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Scaling of the buckling transition of ridges in thin sheets
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When a thin elastic sheet crumples, the elastic energy condenses into a network of folding lines and point
vertices. These folds and vertices have elastic energy densities much greater than the surrounding areas, and
most of the work required to crumple the sheet is consumed in breaking the folding lines or “ridges.” To
understand crumpling it is then necessary to understand the strength of the ridges. In this work, we consider the
buckling of a single ridge under the action of inward forcing applied at its ends. We demonstrate a simple
scaling relation for the response of the ridge to the force prior to buckling. We also show that the buckling
instability depends only on the ratio of strain along the ridge to the curvature across it. Numerically, we find for
a wide range of boundary conditions that ridges buckle when our forcing increases their elastic energy by 20%
over their resting state value. We also observe a correlation between neighbor interactions and the location of
initial buckling. Analytic arguments and numerical simulations are employed to prove these results. Implica-
tions for the strength of ridges as structural elements are discussed.
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[. INTRODUCTION still missing. We know from common experience that the
crumpling of a piece of paper between the hands is a dy-
The crumpling of a thin sheet is a phenomenon that wenamic process, with the details of the final shape of the paper
encounter every day, yet the equations governing crumpledepending strongly on the history of applied forces and the
systems are almost completely intractable without the introeffects of geometric frustration. In order to understand highly
duction of drastic simplifying assumptiohs,2]. At the same crumpled objects, which are clearly not free to find a global
time, this mundane occurrence exhibits some of the moreninimum of elastic energy, we need to know more about the
intriguing behaviors of modern soft matter physics, such agnergetic paths the membrane may take from one crumpled
phase transition$3], scaling[4], and energy condensation state to another.
[5]. This work investigates the energetic pathway whereby
For a large class of compressive boundary conditions, thene ridge buckles into several under the action of a compres-
energetically preferred configurations of crumpled thinsive load. The work builds on Lobkovsky’s scaling analysis
sheets consist of mostly flat regions bounded by straightf stretching ridges, though we differ in our treatment of
folds and pointlike vertices. Figure 1 shows an example ofpplied forces at the tips of the ridge. Using improved simu-
the resulting network of folds and points in a crumpled sheetational techniques and greater computing power, we inves-
of paper. One approach to analyzing such configurations is tigate the buckling transition in far more detail than was
treat them as patches of unstrained surface bounded by rpreviously possible. We then analyze the transition in a
gions of discontinuous curvatufé]. Boundary layer solu- framework of stability and bifurcation theory, comparing and
tions are then grafted to the regions of sharp curvature, ancontrasting the transition on the boundary layer to the well-
the total energies of the configurations are compared to findtudied subject of thin cylinder stability.
local or global energy minima. We begin in Sec. Il by reviewing the elastic theory of thin
In the last several years the structure and energy o$heets, giving a brief derivation of the von isn equa-
boundary layer solutions around straight folds and isolatedions upon which our analysis is based. We then present
vertices in crumpled sheets have been studied in detail, bothobkovsky’s derivation of ridge scaling, and his treatment of
from a physical perspectivE3—-5,7—22 and mathematical small perturbations to resting ridges. He chose a perturbative
perspectivg 6,23—28. Related geometries such as thin-film approach, which assumed linear response to applied forces.
blistering[29—33, thin viscous sheetl4], thin-film actua-  After describing his method, we present an alternate ap-
tors[35], molecular sheeti36,37], and the generalization of proach that integrates applied forces into the original scaling
crumpling to higher dimensionf5,38—4(Q have also re- equations. Our approach provides better descriptive power
ceived attention. In particular, the boundary layer around avhen considering some special cases of applied forcing,
fold was extensively studied by Lobkovsky and co-workerssince it does not assume that the applied forces are small. We
[4,7,8. They called the energetically preferred configurationthen argue that our technique applies well to the highly rel-
a “stretching ridge,” since it comes about through the bal-evant case of a ridge with inward point forces applied at its
ance of bending and stretching energy on the fold line, wheréips. Force scaling exponents are derived for this case.
both energies are of comparable magnitude. In Sec. lll we present numerical evidence to support our
By viewing a crumpled sheet as a collection of ridges andscaling arguments. We have devised a finite element program
vertices and adding up the known energetic cost of each unitp increase the accuracy and efficiency with which we can
we may arrive at a reasonable estimate of the total elastisimulate elastic sheets. This data was also presented in a
energy in a crumpled sheet. However, part of the picture i€ompanion pap€rl9]. For most simulations presented here,
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: FIG. 1. A typical crumpled
Vi A0S 5 sheet. Imagda) shows a sheet of
o\ AT Y ' paper that has been lightly
i \ FaN\'y O % s / crumpled between the hands. Im-
[ ¥ / - & }4 b “I| age (b) is the same sheet
J \“» ( {‘ X DY /,f” S unfolded—lines and points result-
| N, ( 1 '-‘}‘ b [ \’.. \ ; ; P ing from plastic deformation show
| &7 ] ,“,-"‘ 4 A\ 7T EN the former locations of folds and
f ,\" :‘/ 4 ‘\ , AS ‘-{ vertices in the crumpled state. Im-
' ' 2 Ve ! .-5\ a2 y age courtesy of the authors [of].
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the shape and boundary conditions of the grid were chosen that the rate at which the spring constant approaches zero
simulate a section of a cubical box, as shown in Fig. 2. Thavith increasing stress along the ridge is of the same order of
grid covers one edge of the cube and has reflective boundamagnitude as for the normal mode associated with cylinder
conditions. Simulating only this edge is equivalent to simu-buckling. Our other prediction is that, for a given thickness
lating a cube that is constrained to have 16-fold symmetnto ridge length ratio, the buckling transition will occur at the
(all fold lines equivalent We argue that the reflective bound- same maximum ratio of stress to curvature. To show this, we
ary conditions are representative of the real boundary condsimulate several variations of the ridge geometry described
tions for a single ridge in a general crumpled sheet, since thabove. Although the different geometries buckle at different
forces that maintain the angle of a given ridge are most oftewvalues of longitudinal stress and transverse curvature, they
exerted by the surrounding ridges. In later simulations weall buckle near the same value of the ratio of these param-
change the resting angle of the ridges, so that they do natters.
correspond to the edges of any closed polyhedral surface— We conclude in Sec. V by discussing the implications of
the initial choice of ther/2 dihedral angle corresponding to this research for the strength of ridges as load bearing ob-
a cubic surface was arbitrary. Using data generated by thegects. The immediate consequence of our research is that
simulations, we demonstrate a scaling solution for ridgesidges are not as strong as was once thought. Since the ridge
with inward forces applied at their ends. We also providebuckles when the total longitudinal stress along the ridge line
numerical evidence that the critical strain and curvature omeaches a critical value, the preexisting stress found in resting
the ridge at the buckling threshold scale with the same exridges makes them easier to break than stress-free shells and
ponents as for the ridges at rest. cylinders with the same radius. Strategies for strengthening
Finally, in Sec. IV we consider the buckling transition. ridges are discussed, along with topics for future research
When the ridge is subject to strong enough forcing at its endoncerning the buckling transition.
points, it breaks into several ridges as shown in Fig. 14. We
show that this transition is identical to the bifurcation by
which thin cylinders buckle. We begin by reviewing the
buckling transition of a cylinder under uniform axial com- A. The von Karman equations
pression. Thin cylinders subject to such forcing are observed

Il. PREBUCKLING BEHAVIOR OF RIDGES

We consider an idealized thin elastic sheet with uniform

a‘J(oung’s modulusY. The sheet has a constant thicknéss

Eertl%qlflcny t(_}lete_rmlged bty their thtlckne_ts_;s lantd rad|u§._ :;h'%/vhich is much smaller than its spatial extent in the other two
ISt biturcation 1S Shown to occur at a critical SUess, WRICN ISy 4001 directions. In the regime where elastic distortions

show that the ;mall_longitudinal curvature along _the ridgethat the sheet is completely characterized by its two-
and the nonuniformity of the curvature and strain on thedimensional center surface

ridge have only a weak effect on the buckling transition de- We assume that our sheet has no intrinsic strain or curva-

rived for the uniform cylinder. . . : . 2
. ) . . ture, so we may define on it material coordinatesR“. The
Adopting the hypothe5|s that the cylinder buckling mOdeembedding of )t/he sheet int®% can then be expressed as

make two previously untested predictions for the bucklin Some functiorr(x) of the material coordinate& The strain
. pr y unt prec s defined as the change in length eleméntinder the em-
behavior of ridges. Our first prediction concerns the norma edding

mode, which is associated with the buckling motion. We re-
analyze our existing data from Sec. Il to isolate the soft ' 5
normal mode, which becomes unstable as its associated di"*=dI"+2y;dxdx;, 2.
spring constant passes through zero. Comparing the numeri-

cal results to the theory developed for the cylinder, we showso that
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(a)

FIG. 2. Typical elastic sheet used in this stu@.The resting configuration of the simulated sheet with no external forces. It also shows
the reflection planes to which the sheet edges are constrdlneldow the simulated sheet is equivalent to one edge of a cube, when the
mirror images of the sheet across the reflective planes are drawn in. The thickness of the sheet is 0.0004 of the edge length and the Poissor
ratio is 1/3. Darker shading represents higher strain energy density. The entire simulated sheet is uniformly darkened to distinguish it from
its mirror images in(b). Slight numerical symmetry breaking between the left and right sides of the diamond created slight mismatches of
the inferred surfaces on other faces, such as the right-hand face. The numerical grid is visible as a quiltlike texture. It has a finer scale at the
edges and corners where curvature is larger.

o or for a sheet with a flat metric.
YiT oxax bij - (2.2 The most general quadratic form for the energy density
b associated with bending can be written as

The most general quadratic form for the stretching elastic

energy density in terms of the strain can be written as 1
EBZE(KCijCij + kceike I CijCu), 2.7)
Es:m(%j Yij + veiej vij va), (2.3 where the coefficient okg is the familiar Gaussian curva-

ture.
where v is the Poisson ratio and;; is the antisymmetric 10 establish the connection between the curvature energy
tensor. ! and the bulk elastic moduli, we introduce the so-called
The stress is defined as the variation &f with strain Monge coordinates. These coordinates locally parametrize
i =0Lsldy;;, SO We can writeLg= 1 a;; yi; With the center surface of the sheet by

r(X)=(x+u, y+uv,w), (2.8
—th Lyij+ ] 2.4
agij= ii T VeikEji . .
11— ke wherex andy are the material coordinates aodv, andw
are small deviations from the flat, unstrained state.

Because of the nonzero thickness of the sheet, there is \jicroscopic considerations of the finite sheet thickness
also an energy cost associated with the bending of the shefg] yield an energy functional fow.

out of its local material plane. Bending is quantified by the
extrinsic curvature, which can be expressed as the compo-

3
nent of the second derivative 6fnormal to the local mate- _ h 2
= 0 +veen(d: 0 .
rial frame, Ly, 24(1— V2) [(alajw) V8Ik£]|(alﬁjw)(&k&|w)]
(2.9
co— ar i 2.5 To lowest order inw, Eq. (2.5 givesC;j;=d;d;w, SO we can
oaxiox; ' immediately make the identificatiofg= £,, with

The inverse values of the eigenvalues of the curvature tensor VI
are the local principal radii of curvature of the sheet. Geo- = —
metric constraint§41,42,43 require that the curvature tensor 12(1-v%)’
should satisfy
Yhiy
&iCjk=&iji (26) KG_W- (Zl@
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The equations of equilibrium can be found by setting the B. Ridge scaling solution
variation[44] of the total energy of the sheet to zero. Inthe  \ye wish to use the von Kman equations to study the
presence of an external pressure figldhe condition for an 4 ndary layer around a folding line in an elastic sheet. This
energy extremum becomes fold plus boundary layer configuration is what Lobkovsky
and co-workers termed the “stretching ridge4,8]. An in-
f £S+f Ly sented in Fig. 3. As we showed in the preceding section, for
thin sheets the bending elastic modulus is less than the

s tuitive picture of the structure of the boundary layer is pre-
Grouping terms for in-plane and out-of-plane displacementstretching modulus by a factor bf. Therefore, for very thin

+f Pow=0. (2.12)

yields the equilibrium conditions sheets with relatively free boundary conditidd$] minimal
energy configurations are mostly strain free, with large de-
d9j0i;=0, (2.12  formations concentrated around folding lines. Very close to a

folding line, the curvature approaches a scale where bending
and stretching energies are once again comparable and the

V2V2W— d;(ay; ;W) =P. (2.13  local configuration is determined by a balance between these
two energies.

