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Krook collisional models of the kinetic susceptibility of plasmas
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An assessment is made of Krook collisional models used to describe the kinetic behavior of collective
oscillations, i.e., when Landau damping and collisions must be considered, as is often the case for low-
frequency waves. The study focuses on an early energy-conserving [Bod@elFried, A. N. Kaufman, and D.

L. Sachs, Phys. Fluidg, 292(1966 ] that is shown to be identical to a more modern version used in drift-wave
stability studie§G. Rewoldt, W. M. Tang, and R. J. Hastie, Phys. FlIl28s2893(1986]. The inadequacy of

the simpler, and often used, nonconserving model is illustrated. Comparisons are established with recent
collisional studies of ion acoustic wavpé Yu. Bychenkov, J. Myatt, W. Rozmus, and V. T. Tikhonchuk, Phys.
Plasmasl, 2419(1994] and electron plasma wavgs. S. Ng, A. Bhattacharjee, and F. Skiff, Phys. Rev. Lett.

83, 1974(1999]. A connection is also established with contemporary studies of condensed matter and quantum
liquids[K. Morawetz and U. Fuhrmann, Phys. ReV6E 2272(2000; 62, 4382(2000]. A useful empirical fit

is found that corrects the Braginskii susceptibility to incorporate the kinetic behavior associated with the Krook
kinetic susceptibility.
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[. INTRODUCTION able generalization o and/or yg has been obtained that
continuously bridges the gap between these regimes. An ex-
One of the more difficult and frustrating problems en-ample of a calculation of this type is the pioneering wi8k
countered in the theoretical study of plasmas is how to deef Kivelson and Dubois based on a Balescu-type kinetic
scribe simultaneously the intrinsic kinetic behavior of theequation to obtain the susceptibility in the limit of/w
medium and the effect of collisions. This situation is particu-<1 for jon acoustic waves.
larly of interest in the description of waves having relatively ~ Another example of a technique based on the kinetic de-
low frequenciede.g., ion acoustic waves and Alfvevaves,  scription was introducef4] by Koch and Horton. This ap-
and in situations that lead to large collisionality, as may beproach retains the electron pitch-angle scattering in its exact
the case at the edge of magnetically confined plasmas.  Fokker-Planck form. By suitable linearization, the suscepti-
The two extreme limits of collisionless and highly colli- bility can be calculated by a continued fraction method that
sional plasmas are very well understood. They both admit teesults in a generalizatiof5] of the Z function. A technical
compact analytical descriptions that allow the prediction andhortcoming of this approach is that the convergence of the
interpretation of a wide class of phenomena having expericontinued-fraction method becomes very slow for small val-
mental relevance. For prevailing thermal equilibrium condi-yes of v./w. Another hurdle in its application is that no
tions, in the collisionless regime the plasma susceptibility  rigorous proof has been given for the analytic continuation of
is represented by a universal function, namely, the plasmene equivalentZ function for purely damping problems.
dispersion functiorZ(s) [1]. The argument of this function However, the method is well suited for the calculation of
is the quantitys=w/(v2ka), wherew, k represent the fre- instabilities[5—8] that do not require this step.
quency and wave number of the relevant fluctuation, and the To obtain semiquantitative descriptions of collisional situ-
quantity a is used in this studyfor historical reasonsto  ations that are, at least, correct from the kinetic perspective,
represent the appropriate thermal velocity. an extensive literature has developed in which the Kri@jk
In the opposite limit of large collisionality, and for fluc- collisional model is used. The appeal of this model is its
tuations that satisfy the conditi@® 1, the transport formal- algebraic simplicity, which in its more popular and rudimen-
ism developed by Braginskj] can be linearized to extract tary form (nonconservingamounts to the replacement of
a collisional susceptibility, denoted here lpy. This quan- — u+iv in the argument of th& function. Here we do not
tity depends ors as well as on the ratio of./w, wherev.is  attempt to single out particular studies, since it would miss
the Coulomb collision frequency. While this approach cor-the point, but rather just mention that this simple approach is
rectly includes the velocity dependence of the Coulomb colcommonly found in numerous and important applications in-
lisions, it is constrained by the range of phase velocities t@luding studies of parametric instabilities, drift-wave insta-
which it can be applied. bilities, radio frequency plasma heating, and laser-plasma in-
For situations that require the description of collectiveteractions. The inadequacy of this approach was pointed out
oscillations in which the value of./ w is significant and/os  in condensed matter studies by MernjitD] who removed
is not large, the predictions based @nand yg, unfortu-  this defect by adding a term that relaxes the density matrix to
nately are not reliable. At this stage of development no suitthe local equilibrium distribution. This is equivalent to the
number-conservation procedure used by plasma researchers.
A quantum mechanical formulation of the improved proce-
*Corresponding author. Email address: morales@physics.ucla.edlure has been presented by Da$| to examine the behavior
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of Friedel oscillations in metals. the analytic expressions for the susceptibility, which follow
In a theoretical study12] by Fried, Kaufman, and Sachs from the various collisional models to be compared later.
(FKS) in 1966, a derivation was presented of a more ad-Section Il demonstrates the inadequacy of the nonconserv-
vanced, energy-conserving Krook model that yields a reasoring model, exhibits the behavior of the energy-conserving
ably compact expression for the susceptibility in terms ofmodel, illustrates the identity between the FKS and RTH
combinations of the plasma dispersion functirSince the ~ results, and introduces an empirical correction that brings the
analytic properties of thZ function are well established, the Braginskii result into close agreement with the energy-
properties of the kinetic-collisional susceptibility are well CONServing Krook model. The effects of Krook-type colli-

