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Circular modes, beam adapters, and their applications in beam optics
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In the optics of charged particle beams, circular transverse modes can be introduced; they provide an
adequate basis for rotation-invariant transformations. A group of these transformations is shown to be identical
to a group of the canonical angular momentum preserving mappings. These mappings and the circular modes
are parametrized similar to the Courant-Snyder forms for the conventional uncoupled, or planar, case. The
planar-to-circular and reverse transforméssam adaptejsare introduced in terms of the circular and planar
modes; their implementation on the basis of skew quadrupole blocks is described. Various kinds of matching
for beams, adapters and solenoids are considered. Applications of the planar-to-circular, circular-to-planar and
circular-to-circular transformers are discussed. A range of applications includes round beams at the interaction
region of circular colliders, flat beams for linear colliders, relativistic electron cooling, and ionization cooling.
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I. INTRODUCTION

Linear beam optics normally employs transformations, which either do not couple vertical and horizontal degrees of
freedom, or the coupling is weak. In the canonical 4D phase space,

X

X Py
XZ(Y)= y |’ @

Py

these uncoupled transformatiofsare described by 4D block-diagonal matrices with independent 2D unimodular blocks for

the vertical and horizontal subspaces. For these transformations, particle trajectories are conventionally described by means of
uncoupled, or planar, modes. In the Courant-Snyder fidrinthe four planar basis vectors can be arranged as columns of a
4% 4 block-diagonal matrix:

VBxcos by) VBysin( ) 0 0
— a,COY py) —SiN(py)  — aySIN( ) +COK by)
VBx VBx
0 0 VBycog ¢y) VBysin(by)
— ayCog ¢y) —sin(¢y) — aysSin(py) +cog ¢y)
By By

0 0

0 0

Any initial phase space vector can be expanded over the symplecticity, the amplitudes can be considered as new
basis(2) canonical variables. Uncoupled mappings change basis pa-
rametersa, y, By y, and ¢y, while leaving the amplitudes
x=Va (3 aconstant. The actions and initial phasgs , xx.y in the 4D

o ) - . phase spacr can be presented in terms of the amplitudes
with its amplitudesa=(a;,a,,a3,a,) . Due to the basis ¢

a=(\2J3,sin x, ,V2J,COSxy ,
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where the actions are given by the Courant-Snyder invarianthe emittance preservation for both the canonical emittances
was shown. Recently, the magnetized-to-flat beam transfor-
mation was demonstrated experimentally at Fermilab
[16,17. In the paper below, the beam adapters are considered

©) as planar-circular transformers, which gives a straightfor-

(a2 a2\ 2 2 ward way to present all their features. Finally, various appli-
Iy=(@s+ayi2=yy 2+ a)ypyt Bypyl2, cations gf thrt)a circular modes and beam gdapters argpdis—

with = (1+ a2 )/ By - cussed.

The structure of the planar bag®) is preserved only by
the uncoupled transformations; for general 4D symplectic  Il. ROTATION-INVARIANT TRANSFORMATIONS
transformations the proper basis structure is more compli- A aroun of rotations in the transverse ol b i
cated; various forms were presented in Rg3s:5]. group . plane can be pre

For some specific coupled transformations, namely, rotaéemed by matrices
tion invariant, the basis reduces to a form which is as simple
as the planar on&); below this basis is referred to as “cir- cl sl
cular.” As far as we know, the circular basis was first intro- R( 0)=< ) (6)
duced in Ref[5]; it is rederived here in Sec. Ill. —sl «

For charged particle beams, focusing by means of sol
noids or round electrostatic lenses and bending by index
=1/2 dipoles gives a continuous, or local-invariant optics
i.e., such that mapping between any two place&asatio)
invariant. However, mapping between two specific places
can be designed as rotation invariant even on a base of such RT-TR=0. (7)
noninvariant elements as quadrupoles and constant-field di-
poles[6]; the whole mapping in this case can be referred toThis condition is equivalent to its particular case of an infini-
as block invariant. Optical schemes with actual local ortesimal rotation by an angieé,
block invariance are discussed for muon transpojtcircu-
lar colliders(see list of references in, e [f]), and relativis-
tic electron cooling[6]. An important property of rotation-
invariant mappings is that they preserve the canonical
angular momentuniCAM); this and inverse statements are
proven in the next section. For invariant transformations, thevhereZ and | are 4<4 and 2<2 identity matrices corre-
adequate basis is constructed from circular modes; this is apondingly. Then, the invariance condition reduces to a com-
obvious for charged particle beams as it is for light. A sym-mutation of the mapping with the infinitesimal operato@
plectic circular basis, analogous to the Courant-Snyder un-
coupled form, is presented in Sec. Ill.

After both planar and circular polarized modes are intro- g7-1G=0. ©
duced, a problem of their mutual transformation can be con- . S .
sidered. When both bases are symplectic, they can b‘ghe mapping symplecticity is conventionally expressed as
mapped onto each other; thus this transformation can always
be done. Such an idea was originally proposed by one of the TTST=S, (10)
authors(Ya.D.) to reduce the beam-beam effects in circular
colliders; he found that an uncoupled beam state can bghere
transformed into a round whirled state and back. He then
called these planar-circular transformers “beam adapters”

[10]. If one of the emittances of the coming uncoupled beam (30 (0 1
can be neglected, then the outgoing beam would be of “\lo 3/’ J= -1 0
definite-sign spirality, CAM dominated sta{é], and its

transverse motion could be completely cancelled inside @he matrixS is usually referred to as the symplectic unit,
matched solenoid. This effective elimination of transverses the 4x4 identity matrix and the superscriftstands for
temperature of coming flat beam can be essential for relatithe transposing.

istic electron coolind11,12. A particular realization of the It can be shown now that symplectic invariant transforma-

adapting optics has been found in REf3]. One more ap- tions 7 preserve the canonical angular moment(@AM)
plication of the adapter was proposed in Hédf4]: to get a

flat electron beam for a linear collider from a round beam
emitted by a magnetized cathode. In REE5], a general
requirement on the magnetized-to-flat mapping was dis-
cussed; the properties of the involved quadrupole blocks
were formulated in terms of the Courant-Snyder parametersyhere

Jy=(a%+a3)/2=y, X212+ a,xpy+ Byp?/2,

&hith c=cos6, s=sind andl is the 2x2 identity matrix. The
rotation invariance of a transformatidhmeans thaZ com-
'mutes with the rotations:

0 |

—| 0), G?=-7,  (®

R=1+Gdé, g:(

. S8?=-1. (1)