Conceptually, as Fig. 3 presents, the stretching ridge can
be approached from the limit of zero thickness, where the
curvature at the folding line becomes singular. The boundary
kV?Cij= 0 Cj+ P. (2.149  conditions that create the fold are pointlike vertices at points

) A and B, which are maintained at a sharp curvature. As the
Equations(2.12 and(2.14) are not enough to completely ioiness of the sheet increases, it is energetically favorable

specify the system, so anlother eql,Jatlon of state is necessagy; e migdle section of the ridge to have a lower curvature
An appropriate equation is Gauss’s fundamental theorem af; 1o expense of stretching along the length of the ridge. The
surfaced 41,42, boundary layer around the fold thus acquires a saddlelike
shape as shown in Figs(c3 and 3d). The width of the
detCij=d;d;vij— V2try;j , (2.19  boundary layer is of the same order as the transverse radius

, ) ) of curvatureR and is much less than the length of the ridge
which relates strain to Gaussian curvature. Together, thg

force .equations(2.12) and (2.14) along with the constraint Now we proceed to apply the von Kaan equations to
equations(2.6) and (2.15 are enough to completely deter- e siretching ridge. This system has two well-defined typical
mine th_e equilibrium c_onflguratlon_s of a sheet up to arbltrary|ength scales—the sheet thicknésand the ridge lengtiX.
translations and rotations. Equatio(®14 and (2.19 are, e can, therefore, rescale the voririen equations into
respectively, called the force and geometric vonran 5 more convenient dimensionless form by expressing all

equationg 44]. lengths in units ofX and all energies in units of. The von
As a consequence of E(.6), the curvature tensor can be yarmmn equations then become

written as the derivative of a continuous curvature potential

Yh
12(1—-17)

Therefore the equilibrium condition can be written as

=
Cij=aidf. (2.16 VI=lx 4P,
Here the potential (X) is not identical to the local functiow 1

used above, but is approximately equal to it for nearly flat NV=— ST (2.21
surfaces. Also, Eq(2.12 is automatically satisfied if we

write o7; in terms of a stress potentig Herey, f, and P represent the stress potential, curvature

potential, and external normal forces in respective natural
Tij = &ik€j1 I X- (217 units of kX2, X, and kX 3. All derivatives are taken with
respect to the dimensionless variabkX andy/X. The di-

In terms of the potentialg andf, the von Kaman equa- mensionless small parameteiis given by

tions assume the very compact form

kVH=[x,f]1+P, (2.18 \= ‘K/Yh: ! (E ) (2.22
X V12(1-22) |\ X
i 4. _ _ 1 We consider a sheet with edge boundary conditions suffi-
Vix [f.f], (2.19 . : .
Yh 2 cient to create a single ridge and no normal forces=Q).

We define our coordinate frame so that the origin is at the

where the bracket product represents center point of the ridge and the center line of the ridge is
parallel to theX material direction. Sinca comes into the
[a,b]=¢€,,€4,(d,058)(d,0,D). (2.20  von Karman equations multiplying the stress source term, the
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FIG. 3. The stretching ridge boundary layer. Ima@g@sand(b) show the geometry of a sheet with one sharp f@dilis a side view, while

(b) is a cross section of the fold at the midpoint of the sheet. Imégesd(d) show a representation of the “stretching ridge” configuration,
in which the boundaries of the sheet are still required to make a sharp angle. (dagf®ws the same cross section that is shown in

(b)—this image illustrates how the curvature across the fold line is lessened in the ridge configuration, and the region of large curvature has

a width of the order of the maximum radius of curvature. Imégeshows how the softening of the curvature requires stretching the sheet
along its midline. The geometry shown here, used for the arguments presefgdraquires extensional strain along the midline—other
geometries can have a net compressive strain along the midline, but the driving balance between curvature and strain remaif]the same

possible configurations of a thin elastic sheet are well de- 1 2

scribed by a stress-frek =0, folding solution plus boundary B=—3. =3 (2.29
layers at the fold lines. Lobkovsky’s insight i8] was to try

a scaling solution for the boundary layer of a single ridge,

which matched thé scaling of the outer, sharp fold solution. . i .
9 P — " N "Y3scaling of the transverse ridge curvature, aid scal-

For a fold of dihedral angler—2a across the ling=0, f g of the strain along the ridge length. So, to within factors
= a|y/X|. Accordingly, on the boundary layérshould scale  of order unity, the radius of curvature across the ridg® is
with the same power ok as the dimensionless transverse ~x)\13 and the total width of the boundary layer should be
coordinatey/X. He, therefore, tried a scaling solution of the ahout the same. Also, if we assume that most of the elastic
form energy is concentrated on the boundary layer, a region of
area\'3X?, then integration of the energy functionals in
Egs. (2.3 and(2.7) yields total bending and stretching ener-
gies, which scale as\ ~ 2.

This translates ta.'® scaling of the boundary layer width,

T=NPf, %=\% J=NPyIX, X=x/X, (2.23

where the tildes denote dimensionless, scale-free coordinates
and functions. Taking3<<0 gives the proper limiting case of C. Response to external forces

sharp curvature at zero thickness. Substitution into the res- |, deriving the ridge scaling exponents, Lobkovsky and
caled von Kaman equations wittP=0 and retention of only  co-worker posited a set of “minimal” boundary conditions to

the largest terms yields create a ridge—purely normal forces are applied as necessary
at the edges of the sheet to maintain straight, sharp folds.
P Relying on these boundary conditions as necessary, he de-
N3B——r =\ 7T rived functional forms for many of the geometric and ener-
ay* Y getic quantities of interest on the rid¢@é,8]. However, the

derivation of the generic scaling exponents presented in Sec.
4 II B does not rely on any specific boundary conditions, and
)\275+43M: _ 1)\0[’; ] (2.24) so these exponents should apply to a much broader class of
ay* 2 T ' ridge configurations than just the “minimal” ridge.
These scaling arguments still place a few limitations on
In the A—0 limit the two sides of each equation must scalegeneric ridges. An important ingredient in the ridge scaling

identically. Solving for the exponents yields derivation is that there are only two length scales, the thick-
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nessh and the ridge lengttX. This is the essence of our ridge shape with applied forcing. Still, the flexibility of our
notion of an unperturbed, resting ridge—the boundary conapproach is greatly limited by the requirement implicit in Eq.
ditions do not impose another length scale on the problem.(2.27) that the spatial dependence of the applied force also
To quantify the response of ridges to external forces, wescalegd46] with \. A perturbation scheme with which we are
must study how the unperturbed ridge evolves as anotharot free to fix the location of our perturbing force seems to
length scale is added to the system. Our common experiende of limited physical interest. However, this scheme is suf-
of gazing at a crumpled sheet of paper tells us that real eladicient to study some special cases that are particularly im-
tic ridges do not live in isolation, but are influenced by otherportant. For example, it is well suited to the problem of a
ridges around them as well as by the global geometry of theidge with external point forces applied at its vertices, since
sheet. Since ridge scaling is witnessed under such circunthe spatial location of the equivalent forcing will clearly re-
stances, the governing equations must be fairly insensitive tmain fixed as\ is varied. The other benefit of this scheme is
most small perturbations. that it does not rely on assumptions of linear response, so it
Previous efforts[7] to study the response of ridges to describes the force response over changes of order unity in
external forcing relied on a perturbative scheme, which asthe fieldsf and y.
sumed linear response to small forces. The response of the
ridge to in-plane external forcing at the edges of the sheet Point forces applied at ridge vertices
was deduced by first solving for the stress field that such a gyternal forcing applied to the sheet enters the von
force would produce in a flat sheet, and then using this Sog 3rma equations via the ter or via boundary conditions
lution to modify the equations governing the ridge. A ridge 4 the sheet's edges. We described the proper rescaliflg of
scaling solution was then substituted into the modified von, the preceding section, in this section we calculate the res-
Karman equations and series expanded in the magnitude Qfyjing of a particular kind of in-plane forcing at the sheet
the external force. This technique had the weakness that th&, ;ndaries. Here and in the remainder of this work we con-
resulting expressions for the force response had an undet&ger an external potential that applies point forces to both
mined exponentthough the possible values of the exponentyertices at the ends of a ridge. Since the applied forces have
were limited. The technique was also very complicated. o1y 5 function spatial extents and are applied at points that
We use a less specific, more intuitive approach to studyemain stationary under ridge scaling, we do not expect them
the overall response of a ridge to external forcing. Instead of, gestroy the spatial scaling of the ridge solution. Therefore
solving for the detailed behavior of the ridge strain and cur¢ may reasonably expect to find that the equilibrium con-
vature as the force is applied, we .focus on how the_forcingi uration of a ridge under a given compressive force is
must be rescaled to have an equivalent effect on ridges Gfientical to rescaled configurations of ridges with different
different length ratios.. For example, forces applied normal yaterial thicknesses and properly rescaled external force
to the sheet enter the von Kaan equations through the term magnitudes.
P _in the force equation_. If we agd the dimensionless form of 14 c5iculate the proper rescaling of the forces on the ver-
this term back to the ridge scaling form of the equafiBy.  {jces for a similarity solution, we consider our forcing as a

(2.24), we find boundary condition consisting mainly of an in-plane point
force. This force amounts to a point stress at the edge of the
¥ o sheet with the form
A’%§gzx’ﬁ}j]+P, (2.26
oS =Fod(y). (229
where we have used the ridge scaling valuesgand 6. In . o . .
order for the solutions & and to remain scale invariant, S0 to find (?)mnar scaled configurations of the sheet, we
the field P must obey the scaling form must scaler,,’ the same wayr,, scales on the ridge. Since

Yxx SCales a9 2’3,

P=\"P(X.y), 2.2 4y 2
(x.3) 229 Txx~ Y Ny~ kN X “Fex (2.30
whereP is a dimensionless, scale-free functionXoéndy.  wherey,, is a dimensionless, scale-free function. To express

Conversely, the existence of the scale-free funcBagives a o9 in a similar fashion, we first substitute the scale-fee
relation between two equivalent external forces on ridges ofariabley=\"*3/X, so thats(y)=\"Y3X"158(y). Thus,

different, the proper scale-free force can be written in term& gfas
~ A\ T kN1
P.=| | P, (2.29 Fo= = (2.31)
o X

Thus we assume that with proper rescaling of our applied For reasons that will become clear in Sec. Ill, we cannot
forces, the fields and y obey the same scaling laws on measure the force applied to our ridge with very good accu-
forced ridges as on the resting ridge. This notion allows us t@acy. However, we can measure the inward displacement
make strong statements about the complex evolution of thef the ridge ends caused by this forcing. These two quantities
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€ FIG. 5. Simulational geometry. An equilibrium configuration of
- . . . _the simulated shedwhite grid is shown for a thickness aspect
FIG'. 4. F|n|_te elements for stretching and pendlng. The s_t_raln ONatiox of 1072, The dark planes mark the location of the reflective
each triangle is computed from the change in relative positions o . ) .
. . . . . “planes to which the sheets edges are confined. PAiatsd B are
its vertices. Curvature on one triangle is computed from the relativ . P .
. . . . he center points of the repulsive © potential used to press on the
heights, normal to the triangle surface, of the vertices of the triangle . . -
I . : . . Vertices of the simulated ridge.
plus the additional vertices of its nearest-neighbor triangles.

may be related by assuming that the work done by equivalenthese six simultaneous equations for then terms ofa; are
rescaled forces, given approximately ByA, scales the inverted at program initialization to save later computational
same as the total energy of the resting ridge configuratiorfime.

