
mately 20% greater than the resting ridge energy. As Fig.
shows, we also found that the ratio of strain to curvatu
along the ridge line at the buckling threshold was nea
equal to the threshold values for our typical ridges.

Interestingly, the peaks in the strain-curvature ratio alo
the ridge line were consistently closer to the vertices for t
geometry than they were for all the other geometries
studied~this is visible in the profiles shown in Fig. 20!. This
suggests that the locations of these peaks are determine
boundary conditions. The appearance of the peaks is p
ably an effect of the ridge pulling on its mirror image. Pr
dictably, the change in location of this peak also causes
ridge to buckle closer to its vertices, as shown in Fig. 2
This is strong evidence that buckling occurs near the fi
localized patch on the ridge line where the strain-curvat
ratio is supercritical. When this pulling is absent, we mig
expect the buckling region to move towards the center. S
a case occurs in Lobkovsky and Witten’s minimal ridge@7#,
where there is no applied stress at the boundaries, and b
ling occurs at the center of the ridge. The change in buckl
location is also consistent with the observed locations of
ditional ridges on a buckled tetrahedron in@7#. Since the

g
-

tio
io.

r

y

FIG. 19. Shape of simulational grids. The dashed lines indic
the location of the simulated ridge line. The grid in~b! was used for
the simulations described in Sec. IV D 2. The grid in~a! was used
for all other ridge simulations.
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SCALING OF THE BUCKLING TRANSITION OF . . . PHYSICAL REVIEW E 66, 016601 ~2002!
tetrahedron ridges have shorter flanks than the cube we
the additional ridges may be expected to form closer to
center of the ridge on the tetrahedron.

3. Shell buckling

We have derived the behavior of the ridge buckling mo
near the buckling transition as a function of thetotal longi-
tudinal stress on the ridge line, with as little reference
possible to where this stress comes from. At this point,
wish to address the role of the resting ridge stress in
buckling transition. As we showed in Sec. II, even in
‘‘resting’’ state the ridge has significant longitudinal stress

FIG. 20. Strain to curvature ratios for ridges with longer flan
The strain to curvature ratios on the ridge line at the buckl
threshold are shown for our typical ridges~s symbols! and for
ridges with longer flanks~h symbols!. Thickness aspect ratiosl
shown here range from 1.2531023 ~top curves! to 5.631024 ~bot-
tom curves!. The horizontal lines are the classical buckling valu
of the strain to curvature ratio predicted by Eq.~4.20! for each
thickness.

FIG. 21. Buckling pattern on ridge with long flanks. This ridg
had a thickness aspect ratiol of 1.2531023. Lighting and shading
were chosen to emphasize physical features.
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the ridge stores a nonzero fraction of its total elastic ene
in the stress field. The amount of work required to buckle
ridge is, therefore, only that required to increase the long
dinal stress from the resting value to the buckling thresh
value. It seems an odd occurrence that the energy require
make the ridge should also do part of the work required
break it. It is even more intriguing since the scaling of rid
stress and critical stress are identical—if this were not
then any ridge above or below~depending on the relative
scaling! a critical length would buckle spontaneously@58#.
As it is, there are most likely some geometrical constrai
placed on allowed ridge configurations purely by virtue
the fact that the ridge stress is naturally on the same sca
the buckling stress.

To find out whether or not ridge stress weakens the rid
we numerically studied how the buckling threshold chang
when the resting ridge stress was removed. To do this,
first found the minimum energy configuration of a resti
ridge for a given thickness aspect ratiol. We then redefined
all the lengths and curvatures in the sheet such that the
ing ridge configuration had zero stain and curvature, and t
zero resting energy. If we denote the strains and curvature
the resting ridge asg i j

o and Ci j
o , respectively, we can write

distortions away from this state as

g i j8 5g i j 2g i j
o , ~4.34!

Ci j8 5Ci j 2Ci j
o , ~4.35!

where g i j and Ci j are computed as before. These prim
quantities were substituted into the strain and curvature
ergy equations, Eqs.~2.3! and ~2.7!, to make the energy for
the resting ridge configuration identically zero. We refer
sheets that have intrinsic curvature and nonflat metrics
shells.