1
M=xp,—yp,= EXTEX, (12)
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0o J 0 1 , For arbitrary matrixA, it is true thatATJ A=|A|J; thus, Eq.
L= 3 0), J= 1 ol L£°=7Z. (13) (20 gives
Note that the CAM matrix_ is rotation invariant: |Al+|B|=1. (22
G-L—L-G=0. (14) The condition(21) presented as
In terms of its matrixC, CAM preservation under the map- JBA 1=(BA™HTJ
ping 7 can be expressed as
ields
T LT=L. (15 y
B=AXconst. (23

To prove that this is true when conditio%0) and (9) are

provided, it is convenient to use the relation between the )
infinitesimal operatolg, the symplectic unit matrixS, and |t follows from Egs.(22) and(23) that the matrice$\ andB

the CAM matrix £: can be presented as
SL=LS=—G, (16) A=Tcosf, B=Tsiné, (24)

which is straightforward to prove. It means that the matricesyhereT is an arbitrary 22 matrix with|T|=1 and#é is an

S, £, andg form an algebra: any of their products returns grhitrary parameter. Thus, it leads to a conclusion that 4
one of them. From Eqg14) and(16) the symplecticity ma- w4 matrices of a form

trix can be presented as

S=—rG. 17 :( Tcosé Tsina)

T O
—Tsind Tcoso (25)

=R 0)( 0T
Being substituted in the symplecticity conditi¢hO), after
the commutatior{9), it leads to the CAM preservatiofl5).  present a group of symplectic rotation invariant mappings
Thus, the invariant transformations preserve the CAM. identical to the CAM-preserving group of transformations.
Having shown that the mapping invariance leads to the One more interesting transformation is a mirror reflection:
CAM preservation, a reverse statement can be proven as
well: if a symplectic mapping preserves the CAM of any I 0
initial state, it is rotationally invariant. Indeed, with the ma- M:( ) (26)
trix 7' expressed from the symplecticity conditi¢t0) and 0 —I
substituted in the CAM preservatidi5), it leads to what
can be seen as the invariance propé@ywhen Eq.(16) is  This symplectic transformation does not commute with rota-
used. Thus, mapping invariance gives rise to CAM preservalions, so it is not rotation invariant and cannot be imple-
tion and vice versa, so these properties are absolutely equivBented by rotation-invariant optics. Combined with the ro-
lent. tation invariant group, it leads to such mappings as
A general form of the CAM-preserving matrices was
found by Pozdee|18] and Perevedents¢®9]; in the rest of
this section we are following Perevedentsev. The invariance T =TM=TR( 0)( 0 —T) (27)
condition (9) applied to the mapping presented in a block 2

X2 form which invert a sign of the CAM, preserving the CAM abso-

T T lute value and beam rotation symmetry. In Ré&f a gener-
( a Xy) (18  alized Busch's theorem was proven: if a rotation-invariant
laminar beam is linearly transformed into a rotation-invariant
beam again, then the absolute value of the CAM is preserved

Tyx Ty

immediately yieldsT,=Ty, and T, = —T,, or for any particle of this beam. Transformatiofi$25) and7_
(27) together form a group of CAM-value preserving map-
T=( A B) (19 pings. Thus, according to this theorem, they cover all the
-B A/’ linear symplectic transformations, which preserve beam ro-

tation symmetry for any initial round beam state. Reflection-
The symplecticity conditiori10) applied to a matrix of such like transformations7_ can be implemented by means of

a form (19) results in two adapters, discussed in Secs. IV and V.
A parametrization of the 2 unimodular matrixT can
ATJA+BTIB=], (200 be taken in the conventional Courant-Snyder form, in terms
of its input a1, B4 and outputwe,, 8, parameters and a phase
ATJB-BTJA=0. (21)  advanceu (see, e.g[2]):
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\/%(COS;L-F a; Sinw) VB1B2Sinu

(28)

1+aja; L G 151( i) '
——F——Sinu cosu ——(COSu— aySIinu
VB1B2 VB1B2 B2
where the subscript 1 of the Courant-Snyder parameters relates to an initial state, and 2 to a final state.

Ill. CIRCULAR BASIS

In this section, the eigenbasis of the rotation-invariant transformations is constructed. First, some heuristic ideas are used for
the construction of the matrix, comprised of four basis vectors. Then, free parameters of this form are taken to make this form
symplectic. Finally, it is shown how the remaining free parameters are changed under the rotation-invariant transformations
(25|20tation-invariant transformations preserve the CAM. The simplest vector with a nonzero CAM can be given as

Uo=(b,0,0p)" (29
with an arbitrary offseb and the tangential momentum. Fromu,, two orthogonal vectors can be constructed by rotations:
u;=(bcose, ,—psing. ,bsing, ,p,cose.)’,
u,=(bsing, ,p;cosp, ,—bcose, ,psing.)T, (30
where ¢, is an arbitrary parameter. An additional pair of orthogonal vectors can be constructed from
Up=(—b,0,0p)" (31)
in the same way:
uz=(—bcos¢_,p;sing_,bsing_ ,pcose_)T,
us=(—bsing_,—p,cosé_,—bcosp_ ,psing_)". (32

The structure of the four vectof80) and(32) is preserved by rotatiorig, but it is not general enough to be preserved by the
rotation-invariant transformatior{&5). The reason is that these vectors contain only the tangential momeptwewing a zero
normal(radial componen'pn=(xpx+ypy)/\/x2+y2, which is not general enough. With the normal momenfpyincluded,

the matrix of the vector&)=(u,u,,us,u,) changes as follows:

bcosg¢ ., bsing, —bcose —bsing_
ol = PSiNg ., +PnCOSh,  PiCOSP, +PpSing,.  piSiNg_—pcosd_ —PiCOSP_ + pysing 33
B bsing. —bcose., bsing_ —bcoseg_ '

PCOSe. +PpSing.  PSiNG, —PnCOSh,  PCOSH_+P,Sind_  Psing_—p,cose_

To be a valid basis for the rotation-invariant transformations, it is necessary for theedie symplectic. It is straightforward
to see that the symplecticity conditi¢hO) is satisfied for the matrikJ if the tangential momenturp; is in a specific relation
with the offset:p,=1/(2b). This enables the CAM to have only certain values for the basis vedibrsl/2 for the first pair
u; andu,, andM = —1/2 for the second pain; anduy.