The total energy of a resting ridge scales @s 3, so The edges of the grid are constrained to lie in reflection
equivalent values oF ,A/« will scale ash 3. Given the planes of the minimal unit pictured in Fig. 5. For calculations

scaling of F . from Eq. (2.3, the scale-fre& must be re- Of the curvature on triangles bordering these planes, the tri-
lated to theoactual displacer,nent by angles see mirror images of themselves across the planes.

The mutual attitudes of the reflection planes are such that the
- sheet would meet them all at normal angles if it were per-
A=\"*XA. (232 fectly flat except for one sharp 90° fold between two oppo-
. . . S site corners. As shown in Fig. 2, the single ridge with this
This scallng resullt has the prgdlctgble implication that thegeometry is conceptually identical to one edge of a cube
macroscopic straid/X scales identically toy,, the local g, ace “provided the surface is constrained to be symmetric.

longitudinal strain on the ridge. Two corners of the sheet are the vertices of the ridge that
forms along the fold line when the elastic energy is mini-
IIl. SIMULATIONS mized.
A. Numerics The gridding was determined in two steps: first the de-

sired area was gridded with an equilateral triangular lattice,

.We s?mulate.an ela§tic shee_t using a.fixed triangular grignen the positions of the grid points were remapped by the
with variable grid spacingsee Fig. . Strains and curvature gjmultaneous transformation

are taken to be constant across the face of each triangle.
Strain is calculated on each triangle by measuring the rela-
tive deviation of its vertices from their predefined strain-free
positions. The curvature is calculated on each triangle from
the relative heights normal to the triangle surface of the three
triangles that share sides with (ee Fig. 4 The relative \yheref and g are fifth-order polynomial§47], which are
heightsz; of the six points(@)—(f) are fit to a function of the  constrained to be stationary on the edges and along the

x'=f(xy), y'=g9(xy), (3.3

form midline of the grid. Our mapping provided a fourth-order
smooth gradient in grid spacings on the flat faces of the ridge
zi=ay+ayX +agy;+as(x)2+asxy; +ag(y;)? i=1,6, while concentrating the lattice spacing at the vertices by a

3.1 factor of 1G and across the ridge line by a factor of?10
) ) ) compared to the flat regions far from the ridge. The concen-
wherex; andy; are the material coordinates of the vertices.aions factors were chosen arbitrarily, within the limits of

Curvatures follow immediately from the identification the mapping, to make the gridding near the vertices as fine as
possible, since this is the region of the largest gradients in
Cyx=2a,4, Cy=as, C,,=2as. (3.2 curvatures and strain. The gridding is visible in Fig. 5.
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Bending and stretching energies were assigned to the cur- 70 T T
vature and strains on each triangle using the forms for elastic o
energy presented 48]

)

B

1 2

7]

eBZEKA(Ciiij_Siksjlcijckl)’ (34) %

}';

3 2
es:EGA(%inj+27ij7’ij), (3.9

whereg;; is the antisymmetric tensok, is a bending modu-
lus, G is the two-dimensional Young's modulus, aAds the
area of the triangle. The stress-energy expression is appro- FIG. 6. Energy of ridges at rest and at the buckling threshold.
priate for a material with a Poisson ratio of 1/3. The coeffi- Straight lines are least squares fits to a scaling fprrax®. In this

cient of the Gaussian curvature energy is not consistent witplot A ranges from1.25x1073 to 1.77x107°. The plot shows
that given by Eq(2.10 for a uniform elastic material, but the total elastic energyEz+Eg) in the sheet after minimization.
was chosen to maintain consistency with the simulations ofhe scaling exponent fit for the resting ridge valuksver ling)
Lobkovsky and co-workers i#,7,8). The direct contribution =~ was —0.32, the fit at the buckling threshold wa.31. The inset

of the Gaussian curvature to the bending energy is much lesows the difference between threshold energy and resting energy
than that of the mean curvature. Separate simulations verifigf units of the resting energy. This energy ratio is best fit by a
that changing the value of the Gaussian curvature coefficiercaling exponent of 0.050.02 and is consistent with a constant
had no discernable effect on our data. The physical thickned&tio-

h of the sheet is equal to (3/2) Vx/G. _ ~ in agreement with prior theory and simulatiph8]. Figure 6
Pushing on the tips of the ridge is accomplished by intro-aso shows that the elastic energy measured at the buckling
ducing repulsive potentials of the forhi(r)=Cp/|F—X,|°  threshold exhibitsexactly the samescaling as on resting
centered around two points, one on each line to which aidges. This suggests that the ridge scaling developed for the
vertex is constrainepoints A andB in Fig. 5. The center resting ridge is still applicable to the ridge with forces ap-
points are located at a distangdrom one another and sym- plied at its end points. As we predicted in Sec. Il C 1, this
metrically placed with respect to the middle of the ridge.particular form of the forcing potential should not destroy the
These points lie where the vertices would be if the sheetength scaling of the ridge. The inset in Fig. 6 shows that the
were sharply creased—relaxation of the ridge curvaturenergy correction at the buckling threshold is nearly a con-
draws the vertices inward from these points for an unforcedtant fraction of the total ridge elastic energy. _
resting ridge. The benefit of this potential is that it acts Scaling of the force response is verified by the existence
mainly on a small but finite area around the vertex. In earlieof @ similarity solution for the ridge shape as a function of tip
simulations, simple pushing of the vertex itself led to thedisplacementA (see Fig. 7. We considered scaling of the
local collapse of the vertex tip without applying any force on €auilibrium value ofC,, along a line in the material coordi-
the main part of the ridgeCp was varied to apply different nates, which bisects the simulated ridge line. As a conse-
loading. quence of the scaling exponents presented in(E@.3, for

: . . N an unforced ridge the plot of,,\'* versusyx ~** along
An inverse gradient routingt9] was used to minimize the tpis line should be independent »f Extending this result to

e o o ce g, e foudrmercaly al e rescle coss
?ldge curvature profiles were also identical for forced ridges
% G andCp. - . with the same equilibrium value af\%®”. This A rescaling
_ Using this routine we found minimum energy cc>_r13f|gura- exponent is very close to the theoretical value of 2/3 derived
tions for ridges of aspect ratioranging from 1.2%X10°°to  gpgve. Plot@) in Fig. 7 shows values oF,, along a line in
-5 ; - : . . Yy - .
1.77<10°>. The upper bound on was determined by the the material coordinates, which bisects the simulated ridge
range of validity of the ridge scaling solution—above this jine, for several different sheet thicknesses and two different
value the width of the ridge becomes comparable to that th@alues of rescaled ridge tip displaceméntFor comparison,
sheet. At the other extreme, far<10°, the radius of cur- the unscaledC,, versusy for a particular rescaled\ is
vature at the ridge line becomes comparable to the spacing ghown in Fig. Tb).
our lattice and the simulation ceases to be accurate. With our generic treatment of the ridge force response we
can rescale the observed configuration at one thickness to
that for the simultaneously rescaled thicknesses and applied
forces. It must be noted, however, that scaling of the ridge
The plot in Fig. 6 shows scaling of the total elastic energyresponse to forcing does not imply identical scaling of the
in the ridge versus\ for ridges at restCp=0) and at the puckling threshold. Buckling of the ridge signals a bifurca-
buckling threshold. The data shown here is for ridges withtion in the allowed equilibrium configurations at a critical
dihedral angler/2. Scaling of the total elastic energy for the applied load[50,51]. This is a completely separate topic,
resting configuration is consistent withka ~ ¥ dependence, which we treat in Sec. IV. There, we introduce a model for

A (1074

B. Findings
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FIG. 8. Scaling of ridge energy witk. Data is shown for ridges

with thickness aspect ratia ranging from 1.2%10 3% to 2.5

X 10~ *. The dihedral angles of the ridges are givertby 2a. The
energy values for each thickness were rescaled by the predicted
energy scaling factox ' so they all lie on a common line. Points

on the lower line were for ridges at rest and points on the upper line
were for ridges at the buckling threshold. The lines are fits to the
data for thickness =5.6x 10" 4. The « scaling exponents for this
thickness were 2.31 for resting ridges and 2.29 for ridges at their
buckling threshold. The thinnest she€¥s symbolg do show some
deviation from the top line fit.

Cyy (L

-04 -03 -02 -0.1 0 0.1 02 03 04

lsttice y coordinate (L) to the resting energy of our ridges had an exponent of 2.31

(see Fig. 8 Interestingly, for all dihedral angles and thick-
FIG. 7. Similarity solution for the ridge response to forcing. nesses studied, we found that the total elastic energy at the
Both plots showC,,, the curvature across the ridge line, versus thebuckling threshold was always approximately 20% greater
y material coordinate on the line that bisects the ridge line. The datthan the resting ridge energy. The constancy of this ratio is
is for sheets with seven different values Xfranging from 1.25 discussed in Sec. IV D 1, once we have derived the buckling
X107%to 1.25< 10~ *. Plot(a) showsC,,(A/X1)*vsy(A/\;) " criterion.
for the ridges at rest and for ridges with inward vertex displacement \We also found for all cases studied that the total energy in
A(N)=AP(MN1)%%7, whereA is measured from the resting vertex the ridge as a function of tip displacementas well fit by
positions,\ ; is the aspect ratio for the thickest sheet M&P isthe  the quadratic functional form
vertex displacement at the buckling threshold for the thickest sheet.
The profiles with the large central peak are the buckling threshold
values.(The small dimple in the derivatives of the datayatO is a
numerical artifact due to a discontinuity in the gridding density
across the ridge line. For finer gridding this dimple goes away, . . . . .
while all other local values of curvature remain constaRtot (b) ~ WhereE, is the resting ridge energy any, is a numerically
shows unscalec,, versusy for the buckling threshold profiles fit zero offset. Typlcal_ values ok, were found to be within
plotted in (a). 10% of the resting ridge zero offset. The value Iofwas
found to be nearly independent of the dihedral angle, but was

: H ~ —1.65 2 H
the buckling transition, which reproduces the observed scal\{ve“ fit by the scaling forml’~3.2\ kI X" (see Fig. 3.

ing of the critical eneray without assumingatpriori For comparison, the elastic energy of a thin strip of length
9 9y gatprior. and widthw whose ends are compressed inward by lerdgth

is approximately given byE~2Yh(A/X)2Xw. If we take

N . _ the width to be the ridge widthw=X\"? and substitute
In addition to the simulational data presented above foly p— ,/n2=x\~2/X2, then the energy becomesE

ridges with dihedral angler/2, we also simulated the force ~1)\-58,/x2A2 Thus the compressibility of a thin flat strip

response up to the buckling point for ridges with differentyyith a width of the order of the ridge width is also of order

angles. In this section, we present data for ridges with thicks —5/3,./x2.