grounded and the expression reduces continuously to the C%cl)ns on on acoustic Wa\éeg, electron plasma waves, and 'dA‘I'
lisionless limit. This result does not suffer from the conver-VeN waves are presented in Sec. V. A comparison is made

gence problem associated with the continued-fraction ap S€C. V between the predictions of the energy-conserving
proach of Koch and Horton[4]. However, the FKS model and contemporary studies on ion acoustic waves by

calculation, being a Krook model, assumes that the collisiof?Ycnenkov, Myatt, Rozmus, and Tikhonch{&5] (BMRT)

frequency is velocity independent, hence it misses subtle fe&d on electron plasma waves by Ng, Bhattacharjee, and

tures unique to Coulomb collisions. It should also be men>Kiff [16] (NBS). Conclusions are given in Sec. VI.

tioned that number-conservindut not energy-conserving
Krook models of collective oscillations are presented in Il. SUSCEPTIBILITY MODELS

some textbooks13,14. For reference we reproduce in this sectignthout deri-

In surveying the literaturdincluding textbooks associ- . . . L
ated with the use of Krook models to describe wave Iohenom\_/at|0n) the results previously obtained for the kinetic suscep

ena, we have been surprised to find that in spite of its earlt|b|||ty using different models for the Krook collision opera-

introduction, the FKS expression fgrhas not been numeri- Yor. The interested reader should consult the original
cally examined. In fact, we have identified that in 1986, Re_reference to obtain the details leading to these expressions.

. . In the absence of collisions the kinetic susceptibility fol-
Sonserving Krook model to assess the role-of collsonalo¥s fOm the general expression given in Landaus land-
9 . . : L mark paper{20], which when evaluated for a zeroth-order

models on calculations of drift-wave instabilities related to

Maxwellian distribution function is completely determined

tokamaks, apparently unaware of the FKS early study. by the plasma dispersion functié]
The present numerical study is motivated by the lack of a y P P

definitive analytic solution for the unified description of ki- ko2
netic phenomena and collisions, together with the common on(?) [1+sZ(s)], D)
practice to use Krook collisional models to extract guidance
in wave-related problems. Specifically, we present here a nu- .
merical survey of the susceptibility obtained by FKS for theWhere kp=wp/a, and s=w/(v2ka), with, a, the thermal