After the symplecticity of the set of vecto(33) is applied, the final remaining point is to find out how it is changed under
the invariant transformation®5). Instead of the offsdb and the normal momentum,, new parameterg3 and «, are more
convenient to use:

b=\BI2;p,=—al\28. (34)
The matrixU then becomes the following function of its parameter$, ¢ , ¢ :
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\/Ecos¢+ \/Esin b - \/,ECOSqS, - \/,Esin ¢_
—sin¢g, —aC0S¢p, C€OS¢p, —asing, Sin¢d_+acoSp_ —Cco0S¢_+asing
UEU(oz,li',¢>+,¢L)=i \/E G \/E VB
2 JBsing., —JBcose JBsing_ —JBcose _
COS¢p,.—asing,  sing,+aCos¢d, COSPp_—asing_  Sing_+ acose_
VB VB VB VB

(39

This circular basis is almost identical to that introduced intive and negative spirality modes are given by the same ca-
Ref.[5]. The only difference is that the paramet@sand « nonical transformation as for the planar modés
in Eq. (35 are by a factor of 2 smaller than Lebedev-

Bogacz’s parameters. This choice for normalization is used az(\/ﬁsin)u ,\/ECOS)H ,\/ﬁsinx_,
here for a certain compatibility of the for85) with the

rotation-invariant transformations as they are presented in \/ECOSX -)-

Eq. (28). Indeed, the invariant transformatian(25) param-
eterized by block (28) can be applied to the set of circular
vectors U (35). Without any loss of generality, the input
Courant-Snyder parameters of the mapping can be match
with the vectorsw, = «; 8, = B. After that, the output vector
is found as

(39

Taking the amplitudes from their definitidid7), the actions
can be expressed in terms of 2D vectors of the offset and

é@nsverse momentunrﬁ:(x,y),5=(px,py)i
J.=yr2ld+ ar - pl2+ Bp2l4=M/2, (39)

- wherey=(1+ a?)/B8 andM =Xp,—Ypy is the CAM. Note a
U=TU(a,B,¢+ ,¢-)=U(az,B2. ¢ +tu—0,¢_+up+6).  similarity of this expression to the corresponding formula in
(36) the planar caséb).
The preservation of circular actiods. under the invari-
ant mappings means that both their sum and difference are
preserved as well:

This result completes the basis construction for the rotation
invariant mappings. It shows that the structure of the sym
plectic set of vectord) (35) is preserved under these trans-

formations; thus this set forms the eigenbasis of the rotation- J,—J_=M=const,

invariant mappings. At this mapping, the vectors expand

(change theiB parametel; acquire some normal momentum Jo+d =122+ aF§+,852/2= const. (40)
(change theire parameter, and turn(change their phases

¢, and¢_). Note that vectors of the same spiraligign of Inverse expressions are found as

the CAM) are turned by the same angles. Circular modes for

beam optics were considered in REf0] for the description r2=p[J, +J_+23,J_cosy]

of round beams in the IP region of circular colliders. In a

slightly different form than Eq(35), the circular modes were 22 2 1 (_ 2

derived in Ref.[5] as a particular case of the general 4D P7=[(J++ 1)1+ af)+2V), J(~1+a"cosy
symplectic eigenvectors presented in that paper. +4J J_asiny]/B (41

Having defined the circular Courant-Snyder parameters
according to Eq(36), any phase space vectorcan be ex- rp=—a(d,+J_)—2\3,J_acosy—2yJ,J_siny,
panded over this rotating basis:
wherey=¢ +x,.+¢_+x_. When only one of the two
x=Ua. (37 circular modes is excitetkitherd, or J_ is zer9, then

In this presentation, the parameters of the circular basis are r2=8J, p?=vJ, r-p=—ad, M=+J. (42)
changed after the transformation, while the 4D vector of am-

plitudesa=(a;,a,,a3,a,)" remains constant. Similar to the Due to the basis symplecticity, the amplitudesan be
planar basig2), relative values of the same-pair amplitudesconsidered as new canonical coordinates, whgris conju-
(same spirality for the circular bagieelate to the phases of gated witha, and a; with a,. One more useful canonical
the excited modes, while the sums of the same-pair amplitransformation is given by the circular basis
tude squared give the corresponding actions. These actiong(«,3,¢. ,¢_) taken for some fixed values of the phases
or Courant-Snyder invariants of the circular modes, can bey, | ¢_, say,¢,=0,¢6_=0. Let

expressed in terms of the particle coordinatesy,y,py).

Canonically conjugated actionk. and phaseg- for posi- Up(a,B8)=U(«,B,0,0) (43
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be such a fixed-phase basis; then new canonical coordinate [ 5 —
~ ~ o~~~ . . | i | i
a=(a;,a,,a3,84) can be introduced by a symplectic trans- v U | | & T
formation U, as ) 4 )Y = .: 't |. %
~ | ""--/ | _.'-,, B = .-"I 3
x=Uoa (44) : | "Mt I ) "Hell oK
L L | | - |
These new coordinates | ikt | [eoummsciockmssuce |
a=Uy'x=U(a,8,0,0 *U(a,B,¢, ,4)a T ] || [ A= |
[ g u | I | | - w |
. . A S [ | I ¥ ol
are nothing else but the constant amplitugesotated by the s e WO I { - A =..__.,,ll I R el
hase —d_ [ VoL | | | _-_‘\ \.b_'_./l J." x|
phasesp...= ¢ RO Ii | li N | A ]
r . . M .
a . COS¢+ sin ¢+ a o WRITICAL RGO | CLOCKWIEEHODE |
a, —sing, cos¢p,/\a,
FIG. 1. (Color) Schematic illustration of the planar-to-circular
sin(¢b+ x+) beam adapter: horizontally and vertically polarized modes are trans-
=423, , formed into circular modes of opposite spiralities. Blue and red dots
cod .+ x+) represent particles with smaller or larger actions. Arrows on the
_ ) circular mode portraits show particle momenta, proportional to the
as cos¢_  sing_\[ajz offsets. For simplicity, all the phase portraits are depicted as circles;
~ |7 (49 enerally, tilted ellipses are mapped onto each other. Direction of
sing_ cos¢_)\a 9 Y P PP
a4 B B 4 external arrows=> specify the direction of transformation. Re-
Sin(b_+x_) verse direction of both upper and lower arrows=) would cor-
_ \/F (¢ +x- respond to the reverse, circular-to-planar adapter.
cog_+x-) . . . .
electron cooling11]. Optical devices realizing such transfor-
mations were nam m rswhich underlin
V. ADAPTERS ations were named dseam adapterswhich underlines

their shaping role for the beam phase portrait. Adaptive

Both planarV (2) and circularU (35) basic sets are sym- transformations are illustrated schematically by Fig. 1.