ness aspect ratiosfrom 1.25< 10 3 to 2.5 10" * and with

dihedral angles fromr/2 to 77/10. In each of these simula-

tions, the sheet had equal side lengths as before and was held

by reflective boundary conditions, similar to those described Detailed study of the buckling transition is complicated

above, to form a ridge between two corners. by an apparent discontinuity between prebuckled and post-
Lobkovsky showed8] that for ridges with dihedral angle buckled states. When a sheet of paper or a tin can is buckled

m—2a the elastic energy scales aa”>. The best scaling fit new ridges appear suddenly, often accompanied by the pop-

1
E:E0+§F(A—Ao)2, (3.6

1. Dihedral angle scaling

IV. THE BUCKLING TRANSITION
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FIG. 9. Scaling of" with «. The compressibility modulus was
calculated for ridges with thickness aspect ratiosfrom 1.25

X 1072 to 1.25< 10 * and with dihedral angles from/2 to 7/10. FIG. 10. Diamond shaped buckling mode for a thin cylinder.
The line is a scaling fit for data with dihedral angt& and has an  This image is fronj59]. It shows an aluminum cylinder buckled by
exponent of—1.65. application of straight downward forces at its en@pecial thanks

) ) ) ) to G. Lord for providing image.
ping sound of energy releaf®?]. In simulations we find that
ridges buckle at a repeatable value of inward tip displace- Eing|ly, we argue that the apparent differences between
ment, butimmediately after the buckling transition, the mini-the elastic cylinder and the stretching ridge are inconsequen-
mal energy configuration of the sheet contains a fully formed;a) in regard to the buckling instability. The main distin-
new ridge. Th|§ is counter to our intuition that.the transition gyishing trait of the stretching ridge is that it maintains high
should be continuou$0,51], in which case the immediately internal stresses even when it is at rest. We show that the
postbuckled state Woulq be only |nf|n|tes.|mal_l)'/ different thancyitical load at which the ridge buckles is determined by the
the prebuckled. More importantly, our inability to observe rigge curvature and the total stress along the length of the
intermediate stages in the growth of the buckled state pré&jqge, including the preexisting stress and the additional
vents us from directly seeing the shape of the assumed Nnogyess resulting from the applied load. To demonstrate that
mal mode against which the ridge becomes unstable. the buckling transition only depends on two parameters, the

In this section we study the buckling transition in greateryansverse curvature and the total longitudinal stress, we
depth, through more detailed analysis of the simulational represent data from several additional simulations with differ-
sults presented earlier. The consequences of our analysis algft geometries. Though these simulated sheets buckle at dif-
lead us to run further, more specialized simulations. Our aiMerent total stresses and curvatures, they all buckle at the
is to tie the observed behavior at the ridge buckling threshold g me ratio of these two quantities. We also discuss an ob-
to well-known results concerning the buckling of thin elastic served universality of the additional energy required to break
cylinders. a ridge.

We begin by reviewing the salient features of thin cylin-  ag 3 |ast note, we address the jump in position and energy
der buckling. Under uniform axial compression applied at itS5¢ the buckling transition. Even though the appearance of
ends, a thin elastic cylinder will pass from a state of uniformynstable modes for cylinders is the result of a continuous
uniaxial curvature to an axially periodic diamond shapedyjfyrcation in phase space, cylinders also jump discontinu-
buckling patterr_1(see Fig. 1D Although the detglls of the “ously in energy upon buckling. We justify this jump in terms
geometry are different, we show that the buckling of elasticsf the nonlinear growth of the buckling mode. We also argue

cylinders or sections of a cylinder is determined by elastignat the final wavelength of the buckling pattern on a ridge
terms analogous to those that dominate the behavior gfeeqd not be the wavelength of the instability.

stretching ridges—namely, the cross-ridge curvature and the
ridge-line strain. We proceed to apply the analysis developed
for the cylinder to elastic ridges, finding that the scaling it
predicts for the buckling transition is consistent with our Our treatment of the stability of thin elastic cylinders and
simulational observations. We then do a normal-mode analysections of a cylinder under a compressive load mainly fol-
sis of the buckling transition to determine the scaling of thelows that presented ifi53]. To avoid additional boundary
lowest mode as it approaches the point where the singleonditions, we make our argument for a complete cylinder—
ridge configuration becomes unstable. We numerically comhowever, the stability condition we find is local, so it can be
pute the lowest several normal modes for ridges under varidirectly applied to an angular section of a cylinder with the
ous degrees of compression, and show the appearance ofame local stress and curvature fields. We discuss local buck-
mode with a swiftly decreasing eigenvalue, which we believding and angular shell sections at the end of this section.
accounts for the buckling instability. Quantitative aspects of We consider an elastic cylinder of thickndsslengthL,

this mode’s shape and its approach to zero eigenvalue aradiusR, and Young's modulu¥. To assess the stability of
discussed. the cylinder under a compressive follee= 27rRo uniformly

A. Stability of thin elastic cylinders
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SCALING OF THE BUCKLING TRANSITION CF . .. PHYSICAL REVIEW E 66, 016601 (2002

applied along its edges, we consider the stability of the force Empirically, thin elastic cylinders typically buckle in a
von Kaman equation, Eq(2.14), against infinitesimal dis- diamond pattern such as that shown in Fig. 10. The longitu-
placements. The fordeis conveniently expressed so that the dinal and azimuthal periodicities of these patterns vary. To
resulting longitudinal stress in the unbuckled cylindewis test the stability of the shell against these buckling modes,
Under the application of the force at its ends, the cylindemwe consider a family of infinitesimal displacement of the
will naturally undergo some compression along its lengthform
which will in turn cause it to expand radially. We are not
concerned with these distortions, but only consider them as u=Ae™RcogNy/R),
the equilibrium solution to the von Kman equations to
which we add an infinitesimal displacement, which will grow
into a buckled solution. We define a local coordinate system
everywhere on the cylinder with the direction along its
length, y direction azimuthal, and direction normal to the w=Ce™RcogNy/R), (4.9
surface. Infinitesimal displacements in these three directions
are labeledy, v, andw, respectively. In this frame, points ~ where the periodicities andN are free variables. This form
radially inwards. of the buckling mode neglects boundary effects, and so it is
Because our cylinder already has a curvature figjg  most accurate for a very long cylinder, for whigtr>L.
=1/R, the relation between the additional displacements We,neglect higher-order corrections due to the geometric
v, andw and the resulting strain and curvature fields is not ayon Kaman equation in our consideration of infinitesimal
simple as for flat sheets. Up to an additive constant, the localisplacements, but the force von i@n equation is not

v=Be™Rsin(Ny/R),

embedding of the cylinder int®® is given by valid unless the additional constraint of in-plane force equi-
librium is satisfied. From Eq(2.12), this requiresd; o, =0.
1 (y+v)? Using the relation of stress to strain from Eg.4) combined
F(X)=|x+u,(y+v)(1-w/R),w+ > R with Eq. (4.2), this yields two equations,
(4.1
) 1-v ) 1+v v
This expression accounts for the rotation of our local frame, du+ Tf?yu+ Tﬂxﬂyv - §3XW=0.
as demonstrated in Fig. 11. Referring to E@2) and(2.5),
the expression for thadditional strain and curvature due to . L L
our infinitesimal displacements are, to first ordeujw, and +v v
" P St -+ - Zow=0. (49
. ou o ow . 1{au N ov i 'I(;heiseeid?guations can be used to solveX@ndB in terms of
'}’xx—a_x, ’)/yy_w_ﬁy ’)’xy_z W & ’ ( . ) ’y g
, ) , A wrP-N? B_N(2+V)r2+N2 e
W AW L, w1 ¢ e TN e (49
g2 YW gy? Ry Y axdy R ox
4.3 The equilibrium cylinder configuration becomes unstable

. o . to the combined displacements in E4.4) when the result-
Here the primes denote the infinitesimal corrections to thefng normal force. calculated from the force von rken
equilibrium fields. For equilibrium small displacements, theequation, goes to zero. To linear order in the small displace-

terms in Eq.(4.3) involving derivatives ofv are typically ments, this condition will be met when the terms lineaAin
much smaller than those involving derivativesvgfso they B, andC satisfy

are neglected in the following treatment. The solutions we

find for u, v, andw are consistent with this approximation

for the values oh/R considered. KV2C), :Eo/ +0CL, 4.7)

R vy

Using Eq.(2.4) to expressry, in terms ofyy, and yy,, the

o=yR above equation can be written in terms of the small displace-
ments as
o 12« w
wOy)sino.= w0y) yR KV2(FW+ IJW) + 0W— o | dyv + vaxu— ﬁ) =0,

4.9

——
y

where we have used E(R.10 to express all elastic moduli
FIG. 11. Coordinates in cylinder frame. in terms of k.
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Substituting the buckling form of E¢4.4) directly in Eq.
(4.8), and using Eq(4.6) to eliminateA, B, andC yields the
bifurcation condition

12(1— v?)R%k
1A= )R« r*+(r2+N?)?[ k(r?+N?)?— gR?r?]=0.

h2
(4.9
If we define
r.2
7= 2N (4.10
we can write Eq(4.9) as
12(1-v?)R?
%nz—aﬂzn-l—x:o. (4.11)
Solving for ¢ yields
R 2
[12(1—#)(5 7°+ 1|k
This function has a minimum im when
2\1-1/2 h
n=na=[121-1")] "=, (4.13

where 7, is the “classical” buckling value ofy. The corre-
sponding minimum value of is denoted agr,

>~ K
0e=43(1—v7)

Rh- (4.14

This is referred to as the “classical” value of the buckling

PHYSICAL REVIEW E 66, 016601 (2002
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FIG. 12. Relation between, N, and 7. The solid line is the
higher root of Eq(4.15, while the dashed line is the lower root.

shown[54] that initial curvature imperfections in the cylin-
der can break the degeneracyriand N.