As with the ridges before, we buckled the shells by im
posing a gradually increasing hard-wall potential at the v
tices. We found that for any given thickness, it takes m
work to buckle the shell than it does the corresponding rid
though each started with exactly the same geometry~see Fig.
22!. Though the two systems evolve differently from the
initial states under the applied load, Fig. 23~a! confirms that
each buckles at nearly the same ratio oftotal stress tototal
~intrinsic plus extrinsic! curvature. This is just the result tha
would be predicted from the cylinder theory in Sec. IV A
since that buckling mode depends only on the total value
the radius of curvatureR as a geometric quantity, withou
reference to its energetic cost. Figure 24 shows that the s
to curvature ratios along the ridge line are nearly the sa
for ridges and shells with identical thickness aspect ratiosl.
The figure also shows that the maximum of these ratios
near the same place on both ridges and shells, though
more sharply peaked on shells.

Also, Fig. 23~b! shows that although the shell cannot su
tain the total amount of longitudinal stress that the rid
holds at the buckling threshold, it can sustain moreaddi-
tional stress, starting from the resting ridge geometry, th
the ridge before it buckles. The reason that the shell can

.
g
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B. A. DiDONNA PHYSICAL REVIEW E 66, 016601 ~2002!
sustain the same total stress is that it grows much flatter
applied load than does the ridge, so it reaches the crit
stress to curvature ratio at a lower value of both these qu
tities. The difference in the evolution of the curvature w
applied loading is due just to the fact that the cross-rid

FIG. 22. Shell vs ridge buckling energies. This graph shows
difference between resting and buckling energies for shells~1 sym-
bols! and ridges~3 symbols!. The numerical scaling fits had expo
nents consistent with21/3.

FIG. 23. Shell vs ridge buckling configurations. In each gra
n symbols denote values for ridges at rest,3 symbols denote val-
ues for ridges at their buckling threshold, and1 symbols denote
values for shells at their buckling threshold. The numerical sca
fits in ~a! had exponents consistent with 1 while those in~b! had
exponents consistent with 2/3.
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curvature is determined by an energy balance, and the e
getic terms are much different for these two systems.

E. Universality of buckling energy

It is striking that for all the ridge geometries we studie
the buckling threshold energy was approximately 20
greater than the resting energy. Our present ridge theor
not sufficient to fully explain this ratio, but we take th
opportunity to speculate about how universal it may be.

In @7#, Lobkovsky and Witten stated that the bending a
stretching energies on ridges should obey a virial relati
with total bending energy five times greater than the to
stretching. Assuming that both energies are only signific
on the ridge line, the virial relation also extends to typic
bending and stretching energy densities. Taking the larg
terms from Eqs.~2.3! and ~2.7!, this gives

Yh3

12~12n2!
Cyy

2 '
5Yh

~12n2!
gxx

2 , ~4.36!

which reduces to

gxx'
1

A60
hCyy'0.13hCyy . ~4.37!

From Eq.~4.20!, the classical value of the breaking strain f
n51/3 is

gcl5'0.61hCyy . ~4.38!

In our simulations we observed that the bending energy d
not change significantly as the ridge line is compressed
the applied force. If the ridge curvature stayed the same
the ridge strain increased from its resting value up to
classic value, then the ratio of resting energy to buckl
threshold energy would be (511):@51(0.61/0.13)2#. The
breaking energy would be approximately 4.6 times the re
ing energy. However, Fig. 7 shows that the midridge cur
ture decreases as force is applied. Between resting and b

e

,

g

FIG. 24. Strain to curvature ratios for shells. The strain to c
vature ratios on the ridge line at the buckling threshold are sho
for ridges~s symbols! and shells~h symbols! with thickness ratios
l ranging from1.2531023 ~top curves! to 2.531024 ~bottom
curves!. The horizontal lines are the classical buckling values of
strain to curvature ratio predicted by Eq.~4.20! for each thickness.
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SCALING OF THE BUCKLING TRANSITION OF . . . PHYSICAL REVIEW E 66, 016601 ~2002!
ling, the curvature decreases by nearly a factor of 2. T
effect of this flattening of the ridge line is to decrease
breaking strain by a factor of 2 and the breaking stain ene
by a factor of 4. The corresponding breaking energy is o
1.77 times greater than the resting energy.

The discrepancy between the predicted factor 1.77 and
observed factor of 1.2 is understandable, given the simpli
of our approximations. In reality the distribution of the stra
and curvature on the ridge line are not identical. In r
ridges we may expect the local ratios to vary by factors
order unity depending on boundary conditions. However,
presently cannot explain why the local curvature at the ce
of the ridge line drops by a factor of 2 while the total ben
ing energy remains constant. This factor of 2 seems to
universal throughout our simulations, and we predict that
curvature will not drop by significantly larger fractions fo
different ridge boundary conditions. Still, a detailed und
standing of this factor remains an open question.