plectic; therefore, they can be mapped on each other. Sym- For circular colliders, round beams in the interaction re-
plectic transformations gion can significantly increase the beam-beam limit of the

luminosity [8,9,20. It can be shown that a proper adapter
transforms an incoming uncoupled beam into a rotation-
invariant outgoing beam, and the rotation invariance would
map the planar basi¥ on the circular basi¢J, and back, be guaranteed not only at the interaction point, but in the
respectively. Note that the planar-to-circular transformafion whole space around it, bounded by the nearest up- and down-
maps the horizontal and vertical phase spaces on the modsseam quadrupoles. Indeed, homogeneous distributions over
of opposite spiralities. The initial state of a partioteex-  the horizontal and vertical phases for the incoming un-
panded over the planar basisxasV - a is characterized by a coupled beam turn into a homogeneous distribution over the
vector of the amplitudesa=(a,,a,,a3,a,)". Then, the circular phases in the outgoing beam if the planar-to-circular
planar-to-circular transformatiaficonverts the initial state ~ mappingC=U V! (46) is matched with the beam, i.e., the
into a new one Courant-Snyder parameters, ,,8y, of the mapping are
equal to those of the beam. Thus, any matched adapter trans-
forms uncoupled phase-homogeneous beams into rotation-
invariant beams. After the interaction region, the round beam
with the same amplitudes of expansion over the circular bacan be turned back to a new uncoupled state by means of the
sis; the same statement is true for the opposite transformatiq@verse transformation. Note that the matched planar-to-
C. As a consequence, the corresponding planar and circul@ircular adapte€ makes outgoing beams round for any ratio
Courant-Snyder invariants are equal: of the vertical to horizontal emittances and any machine
tunes, contrary to schemes such as those proposed ih8Ref.
and implemented at CESRO0]. Note also that the revolution

(47)
) ) ) matrix at the interaction point makes only a transverse turn
Note that every invariant assumes here its own Couranisf the circular basis; this matrix is obviously rotation invari-

Snyder parameterd;, , are calculated withw, ,,8,, of the 5t

planar basisv (2), while J.. assumesx, of the circular Adapters can also be effectively used for purposes of the

basisU (35). _relativistic electron cooling, transforming a naturally flat and
Principal ideas of the planar-to-circul@r or reverseC  hot electron beam in a cooling storage ring into a cold ellip-

mappings were originally proposed by one of the authors fotical or round beam inside the matched cooling solehbid;

round beam schemes in circular collid¢i€] and, later, for  the resulting dramatical reduction of the electron temperature

Cc=UVv~! and C=vU~! (46)

X=Cx=UV~lva=Ua

I=3,, J,=3_.
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in the cooling section can be crucial for the cooling processFor this transformation, the phaseés, ¢, of the initial pla-
Indeed, wherd, =0, only a positive circular mode is excited nar phase space vector and th@se, ¢ _ of the final circular
after mappingC, making the canonical angular momentumvector are related asp,=¢,— po— 7l4,p_=— b+ o
(CAM) a function of the beam offsel =r?/8, accordingto  + /4. Note that the block$! and N look almost like the
Eq. (42). Immersing this beam inside the solenoid with thestandard Courant-Snyder form, E@8). Obviously, these 2
field X2 matrices are characterized by identical sets of the

Courant-Snyder parameters: in terms of E@8), a;

B=2c/(eB) (48)  =ag,a,=0 andB;=Bq,B8,= B for both of them, with the

phase advances shifted by/2, namely uy=— ¢g,un=
turns the transverse motion to zero; in this matched solenoids- 7/2— ¢, for M and N blocks, respectively. This relation
electrons travel strictly along the magnetic field, having zeracan also be formulated as

Larmor radii.
A pair of matched adapters can provide a reflectionlike -B
mappingZ_ , Eq.(27). Indeed, if the first adapter transforms N=FM F= s o) (52

initial circular modes into planar modes, say=Xx,— =Y,

the second can make these planar modes circular again, b other words, this particular adapter can be realized as a
with switched Splralltlesx:—,y:—i-; thus, eventua"y the seqguence of skew quadrupo|esy with the Condi(iﬁz) be-

circular modes are transformed as=—,—=+, which  tween the horizontal and vertical matrices in the nat(wat
means that the sign of the CAM is changed. rotated frame of the quadrupoles. This condition on the uni-
modular 2<2 matrices is equivalent to X22—1=3
V. IMPLEMENTATION OF ADAPTERS independent conditions on their elements; thus a skew triplet

g of quadrupoles with variable gradients can do the job. If the

Being symplectic, the adaptive transformatiahs can be  circular 8 parameter is not fixed, only 2 conditions remain,
realized. Being linear, they can be realized of quadrupolesso 2 variable quadrupoles are sufficient.

To provide coupling, some quadrupoles must be skew. The It becomes clearer now how an adapting transformation
question is “How can it be done?” Principle ideas were pro-can be realized for arbitrary given planag 8y, and cir-
posed in Refs[10,11] and then in more detail ifl3]. Itwas  cular «, 8 Courant-Snyder parameters. First of all, the initial
found that particular adaptive transformations can be proplanar basis can be mapped onto another planar basis with
vided by a skew quadrupole triplet. identical Courant-Snyder parametersy,= ay ,Bx= By ,

The transformatiorC=U V™! is constructed from given which could be done by means of 2 quadrupoles with vari-
circular and planar bases. Let the circular basise taken able field gradients. Then, the described specific adapter can
for a waist point, wherex=0, with the phaseg,=—¢_ be applied to this second basis, mapping it onto an unspeci-
= — /4, while the planar basis is taken with= a,= ay, fied circular basis, which would require 2 more quadrupoles.
Bx= By= Bo and ¢, = ¢y = ¢,. It is straightforward to show Finally, a transformation of this unspecified circular basis
that in this particular case, the adaptive transformafior-  onto the given circular basis can be provided by 2 quadru-
duces to an uncoupled transformation in a frame rotated bpoles upstream from the specific adapter. Thus222=6

/4. This can be expressed as quadrupoles with variable strength can provide the mapping
of a given uncoupled beam state onto a given circular state.
C=R(ml4){M,NYR(— /), (49 For some purposes, it could be useful to have a nonround

laminar vortex state. This goal can be reached by applying
where(M,N) stands for a block-diagonal>d4 matrix with  the planar-to-circular adapté¢49) to an initially flat beam

M andN as its 2< 2 diagonal blocks: where Courant-Snyder parameters differ from the planar pa-
rameters of the adapter. In this case, the outgoing beam
would have a cross section as a tilted ellipse, where the tilt

\ﬁ(COS%— apSingy)  — VBPBoSINy and aspect ratio would depend on the beam and adapter pa-
M= Po rameters.
a(COSepg+ sin g \/,3\0 An experimental study of the magnetized-to-flat transfor-
JBBs ECOS% mations is currently being done in Fermilgt6,17. One of

the optical schemes used in these experiments is shown in

(50 Fig. 2, where the two half-axes and the tilt angle of the beam
and ellipse are presented along the beam line. The simulations

are done with the OptiM codg5]. A finite value of the
smaller half-axis at the exit is determined by the beam tem-