Without yet placing any constraints on the allowed values
of r andN, we explore the limits imposed by Eqg..10 and
(4.13. Solving Eq.(4.10 for the wave number in terms of
N and 7 gives

r 77=%[1i(1—4N277)1’2]. (4.15
Thusr can take values between zero anpd*? andN can
range from zero to 1/2~ V2. Possible combinations ofy7
andN+/7 are shown in Fig. 12. For most allowed combina-
tions ofr andN, r is of the order ofy~ 2. For smallr and

N 72 we can expand the lower root of E@.15, finding
r~7»Y2N2. Substituting the value ofy, from Eq. (4.13
gives two limits for largeR/h,

JR/h=r=N?\h/R, (4.16

where for the lower limitN<R/h. Implications of both
bounds for ridge buckling will be described in later sections.

stress[53,54. The classical stress is the smallest applied For comparison with later results, we note that the classi-
load under which the cylinder can buckle, provided that acal breaking stress given in E¢.14) implies a breaking

solution for the corresponding value gfis allowed[55].
Our limit of a thin sheet corresponds to the limit,
—0. The variables andN are not uniquely determined by

this stability treatment, beyond the requirement that they sat-

isfy Eq. (4.10. However, for each set afandN there is a
unique value ofyn and, therefore, ofr=0,, determined
from Eq. (4.12, at which the cylinder becomes unstable to
buckling with that mode. Ifr and N are taken to be con-

strain of order

Yo [3(1-12)] 20

R (4.17

0 Glh
~0.615,
where we have assumetl,,~0 and have used=1/3 to
correspond with our simulations. Thus, the total energy input
required to buckle the cylinder is

tinuum variables, then there is an entire family of solutions

that satisfiesy= 7, . In real cylinders the preferred buckling

wave numbers are determined by boundary conditions and

initial imperfections. Azimuthal periodicity and the require-
ment that the wavelength be commensurate with the finit
length of real cylinders severely limits the number of al-
lowed solutions for cylinders that are relatively thick. In such

1 5 KL
EJ' YxOdA=47(1—v )F, (4.18

Svhich is of the same order as the energy required to bend the

cylinder out of a flat sheet,

cases, there may only be a handful of allowed combinations

of r andN for which 7~ 7., with the corresponding thresh-
old instability value ofo close too,. Also, it has been

1 5 kL
Ef KnydA:WF. (4.19
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As we mentioned above, the threshold condition for cyl- R,
inder buckling can also be considered as a local condition on
an angular section of a cylinder. The form of the buckling
displacements, which we posited in E@.4), is a global
motion, but we can construct a localized wave packet
from combinations of these modes. Especially for short-
wavelength modes, there are many different modes with cor-
responding»n near 7., so a localized packet can be con-
structed with critical stress very close .. The only
requirement for this to work is that the width of the packet be
at least a couple of times longer than the principal buckling
wavelength. From Eq(4.16), the smallest packet must, FIG. 13. Distorted cylinder with one large and small curvature.
therefore, have a width of at leastr®/r =2 hR. All of - _
the buckling motion may be localized within such a self- flanks, so it is plausible that the boundary Iayer only sees the
contained wave packet, so the buckling threshold conditiofiest of the sheet as a set of boundary conditions.
should be determined only by aspects of the cylinder defined N the remainder of this section, we calculate the correc-
within the wave packet. In this instance, it is appropriate totion to the buckling stress resulting from the nonzero longi-

rewrite Eq.(4.17 with the local curvatureC,, in place of tudinal curvature. For ridges with typical aspect rano
1/R, so the local buckling condition for=1/3 is =103 or less we anticipate that the longitudinal curvature is

too small to have a pronounced effect on the buckling tran-
sition. We argued earlier that the longitudinal radius of cur-
Yxx/Cyy=0.61h. (420 yature goes to zero as¥®X, so for an aspect ratio of
. . . =103 this radius of curvature already is of orderXLOThe
Thus, if the ratio of strain to curvature locally surpasses thebuckling wavelength cannot be longer than the ridge, so the

threshold value in Eq4.20 over a region of spatial extent p,cyjing deformational mode should not be strongly affected
greater than Z\hR, local buckling can occur just at that by the smaller curvature.

point. Experimentally, cylinders are often observed to begin ™ | order to treat the longitudinal curvature rigorously, we
buckling locally instead of all at once, due to inhomogene-gpeat the derivation of the preceding section for a surface

ities in the cylinder material and uneven forciftg]. with curvatureR; in they material direction and- R, in the
x direction. We takeR,>R;. These curvature fields cannot
B. Application to ridge stability globally describe a real surface, but for smiall, we may

It is immediately apparent that the elastic terms that domiPiCture a surface such as that in Fig. 13, whifeis nearly
nate the buckling behavior of cylinders are analogous t onstant over the length of the object. For such a surface, the

those that determine the scaling behavior of ridges. The largitr@in-displacement relations analogous to @cg) become
est terms in the stability condition, E.7), are those pro-

portional to the transverse curvatur@®lnd the longitudinal , _du W , v W , llau dv
strain . Likewise for the ridge, the balance between the 7xx_5+R_2’ YWy TR, T2 &_y"'&
transverse curvature and longitudinal strain determine the (4.21)

ridge’s shape and energetics both at rest and under compres-
sion. Furthermore, if we substitute the scaling form of theand the in-plane strain equilibrium equations become
ridge curvature R=C,,~\"Y¥X into Eq. (4.17 for the
critical strain of the cylinder under applied load, we find 1-v , 1+ v
ver~ A3, which is exactly the scaling we observed for the =~ U+ —5— U+ ——dxdyv = o= W+ o-d,W=0,
ridge in Sec. Il B. ! 2

We, therefore, anticipate that the buckling mode of the

ridge should be roughly the same as that of a cylinder of 1+¥ 1-v,  » 1 L
material thicknessh, length L=X, and radiusR=\?X, 5 XMt T Aty R, dyw+ R, dyw=0.
whereX is the ridge length anil is the thickness aspect ratio (4.22

defined in Sec. Il A. We picture the boundary layer of the . ) .

ridge as behaving like an angular section of a cylinder, with !f We substitute the buckling mode from E@.4) into the
some semirigid boundary conditions at the edges where th@bove equations, the ratios of buckling coefficients become
boundary layer meets the ridge flanks. This picture makes

two assumptions: first that the real buckling mode of the A —ir L S
ridge is localized on the boundary layer and second that the ¢~ (r2+N?)2 vre—N°— R_z[(2+ v)N“+r7]
longitudinal curvature on the ridge line does not change the

critical strain scaling. The first assumption is supported by

numerical evidence in the following section. Also, the ridge E: (24 v)r2+ N2— &(sz—rz)
line is observed to absorb nearly all the stress of our applied C  (r°+N?)? R, '
load without noticeably changing the shape of the ridge (4.23
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Equation(4.8) for force balance of the infinitesimal dis-
placement gains several additional terms from the later cur-
vature,

12k w w
kV4W+ o d2w— R Iyv + vigu— A VR_Z)
12« W w
+W &Xu+vﬁyv—vR—l+R—2 =0 (4.29
Solving as before yields the equation
m(%_g 2+(r2+ N?)?[ k(r?+N?)?
—oR%r?]=0. (4.25
If we define
R
N r2— R—;NZ %
7 = T ND T o —m, (4.26

we can proceed as before to find the lowest allowed value for
o’ as a function ofp’. The corresponding value fer is

o=43(1— Vz)

This stress idower than the breaking stress for a cylinder,
but will approach the same value f&; /R,— 0. This justi-
fies our above assumption that the miig, curvature has a FIG. 14. Observed postbuckling configurations. Imaggsand
weak effect on the buckling threshold. (b) show the buckling pattern for ridges with thickness aspect ratio
A=1.25x10 3. The configuration shown ifa) was at the smallest
step past the buckling threshold that we simulated for this thickness.
Image (b) shows a ridge with tip displacement further past the
As mentioned above, our initial observations of the buck-threshold value. Imagéc) shows a buckled configuration for a
ling transition came from detailed simulations in which we ridge with thickness aspect ratio=2x 10 . Lighting and shading
approached the buckling threshold with very small steps irwere chosen to emphasize physical features.
inward vertex displacement. In all cases, the buckling tran-
sition was accompanied by a downward jump in total ridgebuckling pattern we observed are illustrated in Fig. 14. For
energy and a large decrease in the strain along the ridgeelatively thick sheets, the initial buckled state was like that
There was no noticeable change in the vertex position aften Fig. 14a—one new ridge appeared across the original
buckling. This assures us that the sudden jump is not aideddge, with a length of the order of the unbuckled ridge
by any work done on the ridge due to the springiness of ouwidth, positioned at about two-fifths of the way along the
potential. original ridge. In simulations with the same sheet thickness
The transition to the buckled state was of course accombut larger steps in a hard-wall potential positi@o that the
panied by the appearance of additional ridges and vertices initial step across the buckling threshold pushed deeper into
our simulated sheets. Since the new ridges and vertices atite buckled stabe the first observed buckled state was like
peared in regions that were not finely gridded on our latticethat in Fig. 14b), with two new ridges positioned symmetri-
they were often accompanied by curvatures that were largeally about the midpoint of the original ridge. For thinner
on the local scale of inverse lattice spacing. For this reasosheets like that shown in Fig. (&} the buckling pattern
we do not claim that the buckling patterns we observedconsisted of a number of smaller ridges. As with the larger
match in detail the real buckling pattern of a physical sheetridges in(a) and (b), these smaller ridges had lengths of the
though they should be qualitatively correct. The types oforder of the original ridge width and were clustered near

C. Numerical investigation of buckling modes
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locations about two-fifths of the way along the original ridge. x X

This is consistent with the buckling patterns on a tetrahedron Ko~ g2 FTTafZ. (4.30
seen in[7]. In that system, which is closely related to our

own, buckling was accompanied by the appearance of two

large transverse ridges, which were symmetrically spaced gs=0slog. (4.30
about one quarter of the way along the original ridge.7h

only highly buckled states of the tetrahedron were observed;nally. if we substitute the scaling form of the ridge curva-
ture for 1R and the limiting scalings of the classical buck-

so we cannot be sure of where the new ridges initiaIIyI_ | ¢ h . f
formed on the tetrahedrdme have observed our own ridges N9 value of wave vector, the expected spring constant o

to change position slightly with the growth of the buckled the buckling mode becomes
statg. This issue is revisited in Sec. IVD 2.

K
—7/
Normal modes Yzh g5, r~yR/h,

Since there seems to be some randomness involved in the K&~ P
selection of the postbuckled state accessible to our simula- PN“)\*lBﬁ, r~vh/RN2, N<R/h.
tions, and since directly after buckling the system passes (4.32
through nonequilibrium states of intermediate energy, which '
we cannot directly observe, we desire to learn what we cagiearly, for \<10"23 the factor ofA ~ 7 will become very

about the buckling mode before the ridge buckles. Prior tqarge, so the shortest-wavelength buckling modes will ap-
buckling, the infinitesimal displacements given in E4.4)  proach zero very quickly on the scale of the ridge param-
would result in a restoring force normal to the surface op-eters. Even the lower value of !N* should be a pro-

posing the growth of the buckling mode. As the stress nounced feature in the normal-mode spectrum for Binyf
approaches the buckling strasg , this restoring force goes grder unity.

to zero. Because the boundary conditions of a cylinder or a \We can also calculate the possible wavelengths of the
ridge enforce selection rules on the allowed buckling waveyckling modes on the ridge line by substituting the scaling
lengths, the buckling mode must be part of a discrete speGiependencies into the two limits opresented in Eq4.16).

trum of eigenmodes for motion of the sheet. Very near therhe high wave-number cylinder buckling mode has
transition, the buckling mode is very soft, and at some point_ [R/h~)\ -3 while the low wave-number mode has
before the associated eigenvalue goes to zero, it must ha\Le\/m—RNzw)\l/aNz_
the lowest normal-mode eigenvalue.