more prominent collective oscillations encountered in the/€lOCity of the species having plasma frequengy. Gener-

study of plasmas. In addition, we make comparisons of preglization to mL_JItip_Ie species_ can be achie\_/ed by _summation
ver the contribution of the individual species having a form

dictions based on the FKS model with contemporary studie§

[15,16 of collisional effects on waves. similar to Eq.(l). . . .
For completeness we mention that it is also possible to For clarity, we emphasize that in the present notation the

construct Krook collisional models that conserve momenturrFerOth'Order Maxwellian distribution function has the form
as is sketched in the textbook by Miyamdtt7]. However,

. . . n v?
when applying the Krook models to describe the damgarg f o= 0 ex% _ , )
growth) of waves associated with the loss of electron mo- 0 (2ma®)* 2a?

mentum, the standard practit@so followed in Miyamoto’s ) ) ) )
text in describing drift wavesis to ignore this feature. For With ng the density of particles, and the corresponding Debye
this reason, the comparative studies presented in this papéfave number ikp=w,/a. The connection to the tempera-
do not include this option. ture T is througha=(T/m)*?, wherem is the mass of the
A recent study of the general response function for interSpecies of interest. Also, the relationship to the dielectric
acting quantum liquidg18] has considered the limiting case coefficient ise=1+ .
of a nondegenerate plasma to explore the relative importance The popular, nonconserving Krook model alluded to in
of the number-, energy-, and momentum-conserving method&e Introduction, results in
on the shape of the plasma resonance. It is found by a nu-
merical study of the type pursued in the present paper that
the number-, and energy-conserving models shift the reso-
nance toward smaller frequencies while the incorporation of
momentum balance diminishes this effect. Further insightvhere é=(w+iv)/(v2ka). Here v is the Krook “collision
into the role of momentum conservation in one-componenfrequency,” which is not a well-defined quantity. However,
systems has been obtained in a study of the response of inhat is often done, for the sake of making progress in the
teracting Fermi gasg4.9]. absence of a general formalism, is to identifywith the
The paper is organized as follows. Section Il catalogue€oulomb collision frequency .

2

[1+s2(8)], ()

XNC™ ?
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A significant modification is obtained by imposing the thus a comparative numerical study of these two expressions
constraint in the Krook collision operator that the number ofseems warranted. The relevant result is presented in the fol-
particles should be rigorously conserjd®,14]. This results  lowing section.

in a susceptibility To complement the previous kinetic studies that attempt
to incorporate collisional effects through Krook models, it is
kp\21+EZ(€) useful to consider the susceptibility that is obtained in the
XC:<? m (4) simplest linearization of the transport formalism developed
by Braginskii[2] for Coulomb collisions. Neglecting the ef-
where y=iv//(vZka). fect of heat diffusion, yields
By demanding that the Krook collisional model simulta- 2
) Kp 1
neously conserve the number of particles and the energy, XB:<_ 5 5, (9)
FKS[12] derived the following expression for the suscepti- k 1 2s7| . 2I'((0.5])s
bility (which we have independently rederiyed o b’
Kp\21+€Z, whereb’=1+2(1.71¢ andT';=v./w, with v, the Cou-
XFKS™ (? 1+yZ,' ©) lomb collision frequency, which is not an arbitrary quantity,

as is the case for the entering in Egs(3)—(5) and (7).

in which the functionZ, now plays a role analogous to tde Again, the expression given by E() has a form quite

function in the more limited, number-conserving model, anddifferent from that of Eq(5), thus a numerical comparison is
where also worthwhile.