— A /F(aocos</>0+sin¢o) —BBocos, perature at the cathode.
0
N= COSho— aoSin ¢y Bo ' VI. CIRCULAR EIGENMODES FOR A SOLENOID
—\/—Sing, . . :

\VBBo B The circular modes described in Sec. Il present an ad-

(51 equate basis for any rotation-invariant transformations. The
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Tue Jan 22 15:19::3_:0&: Optin - MAIK: - ¥ PR AD lirn ky= py+ X/Bs , kx: Pyx— y/,BS (56)

0.3

and coordinates of the Larmor center

dx:X/Z_Bspy/Za dy:y/2+ﬁspx/2; (57

§
E' namely,
i (51) _ @( ky)
g- 3~ Valk)
, ~ (58)
as| \F (dx)
| | 2" Vala)
s o e e a,.,' These special canonical coordinates in the solenoidal field
- - - were proposed in Ref21]; they are considered in R¢6] in

FIG. 2. (Color) Beam ellipse half-axes and tilt angle along Ioartmore detail as cyclotron and drift canonical variables.
of the beam line. The beam energy is 16.5 MeV, and the 10.2 cm Let the planar-to-circular adaptive transformatiGnbe

length skew quads are 30.4, 52.6, and-54.9 G/cm of the field matched with an adjacent downstream solenoid, ice.,

gradient. At the cathode, the beam of 0.8 mm radius and 4 eV_ O’EZ'BS: In this case, the horizontal degr_ee of freedom of
temperature is immersed in the solenoidal field of 750 G. the incoming uncoupled beam transforms into the cyclotron

mode inside the solenoid, while the vertical one transforms

choice of the initial Courant-Snyder parameters can be mad@t° the drift mode. Due to symplecticity, the corresponding

taking into account the properties of the incoming beam ofMittances are equal:

some ideas related to the convenience or physical sense of 2 o, 2 2 2 e mon s~ = 2
the description. In some cases, this choice can be made by ~ &x= (X ){Px) ~(xp)*=ec=(a1)(a) —(aia;)
the optics itself. In this section, specific circular modes for a

solenoid are discussed. Inside an extended solenoid, the = (4B%) (K (k) = (Keky)?),

modes can be defined in such a way that, while the beam o . (59

travels along the field, their Courant-Snyder parameters re- eiz(yzxpi)—(ypy>2=ssz<a3)(a§>—<a3a4>2

main constant, and only the phases run. Being rotation-

invariant, solenoidal transformatiafy from the entrance to = (B4 ((dF)(dZ)y—(dyd,)?),

an arbitrary coordinateinside the solenoid can be presented

as Eq.(25): with the bracketg- - -) standing for an ensemble averaging.

For a particular case of the round beam inside the solenoid,

To=R(— 042) (Ts,Tg) (53)  when(dg)=(d)=d? (d.dy)=0 and similar momentum re-

lations, it yields
with
ex=pK12, &,=2d%p. (60)
cog 642 sin( 04/2

= _j( _S ) Aesin(642) . (54) Note that the solenoid with an opposite field switches map-
—Bs sin(04/2) - cod 04/2) ping: the horizontal degree of freedom is mapped onto the
_ drift mode and the vertical plane is mapped onto the cyclo-

Here 6s=eBZ(pyc)=z/p is the cyclotron phase advance tron mode.

inside the fieldB for a particle with the longitudinal momen-  Similar relations take place for the reverse, circular-to-
tum po. The parameter planar transformationg.

Bs=2cl(eB) (55)
VIl. LOCAL ROTATION INVARIANCE
can be referred to as the Larmﬁrfunction. From here, it In a case when the rotation invariance is |O(Iatntinu_
follows that the Courant-Snyder parameters of the circulagyg, the circular Courant-Snyder parameters and phases sat-
basis with =B and =0 are preserved inside the sole- jsfy certain differential equations, similar to the uncoupled
noid: the first pair of the basis vectors turns by an anglecase. The derivatives of the function and phases can be
A¢, =042+ 642=0s and the second pair byA¢_=  found similar to that in Ref[5]. For any circular basis vec-
— 0512+ 642=0, i.e., remains unturned. tor, the slopex’ (s) =dx(s)/ds can be expressed by means of

It is straightforward to see that the canonical variafdes the kinetic momentumx’ =k, /po=(py—Y/Bs)/po, With a
(44) associated with these circular modes describe the kineticonsequent substitution of the canonical momenfpynand
momenta the coordinatey in terms of the Courant-Snyder parameters
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of this basis vector. On the other hand, the slope can beatched circular basis, this new vortex state has the same
found by a direct derivation of the offsef(s) expressed diagonal beam matrif64). However, this vortex state repre-
through theg function and phase. Equating these two ex-sents an arbitrary round beam; thus, it can be concluded that
pressions for the same value leads to the following relationthe 3, matrix of any round beam distribution is diagonalized

for the circular modes: in a proper circular basis. Assuming that the matrix of a
round beam is given in the original Cartesian coordinates
d8_ 2a dé. 11 1 its two pairs of circular eigenvectors and two canonical emit-
ds p,’ ds po\B B 6D tances can be found; this is a problem treated in this section.

First of all, theX matrix of a round beam can be ex-
A size of an axisymmetric laminar beam,(s) satisfies pressed in rotation-invariant terms. Substitution of

the envelope equatidrsee e.g[37], Eq. (4.79]:

X=T C0SH,y=r sinb,

rr " 2

L, Yo'm  Yo'm M'm M, 1 K

t oo~ 3 —=0 (62 =p,Cc0SH— p,sin b,

" By 283y BIPG P PnCOSE e

pO rm rm
Here B, and vy, are the relativistic factorg)o=mcBqy, is
the total (longitudina) momentum,M, is the CAM of the 21 020 p24 2= 2
boundary particle with the offset, andK = 2le/mc3 B3y} is PxT Py=PnTPr=P
the so-called generalized perveanc/e, _Wh'Ch take_s mtp %nd averaging over the angteleads to the following X 2
count the space charge. The termy, gives the adiabatic block form of the 4<4 3, matrix:

damping during acceleration, and the termy; relates to the

(65)
Py = PnSin 6+ p,cosd,

electrostatic focusing. The envelope equation gives a simple 1 S (rp)d
way to obtain the second-order equation for the circilar 3= 5( )
function. Indeed, the laminar beam is a beam where only one —(rpyJ 2
of the two circular modes is excited; thus, according to Eq. 2 (66)
(42), r »=B|M |, which leads to an equation for the circu- =( (ro) <rpn>>
lar 8 function: (rpy)y  (p? )’
B'? (yB)' 2B[1 1 2K Here, the 22 matrix J is determined in Eq(13); the nor-
B" = ﬁ‘*‘ — Bz(gz— Ez) TV =0. (63 mal and tangential canonical momengg,p, are indepen-
Bovo 01 Fs m dent of the angle# due to the beam symmetry.
It is straightforward to check that this beam matrix is
VIII. DIAGONALIZATION OF BEAM MATRIX diagonalized by the circular bagi85) with
Beam distributions are conventionally described by means (r?)