Ignoring the small corrections calculated in Sec. IV B, we

can surmise how quickly the buckling mode approaches zero

Thus, the limiting wavelengths of the
classical buckling mode are

eigenvalue with applied stress by expanding @) around _ 27R _ 2mX\Z8, r~R/h,
o= (o —0y). For nonzeroog, the left-hand side of Eq. oy 27XN72,  r~h/RN?, N<+R/h.
(4.8) will not equal zero, but will instead equal the restoring (4.33

force per unit area linear in the buckling mode amplitude,
which we denote by 5. If we also ignore the small changes So for an aspect ratio ok=10"2 the shortest buckling
in transverse curvature R/with the applied stress, then the wavelength is of ordex/20. The longer wavelength is inde-
o, term cancels all the terms on the left-hand side of Eqpendent ofA. On the ridge, the transverse wave number
(4.8) except theo 5 term, and we are left with does not have a lower bound, but the longitudinal wave-
length ., will presumably be a half-integer fraction of the
ridge length. We, therefore, expect that the longest of these
e™RcogNy/R), (4.29  buckling wavelengths will be of the order of the ridge length.
For ;= X, the corresponding value &f is N=27~2.5.
. . Numerically we looked for the buckling mode among the
where we have substituted the form for thg bu_ckhng mOdqowest normalymodes of our simulated shgeets for equiligbrium
from Eq.(4.4. The work required to cause this dISF)lacememconfigurations from zero forcing up to the buckling thresh-
is then old. We found the modes by analytically calculating the ma-
trix of second derivatives of the total elastic energy for
the equilibrium positions of the sheet, and then using a
block-Lanczos algorithnj56] to find several of the lowest
eigenmodes of this matrix. The eigenvalue corresponding to
whereR is the ridge radius of curvatur is its length, and the buckling mode is precisely the spring constknt de-
we again assume that the buckling motion is confined to théined above. We used the Underwood implementation of the
ridge boundary layer. The resulting expression is quadratic ifvlock-Lanczos algorithm, which is freely available on the
the displacement amplitudg and so by our previous ansatz NetLib online archive[57]. The block-Lanczos method is
we can identify it with the spring constant of the eigenmode gfficient at finding extremal eigenvalues and eigenvectors for
which leads to buckling, by s=1/2K sC2. Expressingrsin large sparse matrices—our matrices were large by virtue of
units of o¢;, we can write the large lattice size, but sparse since local curvature and

—C0'5r2

A RZ

W5: J’ P5W~|P5W|RX, (429)
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FIG. 15. Evolution of modes. Both graphs plot values of the
effective spring constants ; as a function of ridge tip displacement
for eigenmodes of a ridge with aspect ratie=2x 10 3. The ridge
tip displacement is nearly linear in the ridge strain and stress, so for
these graph#& s~ (0.2—A)/0.2. The top graph plots the eight low-
est eigenvalues at several different ridge tip displacem@mider
application of inward external forces at the jipShe dashed line in FIG. 16. Representative eigenmodes. In both images dnely
(@ has a slope of approximately (4l0?)x/X?G;. The lower  coordinates are the material coordinates of the sheet, while the
graph is a closeup of the lowest four eigenvalues very close to thgoordinate is the eigenmode motion normal to the ridge surface. In
buckling threshold. The dashed line (b) has a slope of approxi-  these sheets the ridge line extends from the upper left to lower right
mately 16x/X?G 5 [for comparison to scaling values, (0.002)  comers. The top image shows a longer-wavelength mode, which
=5x10° and (0.002) "*=2x1C°]. The labeled pointsA andB  covers the length of the ridge. The eigenvalue and tip displacement
correspond to the modes pictured in Figs(dl@nd 16b), respec-  for this mode are labeled by poirt in Fig. 15a). The bottom
tively. image shows a short-wavelength mode. The eigenvalue and tip dis-

L ) i i . placement for this mode are labeled by pdhin Fig. 15b).
strain fields at any lattice point are determined by relative

positions of other grid points only up to a distance of next- , ,
next-nearest neighbors. The numerical values of elements #i€ ridge begin to drop more steeply. For example, the
our second derivative matrices for very thin sheets differectrongly sloped line in the upper right corner of Fig.(8)5
by up to four orders of magnitude, so convergence of th&orresponds to the mode shown in Fig(d6The eigenvalue
Underwood routine was slow, taking up to several days tdor this mode has a slope of the order-6#x 107 [in units
recover eight eigenmodes on a 700-MHz Linux-based comof («/X?)/&s], which is just one order greater than the mini-
puter. mum slope predicted by Eq$4.32 and (4.33 for the
Figure 15 shows the evolution of the eight lowest eigen-\ _*N* scaling associated with long modes of wavelength
values as a function of vertex displacement for a ridge withX (N= J27). Similar modes, with wavelengthsx23, X/2,
aspect ratioo=2x10"3. The eigenvalue evolution is quali- 2X/5, etc., were found higher in the eigenmode spectrum.
tatively the same for thinner sheets as well. Over a largéNear the buckling threshold, these modes were also seen to
range of inward vertex displacement, the lowest modes akipproach zero eigenvalue with slopes greater than, but of the
have nearly constant eigenvalues. The modes contain an agrder of, that for the wavelengtK slope described above.
sortment of motions that are either global or localized on thefhe computational time required to calculate higher modes
boundary layer or the ridge flanks. As the vertex displaceprevented us from studying them in greater detail, but they
ment(and, therefore, the ridge stre¢ss increased, the eigen- behaved fundamentally the same as the mode shown in Fig.
values corresponding to long-wavelength modes localized oh6(a).
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None of these modes ever reaches the value zero before (a) ¢
the ridge buckles, however. Instead a very localized, short-
wavelength mode like that pictured in Fig. (b appears
suddenly, with a very sharply dropping eigenvalue, just be-
fore the ridge buckles. The evolution of the eigenvalue asso-
ciated with this mode is shown in Fig. @5. The short-
wavelength mode has a wavelength of the order of the lattice
spacing and is asymmetric about the center point of the
ridge. For ridges with aspect ratio=2x10"3, Eq. (4.33
gives a minimum wavelength of approximatedy10, which -04 03 -02 -01 0 01 02 03 04
is of the same order as the midridge local lattice spacing. ridge coordinate (X)

Thus the observed short-wavelength mode is of the order of
the minimum allowed wavelength, and should, therefore,
have a spring constant near that predicted by (B2 for
N~ " scaling ofK 5. As Fig. 18b) shows, the final slope of
the eigenvalue as it approaches zero is indeed of the right
order of magnitude to fit the cylinder buckling theory.

Both the long- and short-wavelength modes seem to obey

1 1 1 1 1 1 1 1 1

curvature (10'3 h'1), strain
- N W A OO N ®

4.5 T T T T T T ;

40 | POL- S A TSP

35 E 2

30fF °

25 1
®

20 F

15 F

strain/curvature (10*X) &
x\l\\\\\\ \

the scaling of cylinder buckling modes as they approach in- 1.0 Lpaaaeas SRS eag]
stability. That the short-wavelength mode reaches zero eigen- g'z L o
value first in every case could be due to some suppression of © 04 03 02 -01 0 01 02 03 04
the long mode, either by boundary conditions or by the ridge coordinate (X)

changing geometry of the boundary layer along its length.

Also, the short-wavelength mode may well be enhanced by © 45 T T T T T

lattice effects, and therefore should be more prone to cause X g'g [ 7 ]
buckling. The short-wavelength mode is also enhanced by its 2 . [ ,-’6 % ]
high localization; since the stress and curvature are not uni- S est J 5 i
form along the ridggsee Fig. 1%, localized patches of the S 20t ]
ridge line will meet the stress to curvature threshold crite- 3 15} i LY .
rion, Eq.(4.14), before it is satisfied globally. In any case, § 10 A i S 1
the theory developed for cylinders at the beginning of Sec. B 05F . 9.«",..-;"' . “E'.""u:"‘o. . ]
IV allows for both these families of modes to approach zero 001 o1 005 o0 o005 o1 ois
spring constant just before the ridge buckles. The observa- cross-ridge coordinate (X)

tions of these modes and their matching eigenvalue slopes
strengthens the connection between ridge and cylinder buck- FIG. 17. Curvature and strain profiles on ridge. Rtshows
ling. the curvature in terms di~! (+ symbo) and strain magnitudéx
The spatial extent along the ridge of the short-wavelengtl?ymbo? asa function of posi_tion along the_ ridge line for a ridge at
mode envelope was observed to be independent of the sheléPuckling threshold. The ridge has a thickness aspect ratlo of
thickness. The longitudinal wavelength of the buckling was="5-2>10"". Plot(b) shows the ratio of curvature to strain magni-
at the lattice spacing. Figure @ shows that the strain to tude along the ridge line for the same ridge at festsymbo) and
curvature ratio on the midline itself surpasses the clas:sicaﬂt the buckling thresholt symbo). The location and extent of the
buckling threshold value by nearly 20%. However, as Fig'ocallzed vibrational mode from Fig. 1) is highlighted. Plot(c)

. . . . . . _“'shows the ratio of curvature to strain magnitude across the middle
17(c) shows, this rqtlo drpps away qUICk.ly in the dII’?CtIQﬂ of the ridge for the same ridge at ré&f symbo) and at the buck-
tlr;lrz)sv_erse to thle rl(?_gedllne. Thus the :cl_?e _[IJ_Iﬁttek;i "lll.l:'g'ling threshold(O symbo). The horizontal lines irlb) and (c) are
(b) is a very qca|ze maximum. pro ! e. _e Uckling e classical buckling values of the strain to curvature ratio pre-
envelope has a width of the order of the ridge width, and thjj teq by Eq.(4.20.

strain to curvature ratio should be supercritical over this

width before buckling occurs. The minimum cylinder buck- D. Other geometries
ling wavelength shrinks aa?® as the sheet gets thinner,
while the ridge widthR shrinks as\ %, so the cylinder buck-
ling mode should be increasingly dependent only on local Most of our in-depth buckling mode data analysis has
curvature and strain fields as—0. Therefore the short- been performed on ridges with dihedral angi®. However,
wavelength localized mode should continue to be the prethe equation we derived for the critical strd$. (4.14)]
ferred buckling mode for thinner sheets. Numerically theonly depends on two parameters of the ridge shape—the
time required to compute eigenmodes grew very quickly asransverse curvature and the material thickness. In order to
we decreased the thickness aspect rati@o we were not show that this relation holds for more general geometries, we
able to track the evolution of the short-wavelength modes foagain consider ridges with different dihedral angles. As in
significantly thinner sheets. Sec. llIB 1, our simulations used sheets with the same size

1. Different ridge angles
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0 - (a) (b)
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27 X
E’:-: 6
g s
gy
£
% 3 FIG. 19. Shape of simulational grids. The dashed lines indicate
> the location of the simulated ridge line. The grid(b) was used for
] the simulations described in Sec. IV D 2. The grid(i was used
-04 -03 -02 01 0 01 02 03 04 for all other ridge simulations.
ridge coordinate (X)
b)s power ofa. Since our ridges always buckle at the same value

N of the ratio of strain to curvature, the identical scaling of

) these quantities witlr implies an identical fractional change

in their values(and, therefore, the total energy of the rigige
between the resting and buckling threshold states. We expect
this behavior to extend to a dihedral angle upntothough

we have not demonstrated it.

strain
w

:x ) I’ 2. Longer ridge flanks
2 ‘\:f"ﬂ':.».,::::*"*“*--*“*‘__‘_;::::-'B’fj' So far, we have simulated ridges on a grid whose edges
Bt e formed a perfect square, as shown in Fig(al9The ridge