FIG. 25. Postbuckled energy. This plot shows the total resca
elastic energy of several simulated ridges as a function of resc
inward vertex displacement just before and after the ridges buck
The ridges had aspect ratiosl ranging from 531024 to 5
31025 . According to the scaling analysis in Sec. II, the rescalin
of (l/l1)22/3 for energy and (l/l1)21/3 for vertex displacemen
would collapse all the lines on to one for perfect ridge scaling. T
observed discrepancies between the prebuckling part of the lin
small on the scale of the entire ridge evolution. In these gra
l15531024 .

FIG. 26. Effect of buckling mode onR. The solid line represents
an unbuckled local patch of surface with dominant radius of cur
ture R. The dashed line shows the postbuckled surface with bu
ling mode amplitudeC and wavelengthzN . From Eq. ~4.3!, the
curvature at pointA is approximately 1/R2C/zN

2 while the curva-
ture atB is approximately 1/R1C/zN

2 .
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F. Discontinuity at buckling

To complete our study of the buckling transition, we com
ment briefly on the postbuckled state and its rapid grow
from the unbuckled state. As mentioned above, the equ
rium configuration immediately after buckling contains
least one large additional ridge. The additional ridges app
suddenly—when we first see them they are already as lon
the unbroken ridge was wide. A significant change in t
elastic energy accompanies the transition, as shown in
25. It is also notable that the postbuckled state bears l

d
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s
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FIG. 27. Redistribution of elastic energy at buckling. Each p
shows the postbuckling configuration first shown in Fig. 14, w
one large additional ridge crossing the original ridge. The origi
ridge had aspect ratiol51023. The plots are shaded accordin
to change in local elastic energy density between the buck
threshold values and the postbuckled value for the pictu
configuration—no change is gray, increases are white, and
creases are black. Image~a! shows the change in total elastic e
ergy, image~b! shows the change in bending energy, and image~c!
shows the change in stretching energy.
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B. A. DiDONNA PHYSICAL REVIEW E 66, 016601 ~2002!
resemblance to the short-wavelength buckling mode, wh
we credit with causing the transition. Since the von Ka´rmán
equations are highly nonlinear, the growth of the buck
state quickly passes beyond the regime where it is well m
eled by our linear stability analysis. We, therefore, presu
that when the nonlinear terms start to become import
they favor further growth of the buckled state. The net res
is an energetic avalanche into a completely different stat

As the buckling mode grows, it will begin to significantl
perturb the preexisting stress and curvature fieldss and 1/R.
Figure 26 illustrates how the growth of the buckling mo
perturbs the large transverse curvature. From Eq.~4.3!, the
maxima for which the displacementw grows radially inward
will decrease the local transverse radius of curvature
2C/zN

2 , whereC is the buckling mode amplitude andzN is
its transverse wavelength. The maxima that grow radia
outward will increase the local curvature by the sa
amount. We can also calculate the additional longitudi
stress due to the buckling mode itself from Eqs.~4.4! and
~4.6! combined with Eq.~4.2!,
t
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sxx8 5
Yh

12n2 ~gxx8 1ngyy8 !

52
Yh

12n2 S ~12n!1
~12n2!r 2N2

~r 21N2!2 D C

R
eirx /R

3cos~Ny/R!

[2CQeirx /R cos~Ny/R!. ~4.39!

The coefficientQ is always positive. Our frame is define
with positive normal displacements pointing inwards~down-
ward and into the page in Fig. 27!, so Eq.~4.39! implies that
there is additional compression at the points of maxim
inward deflection of the buckling pattern, and matchi
extension at the points of maximum outward deflecti
~negative stress results from compression!. Thus, as the
buckling mode grows, the local ratio of strain to curvatu
becomes
sY S 1

RD→H ~s1CQ!Y S 1

R
2C/zN

2 D , inward maximum

~s2CQ!Y S 1

R
1C/zN

2 D , outward maximum.

~4.40!
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By the stability condition given in Eq.~4.20!, the inward
growing maxima become more unstable to further grow
while the outward ones becomes less unstable.