of the so-called matrix, or the matrix of second moments, B= === >
3=(x®x), with the sign® standing for the outer product V(rE(p) =(rpn)
and x for the 4D phase-space vect6t); in other words, (67)
3 j=(xx;) (see, e.g., Ref.2], p. 56. If M is an arbitrary o (rpn)
4Xx4 transfer matrix, then the resulting ned matrix is (r(p%) —(rpp)?’

determined byM3 M. Unimodular transformations pre-

serve a determinant of the matrix. This relates to all the and arbitrary phases. ,¢_ . In this basis, the beam matrix
symplectic transformations, but not only: a transfer from the(66) is presented as

kinetic to the canonical momenta is not symplectic, but its

determinant is also a unit; thus tlematrix determinant is Y=diag eq,£1,82,82) (68)

the same in the kinetic and canonical bases. The square root

of this determinant is the beam emittance in the 4D phaswith the emittances

space. The uncoupled state is described by the block-

diagonal> matrix in the original Cartesian coordinatéb; 281 = =(rp)+ V(r2(p* —(rp,)°=0. (69

its 4D emittance is a product of the 2D emittances. Normally

the phase distributions are homogeneous in this cas& the Note that these partial emittances are preserved by any sym-
matrix is diagonal in the matched planar bagre transfer plectic transformation: when the beam matrix for a new state

matrix in this caseM=V 1) is diagonalized, it will have the same form as E@8) with
the same eigenvalues , as the initial state.
Y=diagey,ex,8y,8y), (64) The total 4D emittance is a product of these partial emit-
tances:

where diag( - -) is a diagonal matrix with elements listed as
the arguments. Suppose this uncoupled beam is transformed 4e=4e,8,=(r2)(p2)+(r2}(p?)—(rp,)2—(rpy?.
into a round beam by the planar-circular adapter. In the (70
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All these results can be expressed in terms of the kinetic IX. POSSIBLE APPLICATIONS
momentak, ,, related to canonical ones by Ed$6). In
terms of the normal and tangential components, this can b%
presented as

In this section, a possible use of the circular mode formal-
m and beam adapters is discussed.

Pn=Kn,  pi=ke—r/Bs, (71 A. Round beams for circular colliders
which leads to For circular colliders, it should be beneficial to have
round beams in the interaction poi(ilP); a list of references
2e1= = ((rk) —(r)/Bs) can be found in Re{9]. The main reason is that the rotation
symmetry of a kick from the round opposite beam accompa-
+ V(2 (k%) = (rkn)2=2(r2)(rky)/ Bs+(r?)? B3 nied by the revolution matrix invariance leads to angular

(72) momentum preservation. This makes the transverse motion
equivalent to one dimension. Resulting elimination of the
and betatron resonances is of crucial importance since they are
believed to cause the beam lifetime degradation. Optical re-
4e=(r2)(K2)+(r2)(k?)— (rkpy>—(rk)? (73)  alization of the round colliding beams has been proposed in
Ref. [8], and a similar scheme has been implemented at
the last result was previous|y found in RéZZ] Note that CESR[ZO] For all these cases, the |dent|ty of the horizontal
presentations of the 4D emittance in terms of the canonicand vertical emittances and tunes is required. Another ap-
and kinetic momenta are absolutely identical: a transfer fronProach to get the beams round, the bl acceleratof23],
one to another is equivalent to rotation imposed on the beaf@ased on beam rotator optic24], is studied experimentally
as a whole, which does not change the total emittd@e ~ at CESR[25]. This scheme also leads to emittance identity
The basis which makes the beam matrix diagonal can band effective tune degeneration: the resulting normal tunes
considered as eigenvectors of the given beam distributiorfre inevitably separated by 1/2. Use of the matched adapter
while the partial emittances can be seen as eigenvalues. Tigé the IP opens a way that is free from all these limitations.
deduced circular eigenvectors for a round beam give a soluthe matched planar-to-circular and reverse adapters make
tion to a problem of its transformation into an uncoupledthe beams round only in the space between these adapters.
beam, when th& matrix of the round beam is known. In- This “beam rounder” does not change the uncoupled beta
deed, a circular-to-planar adapter with the circular paramfunctions and emittances in the outer part of the storage ring,
eters(67) would complete this job. which would allow us to use it as a transparent insert at
As an example, a beam born at the magnetized cathod@Xisting circular colliders. Generally speaking, inserting this
can be considered. At the round cathote?)=2¢2, (k?) ~ device would change the tunes, which can be restored by
=2mT,, (rk,)=(rk,)=0, whereo is its rms size and is another local insert. The adapter is absolutely indifferent to
the temperature; for a homogeneous circle of radiusthe such global parameters as tunes. Two tunes of the storage

rms sizeo.=a,/2. The circular Courant-Snyder parametersring with 'the local beam rognder are independent variables,
for the eigenvector¢s7) come out as both available for the working point optimization. The col-

liding beams are round for any emittance ratio, and the revo-

a=0, 1/82=1/B2+K2 o2 (74) lution matrix for any point between the two adapters is rota-

s T e tion invariant. All this guarantees the angular momentum

and the emittances] preservation at the beam-beam collisions. Note that the
beams would be round not only in the IP itself, but at the

81,2=(U§/ﬁs) /—1+:8§k$/0-c11)1 whole interval including IP and bounded by the nearest up-

stream and downstream quadrupoles. A solenoidal magnetic
field in the interaction region is not important for the CAM
preservation; thus the adapter can be used either with or
without the solenoid inside.