-04 -03 -0.2 -0.1 0 01 02 038 04
ridge coordinate (X)

line extended between two corners of this grid, so its simu-
lated flanks were right triangles. The nonvertex corners of
the grid were a distancé/2 from the center of the ridge line,
FIG. 18. Curvature and strain profiles. P{at shows the ratio of where X is the ridge length. As a variation on this ridge
strain magnitude to curvature along the ridge line at the bucklinggeometry, we also simulated ridges with flanks that were
threshold for five different dihedral angles and three different thick-twice as long as those for the typical simulations, using the
nesses. The ridges had dihedral angles ranging fefi2rto 77/10. grid shown in Fig. 1&b). On this grid the nonvertex corners
Regardless of ridge angle, the values of the strain/curvature ratiggere a distanceX from the center of the ridge line. The
tend to be grouped for ridges with the same thickness aspect ratigoundary conditions were again reflective planes that were
In the top groupingh =1.25<10°%, in the middiex=8x10"*,  oriented to give the ridge @/2 dihedral angle.
and for the bottom grouping=5x10"*. Plot(b) shows the buck- We simulated ridges with thickness aspect rati@nging
Ii_ng thre;hold values of the strair! magnitude along the ridge line forfrom 1.25¢10° 3 to 1.25< 10" . For these ridges we once
ridges with\ =1.25<10"* and dihedral angles ranging from'2 again found that the buckling threshold energy was approxi-
(top “.ne) to 377/.10 (bottom ling. The.hor'zomal lines "@b) are .the mately 20% greater than the resting ridge energy. As Fig. 20
classical buckling valges of the strain to curvature ratio predicted b%hows, we also found that the ratio of strain to curvature
Eq. (4.20 for each thickness. along the ridge line at the buckling threshold was nearly
equal to the threshold values for our typical ridges.
and length to width ratio, but the location and orientation of Interestingly, the peaks in the strain-curvature ratio along
the reflective planes for the edge boundary conditions weréhe ridge line were consistently closer to the vertices for this
changedthe connection between reflective planes and dihegeometry than they were for all the other geometries we
dral angle is illustrated in Fig.)5The energy of ridges with  studied(this is visible in the profiles shown in Fig. 20This
dihedral angler— 2« scales ast”, so adjusting this angle suggests that the locations of these peaks are determined by
changes the curvature across the ridge significantly. Still, asoundary conditions. The appearance of the peaks is prob-
Fig. 18 shows for ridges with dihedral angles ranging fromably an effect of the ridge pulling on its mirror image. Pre-
/2 to 77/10, the ratio of strain to curvature along the ridge dictably, the change in location of this peak also causes the
at the buckling threshold was the same for ridges with theidge to buckle closer to its vertices, as shown in Fig. 21.
same aspect ratin. This is true despite the variation in the This is strong evidence that buckling occurs near the first
buckling strain by a factor of 2 between the largest andocalized patch on the ridge line where the strain-curvature
smallest angled ridges. This further affirms the cylinderratio is supercritical. When this pulling is absent, we might
buckling hypothesis. expect the buckling region to move towards the center. Such
This observation may also explain the insensitivity of thea case occurs in Lobkovsky and Witten’s minimal ridgé
observed fractional change in energy between resting ridgeshere there is no applied stress at the boundaries, and buck-
and those at the buckling threshold. Another consequence difg occurs at the center of the ridge. The change in buckling
Lobkovsky’s treatment i8] is that the longitudinal strain location is also consistent with the observed locations of ad-
and transverse curvature on the ridge line scale with the santhtional ridges on a buckled tetrahedron [ifi]. Since the
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o R T = = W the ridge stores a nonzero fraction of its total elastic energy
s e = < 8 - o ~ L . . .
sf & T gegat T “-\q‘-g_ - in the stress field. The amount of work required to buckle the
<L FS U ridge is, therefore, only that required to increase the longitu-
o By Ll dinal stress from the resting value to the buckling threshold
i yid vooe ooee hLE value. It seems an odd occurrence that the energy required to
hed ’ e 0-6.9_g. o0 ~ \ B . .
2s P8 gFEp.g o 00000 0 ol % make the ridge should also do part of the work required to
g 4 33!')3:::;’ B B0 0 6. 000 0B DS O “‘::u_ 5 break it. It is even more intrigu_ing s!nce the spaling of ridge
s R L stress and critical stress are identical—if this were not so
£ 3% “g}:f then any ridge above or beloydepending on the relative
2 k- scaling a critical length would buckle spontaneou$h8].
] vy a4 444 As it is, there are most likely some geometrical constraints
-04 03 -02 01 0 01 02 03 04 placed on allowed ridge configurations purely by virtue of
ridge coordinate (X) the fact that the ridge stress is naturally on the same scale as

) ) ) _ the buckling stress.

FIG. 20. Strain to curvature ratios for ridges with longer flanks. 14 find out whether or not ridge stress weakens the ridge
The strain to curvature ratios on the. ridge line at the buckling,,a numerically studied how the buckling threshold changed
threshold are shown for our typical ridgé® symbol§ and for —\,he the resting ridge stress was removed. To do this, we
ridges with longer flanks(] Syfnsbms' Thickness aspec_t4rat|c>s first found the minimum energy configuration of a resting
shown here range fr9m 1.250 (top curves 10 5.6¢10°° (bot- ridge for a given thickness aspect ratioWe then redefined
tom curve$. The horizontal lines are the classical buckling valuesaII the lengths and curvatures in the sheet such that the rest

f the strain t t ti dicted b .20 f h 0 . . . ]
of the strain to curvature ratio predicted by Hg.20 for eac ing ridge configuration had zero stain and curvature, and thus

thickness. . .
zero resting energy. If we denote the strains and curvatures of

: . o o : .
tetrahedron ridges have shorter flanks than the cube we us@® resting ridge agj; andCj;, respectively, we can write

the additional ridges may be expected to form closer to thélistortions away from this state as
center of the ridge on the tetrahedron.
=i — Y, 4.3
3. Shell buckling YimYim i (4.34
We have derived the behavior of the ridge buckling mode
near the buckling transition as a function of tieéal longi-

tudinal stress on the ridge line, with as little reference as

possible to where this stress comes from. At this point, weVnere vi; and C;; are computed as before. These primed
wish to address the role of the resting ridge stress in th@uantities were substituted into the strain and curvature en-

ergy equations, Eq$2.3) and(2.7), to make the energy for
the resting ridge configuration identically zero. We refer to
sheets that have intrinsic curvature and nonflat metrics as
shells.

As with the ridges before, we buckled the shells by im-
posing a gradually increasing hard-wall potential at the ver-
tices. We found that for any given thickness, it takes more
work to buckle the shell than it does the corresponding ridge,
though each started with exactly the same geonistg Fig.

22). Though the two systems evolve differently from their
initial states under the applied load, Fig.(@3confirms that
each buckles at nearly the same ratiaathl stress taotal
(intrinsic plus extrinsit curvature. This is just the result that
would be predicted from the cylinder theory in Sec. IV A,
since that buckling mode depends only on the total value of
the radius of curvatur® as a geometric quantity, without
reference to its energetic cost. Figure 24 shows that the strain
to curvature ratios along the ridge line are nearly the same
for ridges and shells with identical thickness aspect ratios
The figure also shows that the maximum of these ratios is
near the same place on both ridges and shells, though it is
more sharply peaked on shells.

Also, Fig. 23b) shows that although the shell cannot sus-
tain the total amount of longitudinal stress that the ridge

FIG. 21. Buckling pattern on ridge with long flanks. This ridge holds at the buckling threshold, it can sustain macli-
had a thickness aspect ratioof 1.25< 10" 2. Lighting and shading tional stress, starting from the resting ridge geometry, than
were chosen to emphasize physical features. the ridge before it buckles. The reason that the shell cannot

buckling transition. As we showed in Sec. Il, even in its
“resting” state the ridge has significant longitudinal stress—
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FIG. 22. Shell vs ridge buckling energies. This graph shows the FIG. 21_1. Strain to _curva_ture ratios for shells. The strain to cur-
difference between resting and buckling energies for shellsym- vatulre ratios on the ridge line at the buckllng thrgshold are §hown
bols) and ridgesx symbol3. The numerical scaling fits had expo- for rldg_es(O symbolg and shell§[] symbolg with thickness ratios
nents consistent with-1/3. \ ranging from1.25x 102 (top curve$ to 2.5x10 * (bottom

curves. The horizontal lines are the classical buckling values of the

sustain the same total stress is that it grows much flatter witfit'ain ©© curvature ratio predicted by Hg.20 for each thickness.

applied load than does the ridge, so it reaches the criticadurvature is determined by an energy balance, and the ener-
stress to curvature ratio at a lower value of both these quanyetic terms are much different for these two systems.
tities. The difference in the evolution of the curvature with

applied loading is due just to the fact that the cross-ridge E. Universality of buckling energy
It is striking that for all the ridge geometries we studied,
(@ 10F A the buckling threshold energy was approximately 20%
Y>< } ;,-:ﬂg" greater than the resting energy. Our present ridge theory is
e '¥~;;'%§" not sufficient to fully explain this ratio, but we take this
Y X opportunity to speculate about how universal it may be.
B P = - XK In [7], Lobkovsky and Witten stated that the bending and
% L ¥ EK")' | stretching energies on ridges should obey a virial relation,
'.\% ,.(--;;:2[-(” Nl with total bending energy five times greater than the total
5 [T e stretching. Assuming that both energies are only significant
é" ¥ on the ridge line, the virial relation also extends to typical
3 LXK bending and stretching energy densities. Taking the largest
E |47 terms from Eqs(2.3) and(2.7), this gives
o1 0.0001 0.001
aspect ratio A Y h? 5 5Yh
11— 2 O~ (1= 02) Vo (439
(b) T .
: EXT which reduces to
Nl ’_:;;':—
YA = X » :':?E/
= LXK Vex™ ! hC,,~0.1hC (4.37
~— r -X . e T XX~ — yy"" . vy * .
X o
;"z, - e _éﬁ;;:'ﬁ’ ’ From Eq.(4.20), the classical value of the breaking strain for
g $ v=1/3is
B oL
Ya=~0.61nC,,. (4.38
0.1 In our simulations we observed that the bending energy does
0.0001 0.001

not change significantly as the ridge line is compressed by
the applied force. If the ridge curvature stayed the same and
FIG. 23. Shell vs ridge buckling configurations. In each graph,the ridge strain increased from its resting value up to the
A symbols denote values for ridges at restsymbols denote val- classic value, then the ratio of resting energy to buckling
ues for ridges at their buckling threshold, andsymbols denote threshold energy would be ¢51):[5+(0.61/0.13f]. The
values for shells at their buckling threshold. The numerical scalindoreaking energy would be approximately 4.6 times the rest-
fits in (a) had exponents consistent with 1 while those(lihhad  ing energy. However, Fig. 7 shows that the midridge curva-
exponents consistent with 2/3. ture decreases as force is applied. Between resting and buck-

aspect ratio A
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FIG. 25. Postbuckled energy. This plot shows the total rescaled
elastic energy of several simulated ridges as a function of rescaled
inward vertex displacement just before and after the ridges buckled.
The ridges had aspect ratigs ranging from 51074 to 5
X 1075, According to the scaling analysis in Sec. Il, the rescalings
of (A/\,) 2’3 for energy and X/\;) '3 for vertex displacement
would collapse all the lines on to one for perfect ridge scaling. The
observed discrepancies between the prebuckling part of the lines is
small on the scale of the entire ridge evolution. In these graphs
N =5%X10"4,

ling, the curvature decreases by nearly a factor of 2. The
effect of this flattening of the ridge line is to decrease the
breaking strain by a factor of 2 and the breaking stain energy
by a factor of 4. The corresponding breaking energy is only
1.77 times greater than the resting energy.

The discrepancy between the predicted factor 1.77 and the
observed factor of 1.2 is understandable, given the simplicity
of our approximations. In reality the distribution of the strain
and curvature on the ridge line are not identical. In real
ridges we may expect the local ratios to vary by factors of
order unity depending on boundary conditions. However, we
presently cannot explain why the local curvature at the center
of the ridge line drops by a factor of 2 while the total bend-
ing energy remains constant. This factor of 2 seems to be
universal throughout our simulations, and we predict that the
curvature will not drop by significantly larger fractions for
different ridge boundary conditions. Still, a detailed under- FIG. 27. Redistribution of elastic energy at buckling. Each plot
standing of this factor remains an open question. shows the postbuckling configuration first shown in Fig. 14, with
one large additional ridge crossing the original ridge. The original
ridge had aspect ratia=10"3. The plots are shaded according
to change in local elastic energy density between the buckling
threshold values and the postbuckled value for the pictured
configuration—no change is gray, increases are white, and de-
creases are black. Imadga) shows the change in total elastic en-
ergy, imageb) shows the change in bending energy, and im@aye
shows the change in stretching energy.