From these simple arguments it is clear that the out
plane force balance changes dramatically as the buck
mode grows and nonlinear terms become significant. A
this reasoning indicates that the inward growing maxima
more favorable than outward growing ones. On a cylind
the constraints of periodicity require an equal azimut
number of inward and outward maxima, so force balanc
again achieved with the same number of maxima as the
tial unstable mode. This constraint does not hold on
ridge, so inward maxima are free to grow into the region
the ridge flanks. The net result could be that one inward p
grows until it subsumes all the other maxima and becom
the one prominent feature of the buckled state—a sin
large transverse ridge.

The only reason for the growth of the additional ridge
cease is that the potential energy driving this motion is
hausted. Figure 27 shows how the elastic energy redistrib
itself upon the buckling of a ridge with aspect ratio 1023.
Predictably, the largest local decrease in elastic energy is
loss of stress-energy density along the ridge. In our buck
scheme it is the stored longitudinal stress that drives
growth of the buckling mode—we observed that the inwa
buckling peak that becomes the observed single additio
h
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ridge grows until the ridge-line stress is nearly gone. So
of the energy is stored in the additional ridge and additio
vertices, but less than was stored in the threshold state.

Besides showing the jump in energy at buckling, Fig.
also shows the randomness in the observed energies o
postbuckled state. Our simulations were optimized for
prebuckled ridges. Their accuracy in modeling the postbu
led state is qualitative at best. There is no indication fro
this graph that the postbuckled state has the same en
scaling as the ridge. This is not surprising, since the ‘‘re
ing’’ configuration of our additional postbuckled state is n
defined, so we cannot be sure that the states we see imm
ately after buckling are at ‘‘equivalent’’ values of the ti
displacement, in the sense developed in Sec. II for a sim
ity solution at different material thicknesses.

Some excellent experimental work on the preferred cre
size for a circular cylindrical cross section under axial co
pression is presented in@16,17#. In this work the authors
found that the actual saturation length of the fresh crease
determined by a balance between the energy of the cr
and that of the additional singularities at its ends. In o
geometry, the scaling of the additional ridge energy chan
once it has grown beyond the width of the original bounda
layer. Therefore, the energy balance determined for the c
stant curvature cross section may not be applicable. We le
this topic for future research.
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SCALING OF THE BUCKLING TRANSITION OF . . . PHYSICAL REVIEW E 66, 016601 ~2002!
V. DISCUSSION

We have explored the behavior of a stretching ridge un
the application of an external force potential. For the sake
clarity we have focused our simulations on a particular r
resentative ridge geometry, but the response of this ridge
been shown to obey very general principles. In this sec
we recapitulate our discoveries, putting them into the broa
context of the enhanced strength these spontaneous s
tures add to thin sheets. We also discuss the range of a
cability for our approach to other ridge geometries, and
the behavior of collections of ridges in a crumpled she
Finally, we suggest engineering applications of the und
standing we have gained concerning stretching ridges.

The resistance of materials to typical forms of distorti
and damage is a very well established field, with a hist
that dates back to the 19th century. However, a crump
sheet derives its strength not just from its material propert
but also from the spontaneous ridge network it contains. T
spontaneous network confers strength in a way that cle
arises from the cooperative interaction between curva
and strain. The fresh aspect of this interaction has alre
been shown by the identified scaling of the energy of th
structures with overall size of the system@7#. However, the
strength against collapse resulting from these structures
up to now been poorly understood. In a highly crumpl
sheet, resistance to further deformation results almost
tirely from the work required to deform and break the ridg
which span the volume occupied by the sheet. The stren
of ridges in turn results from their shape, and their effect
elastic modulus is not related to the modulus of the com
nent material in any simple way.

In Secs. II and III we established a scaling relation for t
response of a ridge to forces applied at its end points. Th
the type of forcing against which ridges are strongest~have
the highest effective modulus!. Presumably, when a force i
applied in an arbitrary direction to a moderately crump
sheet, ridges that are oriented at broad angles to the ap
force will yield very quickly to it, and resistance to the forc
will come from ridges that happen to be aligned parallel
the forcing. Thus the ridge response to this particular forc
determines the effective elastic modulus of crumpled she
We showed that, given a knowledge of how one ridge of a
size will respond to the force at its ends, we can rescale
force to displacement relation to all other ridge lengths
multiplying it by a simple power of the thickness aspect ra
l, namely,l1. The force to displacement relation for an i
dividual ridge can be obtained through simulations or sim
estimates. Together with a model of the distribution of rid
sizes in a typical crumpled sheet, our scaling relation for
ridge strength gives a complete model for the effective e
tic modulus of the entire crumpled sheet, as well as
change in the sheet’s strength as it is further crumpled
the typical ridge sizes change.