658182=0§mTC. (75

If the beam is strongly magnetize@;<okt, then

sl=,83k$/2, 82:205/[33_ (76) B. Flat electron beams for linear colliders

The magnetized-to-flat transformation was suggested to

A problem of eigenvectors for arbitrarynonround, be used for preparation of flat electron beams for linear col-
coupled beam distribution has been recently solved by Leb-iders[14], as an alternative to flat beams obtained in damp-

edev and Bogacs]. It has been found that the beam matrix ing rings. This method also allows us to form electron beams
can be diagonalized, and the two emittancgsare given by  with optimum density distribution in the beam plane to ob-

the positive roots of a characteristic equation or tain maximum luminosity of a collider. The magnetized-to-
flat transformation maps the cathode shape onto, say, a hori-
defX 1—(ile)S]=0, zontal phase space of the outgoing flat beam. Changing the
cathode shape, the surface density distribution of the flat

wherei=/—1. beam can be arbitrarily modified, so any distribution function
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can be prepared. This optimization would be different for andiscussed in Sec. IV. Assuming this CAM flip is provided,

e e' collider ande e~ collider,since the positron beam is the beam enters the second solenoid, where the magnetic
shaped in a damping ring. field is reversed, so the beam remains calm there as well as at
The magnetized-to-flat transformation was also suggestetthe first solenoid. This CAM-flip transformation can be pro-

to be used for production of Smith-Purcell radiatj/@®] and  vided by two adapters: the first one transforms the CAM-

intense femtosecond x-ray puldey]. dominated beam into a flat beam, and the second transforms
this flat beam into a whirled beam again with an opposite
C. Relativistic electron cooling sign of the CAM. As a result of this trick, an average value

) . of the magnetic field in the cooling section is eliminated,
~ Several beam optics advancements can play a critical rolghich can be beneficial for the cooled particles. This CAM
in .the development of the relativistic electron cooling flip requires 5 quadrupoles: adjacent quadrupoles of two
projects for hadron bean§,12,29. skew triplets can be merged.

At Fermilab, a project is being developed for electron  The transport of the magnetized electron beam from the
cooling of antiprotons in the Recycler storage ring atelectron sources to the cooling section at high energies
8.9 GeVk [29]. To provide beam focusing, the cooling sec- would also make efficient the electron cooling of high energy
tion has to be immersed in the solenoidal field. To avoidpositron beam$28]. Due to small positron mass and mag-
beam excitation in the cooling section, the cathode, wher@etization, this process is very inteng#9,40; employing
the beam is born, has to be properly magnetized, providingweeping and rate-redistribution dispersive techniques
the same magnetic flux through the beam as in the coolingl2,41] could additionally intensify it. The circulating posi-
section. It is important that all the rest of the transport line beiron beam can be cooled down by a linear electron beam to
free of extended solenoid$]. At DESY, a possibility is the emittance of a much lower value than that of the electron
studied for an RF linac-based electron cooling of 20 Ge\beam, obtained from a magnetized source. Finally, the
protons in PETRA30]. For both of these projects, the elec- cooled positron beams can be used, in their turn, for a fast
tron beam is CAM-dominated; similar optical problems haveand deep cooling of circulating electron beams.
to be solved and the same methods can be used.

For high-energy electron cooling, with the energy per D. Low energy hadron cooler rings with circular modes
nucleon=100 GeV, the electron beam can be circulating in
a storage ring. The effects of intrabeam scattering for thi%e

beam ar_? .m'n'T'zel?’ ]'cf itis flat for tlhg lg]rt(:_aterA[Jartl of thg energy beams. The above-mentioned concept of round beams
”ng’dai' IS '?at‘;]fa y tor atr_l USCOUpl.e a Kt:'e. cartr; and; a recirculator ring with circular modes matched with a
round beam In th€é magnetized cooling section can be Prog, o gig of the cooling section prompts a possible way to

vided by means of the adapting optics. Schemes of this kin :
educe the space charge effect on the 4D phase space emit-
were proposed for Tevatrdi82] and RHIC[31] at full en- tance[12]. The principal optical feature of such a ring is that
ergy. . o the drift and cyclotron components of the hadron particle
o . ) . Motion in the solenoid are not mixed by the outside optical
principle in superconducting electron linaf83| opens a channel. Then, the cyclotron componérelated to the had-

very promising perspective of linac-based high energy eIecfon beam temperature in the solenaidll experience a dee
tron cooling. Currently, there are two proposals of this type P P P

under development: cooling of heavy ion and proton beamCOOIing’ not Iimitgd by the space charge. The .drift compo-
in RHIC [34], and ion cooling in an electron-ion collider ﬁent(l.e., beam sizecan k_)e Cooled_ to an_eqU|I|br_|um limited
[35]; both are based on principles of electron beam transport%y the space charge, using the dispersive cooling.
with a discontinuous solenoié]. In view of a high value of
electron (average current required for efficient electron
cooling, the incorporation of an electron recirculator ring A central problem for muon colliders and neutrino facto-
with the electron linac seems to be an important advanceres is the effective ionization cooling of muons. When the
ment for future electron cooling devicg86]. Today, this muons are transported inside an extended solenoid, only their
possibility is realized conceptually as a ring with circular cyclotron mode, related to the Larmor rotation, can be
modes matched with a solenoid of the cooling sectioncooled, while the drift emittance, related to positions of the
[12,28,38. In order to extend the lifetime of a high quality Larmor centers, is preserved. To make the cooling process
beam against intrabeam scattering dnd quantum radia- comprehensive, a transport scheme with an alternating sign
tion, the ring lattice can be complemented by adapters tof the magnetic field was proposed. An optimized scheme
keep the beam flat in ardsimilar to the above-mentioned based on the use of long solenoids was suggested in Ref.
electron storage ring case, although the wigglers are nd#2]. The central idea of this proposal is a cross mapping of
needed hepe the drift and cyclotron modes for the sequential reversed so-
There is an interesting possibility to compensate the optitenoids. Due to the rotation invariance of this symplectic
cal coupling, introduced by the cooling solenoid to the had-transformation, it could be done by round lenggsort sole-
ron beam. It can be done by changing the sign of the electronoid9 or invariant blocks[6]. The canonical angular mo-
CAM in the middle of the cooling section, where the sole-mentum is preserved by these optics, while cooling makes
noid is disrupted for a special short part of the trajectory, ashe CAM value systematically decrease.

The equilibrium emittances of a beam under cooling can
limited by Coulomb repulsion when cooling intense low-

E. lonization cooling
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F. Electron and ion beams for applied use the Courant-Snyder parametrization in the conventional un-