F. Discontinuity at buckling

To complete our study of the buckling transition, we com-
ment briefly on the postbuckled state and its rapid growth
from the unbuckled state. As mentioned above, the equilib-

FIG. 26. Effect of buckling mode oR. The solid line represents fium configuration immediately after buckling contains at
an unbuckled local patch of surface with dominant radius of curvaleast one large additional ridge. The additional ridges appear
ture R. The dashed line shows the postbuckled surface with bucksuddenly—when we first see them they are already as long as
ling mode amplitudeC and wavelengthyy . From Eq.(4.3), the  the unbroken ridge was wide. A significant change in the
curvature at poini is approximately r— C/¢? while the curva-  elastic energy accompanies the transition, as shown in Fig.
ture atB is approximately R+ C/Z. 25. It is also notable that the postbuckled state bears little

016601-21



B. A. DIDONNA PHYSICAL REVIEW E 66, 016601 (2002

resemblance to the short-wavelength buckling mode, which Y
we credit with causing the transition. Since the vorridan To= 152 (v Yyy)
equations are highly nonlinear, the growth of the buckled
state quickly passes beyond the regime where it is well mod- Yh (1-1%)r2N?\ C . =
eled by our linear stability analysis. We, therefore, presume TTI2 (1-v)+ 7 NHZ ﬁe”x
that when the nonlinear terms start to become important,
they favor further growth of the buckled state. The net result X cogNy/R)
is an energetic avalanche into a completely different state. .
As the buckling mode grows, it will begin to significantly =-COe™RcogNy/R). (4.39

perturb the preexisting stress and curvature fieldsnd 1R.

Figure 26 illustrates how the growth of the buckling mode

perturbs the large transverse curvature. From (B@), the  The coefficient® is always positive. Our frame is defined
maxima for which the displacementgrows radially inward ~ with positive normal displacements pointing inwafdswn-
will decrease the local transverse radius of curvature byvard and into the page in Fig. %0 Eq.(4.39 implies that
—C/ 3, whereC is the buckling mode amplitude anig, is  there is additional compression at the points of maximum
its transverse wavelength. The maxima that grow radiallyinward deflection of the buckling pattern, and matching
outward will increase the local curvature by the sameextension at the points of maximum outward deflection
amount. We can also calculate the additional longitudinalnegative stress results from compresgiofihus, as the
stress due to the buckling mode itself from E@.4) and  buckling mode grows, the local ratio of strain to curvature
(4.6) combined with Eq(4.2), becomes

1
(0'+C®)/ (ﬁ—C/(ﬁ), inward maximum

AR

(4.40

1
=+ C/g’ﬁ,) , outward maximum.

By the stability condition given in Eq(4.20, the inward ridge grows until the ridge-line stress is nearly gone. Some
growing maxima become more unstable to further growthof the energy is stored in the additional ridge and additional
while the outward ones becomes less unstable. vertices, but less than was stored in the threshold state.
From these simple arguments it is clear that the out-of- Besides showing the jump in energy at buckling, Fig. 25
plane force balance changes dramatically as the bucklinglso shows the randomness in the observed energies of the
mode grows and nonlinear terms become significant. Alsopostbuckled state. Our simulations were optimized for the
this reasoning indicates that the inward growing maxima arg@rebuckled ridges. Their accuracy in modeling the postbuck-
more favorable than outward growing ones. On a cylinderled state is qualitative at best. There is no indication from
the constraints of periodicity require an equal azimuthalhis graph that the postbuckled state has the same energy
number of inward and outward maxima, so force balance iscaling as the ridge. This is not surprising, since the “rest-
again achieved with the same number of maxima as the ining” configuration of our additional postbuckled state is not
tial unstable mode. This constraint does not hold on thelefined, so we cannot be sure that the states we see immedi-
ridge, so inward maxima are free to grow into the region ofately after buckling are at “equivalent” values of the tip
the ridge flanks. The net result could be that one inward pea#lisplacement, in the sense developed in Sec. Il for a similar-
grows until it subsumes all the other maxima and becomegy solution at different material thicknesses.
the one prominent feature of the buckled state—a single Some excellent experimental work on the preferred crease
large transverse ridge. size for a circular cylindrical cross section under axial com-
The only reason for the growth of the additional ridge topression is presented ii6,17. In this work the authors
cease is that the potential energy driving this motion is exfound that the actual saturation length of the fresh crease was
hausted. Figure 27 shows how the elastic energy redistributetetermined by a balance between the energy of the crease
itself upon the buckling of a ridge with aspect ratio 0  and that of the additional singularities at its ends. In our
Predictably, the largest local decrease in elastic energy is thgeometry, the scaling of the additional ridge energy changes
loss of stress-energy density along the ridge. In our bucklingnce it has grown beyond the width of the original boundary
scheme it is the stored longitudinal stress that drives théayer. Therefore, the energy balance determined for the con-
growth of the buckling mode—we observed that the inwardstant curvature cross section may not be applicable. We leave
buckling peak that becomes the observed single additionahis topic for future research.
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V. DISCUSSION caled for a similarity solution. Also, there is no systematic

We have explored the behavior of a stretching ridge unde\fvay to de.termme. if the scaling agsumpﬂon will ‘hold for
very forcing. Still, our approach is comparable to other

the application of an external force potential. For the sake of T . ; .
. . X . reatments in its effectiveness, since much of the physics of
clarity we have focused our simulations on a particular rep-

resentative ridge geometry, but the response of this ridge hé:srumpling relies on intuition for each special case.
9e 9 Y: P 9 Our approach was shown to be well suited for point forces

been shqwn to obey. very general prmmples.. In this SeCtlorf]ipplied to the vertices. For this case, the location of the forc-
we recapitulate our discoveries, putting them into the broader™ ™.~ _ . : . g
context of the enhanced strenath these Spontaneous strung is fixed under rescaling, since the vertices by definition

9 P 0 not move when the ridge gets thinner. Also, since the

tures add to thin sheets. We also discuss the range of app pplied forcing works almost entirely to compress the ridge

cability for our approach to other ridge geometries, and tq;n¢ jts coupling to the longitudinal ridge stress will be very
the behavior of collections of ridges in a crumpled sheetgyong Thus the predicted scaling of the force response is
Flnally, we suggest engineering qpphcauong of .the ””derUnambiguous.
standing we have gained concerning stretching ridges. Forcing applied to other points on the boundary of the
The resistance of materials to typical forms of distortionsheet will most likely not scale as cleanly as forcing applied
and damage is a very well established field, with a historyto the vertex. For other locations and angles, the applied
that dates back to the 19th century. However, a crumplegorce may result in large stress transverse to the ridge—it
sheet derives its strength not just from its material propertiesyould, therefore, strongly perturb both transverse and longi-
but also from the spontaneous ridge network it contains. Thisudinal stresses. However, these stresses have different scal-
spontaneous network confers strength in a way that clearlings on the resting ridge, so an equal perturbation of each
arises from the cooperative interaction between curvaturgvould most likely ruin the ridge scaling.
and strain. The fresh aspect of this interaction has already The other important perturbation, which we did not simu-
been shown by the identified scaling of the energy of theséate, is forcing applied normal to the surface. Scaling of this
structures with overall size of the systdif]. However, the force response, as derived in Sec. Il, should be fairly robust
strength against collapse resulting from these structures haince the termP is perturbing a quantity that is zero for
up to now been poorly understood. In a highly crumpledresting ridges. Therefore there is no preestablished scaling to
sheet, resistance to further deformation results almost erdestroy.
tirely from the work required to deform and break the ridges Our other important result, established in Sec. IV, was to
which span the volume occupied by the sheet. The strengtlink the buckling transition for ridges to the buckling of thin
of ridges in turn results from their shape, and their effectivecylinders. This result is supported by a great deal of analysis
elastic modulus is not related to the modulus of the compoand is very general. Prior speculation held that ridges may
nent material in any simple way. derive anomalously large breaking strength from their preex-
In Secs. Il and Il we established a scaling relation for theisting longitudinal strain. We have shown that, in terms of
response of a ridge to forces applied at its end points. This istrength, the ridge acts essentially as a cylinder whose radius
the type of forcing against which ridges are strongbsive  scales with thickness. Whereas the work in Secs. Il and Il
the highest effective modulusPresumably, when a force is allowed us to understand the strength of crumpled sheets
applied in an arbitrary direction to a moderately crumpledagainst small deformations that did not change the structure
sheet, ridges that are oriented at broad angles to the applied the crumpling network, knowledge of the buckling
force will yield very quickly to it, and resistance to the force strength lets us model the evolution of the strength and en-
will come from ridges that happen to be aligned parallel toergy of a sheet throughout the crumpling process, from the
the forcing. Thus the ridge response to this particular forcindlat to the highly crumpled state.
determines the effective elastic modulus of crumpled sheets. In Sec. IV, we show that the stability of the ridge against
We showed that, given a knowledge of how one ridge of anyouckling is determined completely by the local ratio of the
size will respond to the force at its ends, we can rescale thegansverse strain to the longitudinal curvature on the ridge
force to displacement relation to all other ridge lengths byline. Since the transverse curvature on the ridge scales with
multiplying it by a simple power of the thickness aspect ratioits length, we can immediately determine the buckling stress
\, namely,\!. The force to displacement relation for an in- of any ridge as a function only of its length and thickness.
dividual ridge can be obtained through simulations or simplé/Ne established that the allowed buckling wavelendthsre
estimates. Together with a model of the distribution of ridgebetween 2rX\?3< ¢, <X, whereX is the ridge length and
sizes in a typical crumpled sheet, our scaling relation for thex is the thickness aspect ratio. Buckling can take place when
ridge strength gives a complete model for the effective elasthe strain to curvature ratio is supercritical over a region
tic modulus of the entire crumpled sheet, as well as thdarger than the minimum wavelength. We showed that ridges
change in the sheet’s strength as it is further crumpled anduckle near the point at which this ratio has a localized maxi-
the typical ridge sizes change. mum on the ridge line. We established that the location of
We derived the scaling of the ridge force response by firsthis strain to curvature maximum does not depend on the
assuming that ridge scaling was still valid for forced ridges,dihedral angle of the ridge, but it does depend on the angle of
and then calculating the required rescaling of the perturbinghe ridge line relative to its neighboring ridges. The simplic-
force. Our approach is limited by the requirement that bothity of the buckling criterion established here, as well as the
the location and magnitude of applied forcing must be reselear connection between this ratio and the buckling behav-
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ior of ridges, is a great improvement over the previous unimuch of the force on vertices is carried through adjacent
derstanding of the breaking strength of these structures. Furidges. Knowledge of the strength of ridges will definitely
ther development of the relation between a ridge and itéend an insight into the evolution of successive crumpled
neighbors may lead to general laws regarding preferred disstates as a sheet is compressed.
tributions of angles separating ridges in crumpled sheets— Finally, in terms of applicability to real-world problems,
this along with the length and energy distributions discussethe understanding of ridge buckling developed here has prac-
below could lead to an accurate statistical mechanics fotical import for the possible use of single ridges as structural
crumpled sheets elements. We observed that the weakest point on the ridge is
It is our hope that the knowledge gained in this study camear the point of largest stress to curvature ratio. Thus ridges
be helpful in the development of a statistical mechanics fothat are used as support elements could be reinforced selec-
ridge distributions in crumpled sheets. We have demontively at areas determined to be weak points through this
strated for a range of ridge angles under a typical form ofanalysis.
forcing that the energy at the buckling threshold is a fixed
mpltlple _of the resting ndge energy. For our measurements ACKNOWLEDGMENTS
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