22— ) +[2— ye(£2—1)]Z IIl. NUMERICAL COMPARISON
) , (6) OF COLLISIONAL MODELS
[(E'=E+3)yZ+35+yE(E-3)]

Z,=

We compare first the various predictions for the suscepti-

in which the argument of all th& functions is again the bility based on different Krook collisional models, i.e., the
quantity &. quantltlgsxO_, XNC: X0+ XFKS: pre;ented in Sec. Il. The

In a study aimed at providing guidance in choosing modefomparison is achieved by displaying the dependence of the
collision operators for toroidal-geometry kinetic calculations,€@l @nd imaginary parts of as a function of the scaled
RTH [7] also presented a derivation of a number- andPhase-velocity parametes=w/(v2ka). Figure 1 displays

energy-conserving Krook model that results in the followingthe behavior obtained for significant collisionality, i.e/«
susceptibility: =1.0. Two important features can be immediately extracted

from Fig. 1. One is that the predicted behavior for the non-
conserving Krook model is topologically different from the

ARTH underlying collisionless result, both in the real and imaginary
o s s 1o parts. In marked contrast, the conserving Krook models are

_ SZo[1+i59(3Zo+Z4—25)]1—i5¥8(Z3—2Z0) seen to continuously evolve from the ideal collisionless re-
_(1+ i YZ)[1+i2Y(Za—Zo+ 2Z0) ]+ 2yA(Z,— 220)% sult as the value of the collision frequency is increased. It is

) evident from this display that in this case the much-desired
simplicity achieved by using the nonconserving Krook
in which the functionsZ,, have ¢ as their argument and are Model leads to fundamentally incorrect behavior over a
defined as broad range of fluctuation wave numbers. In fact, Fig. 1 sug-
gests that in arriving at conclusions of experimental signifi-
1 (= u" exp — u?) cance, it is better to rely on the prediction of the collisionless
Zn(§)=—j du———. (8)  result rather than of the highly misleading nonconserving
Jar J = u-¢ Krook model.
The inadequacy of the nonconserving Krook model was
It should be mentioned that the general expression origialso deduced in the study] by RTH. They arrived at this
nally derived by RTH included the effects of density gradi- conclusion by examining the dependence on collision fre-
ents and electromagnetic effects because they were interestgdency of the modes driven unstable by density gradients.
in applications that pertained to gradient-driven electromag- The other important feature that is illustrated by Fig. 1 is
netic instabilities. The susceptibility given by E) is ex-  that the difference between the number-conserving, and the
tracted from their results by setting the diamagnetic frenumber-and energy-conserving models is relatively small.
quency w, to zero and dropping the contributions Again, the stability study by RTH arrived at a similar con-
proportional to the magnetic vector potentigl, as is appro-  clusion about the small improvement obtained by the inclu-
priate for the comparisons of interest in the present study. sion of the more advanced energy-conserving method.
It should be emphasized that it is not at all evident by It is valuable to point out that the contemporary study by
comparing Eqs(5) and(7) that the two independent studies Morawetz and Fuhrmanih18], motivated by interacting
of energy-conserving Krook models yield the same resultguantum liquids, contains two figures that exhibit behavior
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FIG. 1. Dependence on scaled phase velocity of the(egand
imaginary(b) parts of the kinetic susceptibility predicted for differ-
ent collisional modelsy/ w=1. In the abscissa label, the square root
only includes the 2 in this and following relevant figures.

FIG. 2. Dependence on scaled phase velocity of the(e¢and
imaginary(b) parts of the kinetic susceptibility predicted for differ-
ent collisional modelsy/ w= 10.