High quality relativistic electron beams obtained from coupled case. The const.ructed s_ymplectic basis of circular
magnetized sources can be used for the effective generatighdes make almost obvious an idea of the beam adapters,
of hard radiation, coherent or incoherent. The electron beaynich are optical transformers of the planar to circular
in the generation section can be returrieginjected into a modes and back. The adapters can be |mpI(_amented on a b_ase
solenoid(a strong on to eliminate beam rotation. Option- ©f @ Skew quadrupole block; mapping of a given planar basis
ally, the beam can be turned to the flat one, to obtain maxiONt0 & given circular basis requires six quadrupoles with
mum electron concentration, if necessary. The flat electrojariable field gradients. Inside a solenoid, there is a particu-
and ion beams also might be of interest for technological@" choice for the circular modes, when one of them de-
applications. Flat ion beams with low 4D emittance can peScribes the cyclotron rotation and another describes coordi-
obtained by means of electron cooling in ion rings with cir- Nates of the Larmor center. In the case of a beam born at the
cular modes, as described in Sec. IX D. After cooling, amagnetized cathode, another special choice of the circular
round ion beam can be transformed into a flat one by using g10des allows us to present a matrix of the beam second
beam adapter in the regime of circulation or after ejectionoments(the so-called> matrix) in a diagonal form. A
from the ring. Optionally, if the use of a very cold ion beam PrOPer downstream adapter can transform thIS. beam. into an
would be compatible with the magnetic field, the beam cartincoupled, or aiX—Y-uncorrelated state, in which horizon-
be reinjected into the solenoid of the user section, keeping #@! and vertical emittances are equal to the corresponding

in a tranquil round state. circular emittances of the beam at the cathode. Such trans-
formations can be used for flat beams preparation in linear
X. SUMMARY colliders. Beam adapters can also be used for preparation of

round beams in the interaction region of the circular collid-

In the optics of charged particle beams, circular transversers. Requiring only local matching and being insensible to
modes can be introduced; they might be considered as analte machine tunes, the beam adapters can be added without
gous to the circular modes in the optics of light. These modeany change to the main part of the lattice. Providing round
provide an adequate basis when the transformations are rbeams and a rotation-invariant revolution matrix, such in-
tation invariant. A group of the invariant transformations is serts guarantee the angular momentum preservation, which is
shown to be identical to a group of transformations preservbelieved to be crucial for a significant increase of luminosity.
ing the canonical angular momentum; its matrices are deRelativistic electron cooling of heavy particles and ionization
scribed. The rotation-invariant mappings and circular modesooling of muons present other fields of research where use
can be parametrized in a way which makes them similar t@f the circular modes can be quite relevant.

[1] E.D. Courant and H.S. Snyder, Ann. Phy§.Y.) 3, 1 (1958. [14] R. Brinkmann, Ya. Derbenev, and K. Flttmann, DESY, Report
[2] A. Chao and M. Tignerdandbook of Accelerator Physics and No. TESLA 99-09, 1999unpublisheg also in Proceedings of

Engineering(World Scientific, Singapore, 1998pp. 49-52. EPAC’2000, Vienna, 2000.
[3] D.A. Edwards and L.C. Teng, IEEE Trans. Nucl. S20, 885 [15] A. Burov and S. Nagaitsev, FNAL, Report No. FERMILAB-
(1973. TM-2114, 2000(unpublishegl
[4] I. Borchardt, E. Karantzoulis, H. Mais, and G. Ripken, Report[16] D. Edwardset al, Proceedings of the International Conference
No. DESY 87-161(unpublished Linac 2000, Monterey, CA, 2000.
[5] V.A. Lebedev and S.A. Bogacz, e-print JLAB-ACC-99-1- [17] D. Edwardset al, Report No. FERMILAB-Conf-01/218-E,
published. 2001 (unpublisheg
[6] A. Burov, Ya. Derbenev, S. Nagaitsev, and A. Shemyakin,[18] E. Pozdeev, BINRprivate communication
Phys. Rev. ST Accel. Beang 094002(2000. [19] E. Perevedentsev, BIN@rivate communication
[7] Status of Muon Collider R&D and Future Plans, BNL-65623, [20] E. Younget al, Proceedings of the 1997 Particle Accelerator,
FERMILAB-PUB-98/179, LBNL-41935, 1999unpublished Conference, p. 1542.
[8] V.V. Danilov et al, in Proceedings of EPAC’'96, Barcelona, [21] H. Goldstein,Classical MechanicéAddison-Wesley, Reading,
1996, p. 1149. MA, 1980).
[9] V. Danilov and V. Shiltsev, FNAL, Report No. FERMILAB- [22] S. Nagaitsev and A. Shemyakin, Report No. Fermilab-TM-
FN-655, 1997(unpublishedl 2107, 2000(unpublished
[10] Ya. Derbenev, University of Michigan, Report No. UM HE [23] R. Talman, Phys. Rev. Let74, 1590(1995.
93-20, 1993(unpublishegl [24] S.K. Kowalski and H. Enge, in Proceedings of the Interna-
[11] Ya. S. Derbenev, University of Michigan, Report No. UM HE tional Conference on Magnet Technology, Brookhaven, 1972,
98-04, 1998(unpublished p. 181.
[12] Ya. Derbenev, Nucl. Instrum. Methods Phys. Resi4, 223 [25] S. Hendersort al. in Proceedings of the Particle Accelerator
(2000. Conference, New York, 1999, p. 410.
[13] A. Burov and V. Danilov, FNAL, Report No. FERMILAB- [26] K.-J. Kim, C. Bohn, and R. Brinkmanfprivate communica-
TM-2043, 1998(unpublished tions).

016503-12



CIRCULAR MODES, BEAM ADAPTERS, AND THER . .. PHYSICAL REVIEW E 66, 016503 (2002

[27] A. Zholentset al., Proceedings PACO1, 2001 p. 2635. (MIT, Cambridge, MA.
[28] Ya. Derbenev, Proceedings of EPAC 2000, Vienna, 2000.  [36] G.I. Budker and A.N. Skrinsky, Sov. Phys. Uspl, 277
[29] S. Nagaitseet al., Nucl. Instrum. Methods Phys. Res.441, (1978.

241 (2000. [37] M. Reiser, Theory and Design of Charged Particle Beams
[30] P. Wesolowskiet al., in Proceedings of EPAC’2000, Vienna, (Wiley, New York, 1994.

2000. [38] Yu. Martirosyanet al, Proceedings of EPAC 2000, Vienna,
[31] A. Burov, V. Danilov, P. Colestock, and Ya. Derbenev, Nucl. 2000.

Instrum. Methods Phys. Res.441, 271(2000. [39] A. Artamonov, Ya. Derbenev, and E. Saldin, Part. Ac28].79

[32] A. Burov, P. Colestock, V. Danilov, Ya. Derbenev, and S.Y. (1988.

33 (I_Be;, ":\ler_Tilat)l inFEfre]rnaIRreporLt, 1;9;{825211132“886@1 [40] A. Artamonov and Ya. Derbenev, Nucl. Instrum. Methods
%34% I één ZeI 'Zttilq in ésrénceeev&nett of’Bearg Co(czi'n and Related Phys. Res. /284, 248 (1989.
' Vi v ngs ng [41] Ya. Derbenev and A. Skrinsky, Sov. Phys. R&v165(1981).

Topics Workshop, Bad Honnef, Germany, 2001. .
[35] I. Ben-2vi, in Proceedings of Second Workshop on Physics[42] l\i(:r.]eDderbenev(unpubllshect MUCOOL Report 200Qunpub-

with a Polarized-Electron Light-ion Collider (EPIC), 2000

016503-13