We derived the scaling of the ridge force response by fi
assuming that ridge scaling was still valid for forced ridg
and then calculating the required rescaling of the perturb
force. Our approach is limited by the requirement that b
the location and magnitude of applied forcing must be r
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caled for a similarity solution. Also, there is no systema
way to determine if the scaling assumption will hold f
every forcing. Still, our approach is comparable to oth
treatments in its effectiveness, since much of the physic
crumpling relies on intuition for each special case.

Our approach was shown to be well suited for point forc
applied to the vertices. For this case, the location of the fo
ing is fixed under rescaling, since the vertices by definit
do not move when the ridge gets thinner. Also, since
applied forcing works almost entirely to compress the rid
line, its coupling to the longitudinal ridge stress will be ve
strong. Thus the predicted scaling of the force respons
unambiguous.

Forcing applied to other points on the boundary of t
sheet will most likely not scale as cleanly as forcing appl
to the vertex. For other locations and angles, the app
force may result in large stress transverse to the ridge
would, therefore, strongly perturb both transverse and lon
tudinal stresses. However, these stresses have different
ings on the resting ridge, so an equal perturbation of e
would most likely ruin the ridge scaling.

The other important perturbation, which we did not sim
late, is forcing applied normal to the surface. Scaling of t
force response, as derived in Sec. II, should be fairly rob
since the termP is perturbing a quantity that is zero fo
resting ridges. Therefore there is no preestablished scalin
destroy.

Our other important result, established in Sec. IV, was
link the buckling transition for ridges to the buckling of thi
cylinders. This result is supported by a great deal of analy
and is very general. Prior speculation held that ridges m
derive anomalously large breaking strength from their pre
isting longitudinal strain. We have shown that, in terms
strength, the ridge acts essentially as a cylinder whose ra
scales with thickness. Whereas the work in Secs. II and
allowed us to understand the strength of crumpled sh
against small deformations that did not change the struc
of the crumpling network, knowledge of the bucklin
strength lets us model the evolution of the strength and
ergy of a sheet throughout the crumpling process, from
flat to the highly crumpled state.

In Sec. IV, we show that the stability of the ridge again
buckling is determined completely by the local ratio of t
transverse strain to the longitudinal curvature on the rid
line. Since the transverse curvature on the ridge scales
its length, we can immediately determine the buckling str
of any ridge as a function only of its length and thickne
We established that the allowed buckling wavelengthszcl are
between 2pXl2/3<zcl<X, whereX is the ridge length and
l is the thickness aspect ratio. Buckling can take place w
the strain to curvature ratio is supercritical over a reg
larger than the minimum wavelength. We showed that rid
buckle near the point at which this ratio has a localized ma
mum on the ridge line. We established that the location
this strain to curvature maximum does not depend on
dihedral angle of the ridge, but it does depend on the angl
the ridge line relative to its neighboring ridges. The simpl
ity of the buckling criterion established here, as well as
clear connection between this ratio and the buckling beh
1-23
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ior of ridges, is a great improvement over the previous
derstanding of the breaking strength of these structures.
ther development of the relation between a ridge and
neighbors may lead to general laws regarding preferred
tributions of angles separating ridges in crumpled shee
this along with the length and energy distributions discus
below could lead to an accurate statistical mechanics
crumpled sheets

It is our hope that the knowledge gained in this study c
be helpful in the development of a statistical mechanics
ridge distributions in crumpled sheets. We have dem
strated for a range of ridge angles under a typical form
forcing that the energy at the buckling threshold is a fix
multiple of the resting ridge energy. For our measureme
this multiple was approximately 1.2—we speculate based
the arguments in Sec. IV E that this multiple will not b
greater than 2, in general. Combined with previous wo
which uncovered the length and angle scaling of the rid
energy, this limitation on the possible loading of a rid
should place some limitation on the relative sizes of adjac
ridges in a typical crumpled sheet. This proposed limitat
follows from the assumption that in the interior of the she
ct

n,

. A

re

ys
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much of the force on vertices is carried through adjac
ridges. Knowledge of the strength of ridges will definite
lend an insight into the evolution of successive crump
states as a sheet is compressed.

Finally, in terms of applicability to real-world problems
the understanding of ridge buckling developed here has p
tical import for the possible use of single ridges as structu
elements. We observed that the weakest point on the ridg
near the point of largest stress to curvature ratio. Thus rid
that are used as support elements could be reinforced s
tively at areas determined to be weak points through
analysis.
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