similar to that displayed in Fig. 1. The approach in that study=10. The solid curve corresponds f@r and the dark tri-
is based on the Lindhard random-phase approximation anangles toyrxs. The triangle notation is chosen on purpose to
the Skyrme-type functional. Yet when these authors take theeparate the two results. As can be seen, the two quantities
limit of a one-component plasma the results are essentiallgre, in fact, identical. This is comforting because they have
those obtained from the Krook collisional models used inthe same physical origin, although the motivation leading to
plasma physics. their study was quite different. For general perspective, we
The important trends identified in Fig. 1 become ex-mention that the numerical difference between the two re-
tremely pronounced in the regime of large collisionality, as issults is within machine precision and that we have verified
illustrated in Fig. 2 forv/w=10. It is clear from Fig. 2 that the result over a broad range of values/ab. The quantities
when the collisionality is large, the nonconserving model isyrks and xgry are identical.
totally inadequate, and furthermore, there is no practical gain The next comparison pertains to the behavior of the Bra-
in implementing the energy-conserving constraint;should  ginskii susceptibilityxg given by Eq.(9). Using the same
be the quantity of choice in practical calculations. In fact,format as in Figs. 1-3, we proceed to display in Fig. 4 the
this was the approach followed by Hedrick, Leboeuf, andpredicted behavior for the real and imaginary partsygf
Spong[8], when performing a survey of the effect of colli- (dashed curjeand yg«s (continuous curvefor v/w=1.0. It
sional models on the stability of shear Alfvevaves in stel- is seen from Fig. 4 that there exist pronounced differences
larators. The present study validates that their neglect of theetween these expressions in the region where kinetic effects
energy-conserving feature in the Krook model is well justi-are most important, i.e., near= 1. In the spirit in which the
fied in arriving at their conclusions. Krook model is used, namely, the introduction of a simple
Although we arrive at a perspective for the number-collisional model to correct the intrinsic kinetic features, we
conserving and energy-conserving Krook models, which is irhave been motivated to explore the opposite logic. The ques-
full agreement with the conclusion obtained in the RTHtion is simply: can the Braginskjyg, which treats Coulomb
study by completely different methods, the question remainsollisions appropriately, be corrected to exhibit the proper
as to what is the relationship between the quantjtiggs and  kinetic features suggested by thyexs in Fig. 4? To explore
XrTH given in Sec. Il. To compare these two different- this possibility we have undertaken a survey of empirical
looking results we exhibit the predicted behavior of the realnumerical fits whose aim is to bring the Braginskii suscepti-
and the imaginary parts gfas a function of the scaled phase bility in close agreement witlyrcs, Simultaneously for the
velocity s. The result is shown in Fig. 3 for the choicéw real and imaginary parts, over a broad range of valuegwaf
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FIG. 4. Comparison of the dependences on scaled phase veloci-
ties for the susceptibilities predicted by Braginskii's transport for-

FIG. 3. Demonstration of the identity of the two independently malism (dashed curveand the energy-conserving Krook model

derived results for the susceptibility by FKEgs.(5) and(6)] and
by RTH [Eq. (7)] based on the energy-conserving moda). Real
part and(b) imaginary party/ @ =10. The solid curve is RTH result
and dark triangles are that of FKS.

We have found that the relatively simple replacement in
xg Of v, by the expression

v.— (v/0.7s)exp(3s) (10

brings xg in close agreement tpg«s as is illustrated in Fig.

5. In this figure the dashed curve now corresponds to the
“kinetically corrected” Braginskii susceptibility, while the
solid curve is the samggys shown in Fig. 4. In our numeri-

cal survey we find that as the value ofw is increased the
agreement between the two expressions improves signifi-
cantly.

IV. COLLISIONAL EFFECTS ON PROMINENT MODES

In this section we survey the predictions of the various
Krook collisional models for the dispersion relation of
prominent collective modes, i.e., ion acoustic waves, elec-
tron plasma waves, and shear Alfvevaves. To isolate the
collisional effects, we apply the Krook collisional model
only to the electron population since they constitute the spe-
cies that exhibits the most pronounced kinetic effects. Of
course, in many plasma situations of great interest the ion
contribution can also be overwhelmingly kinetic, but that is

1.2

0.8

Re(x) 0.6
0.4

0.2

-0.2
0.6

0.5
04
Im(x) %3
0.2

0.1

(solid curve. (a) Real part andb) imaginary party/w=1.

—=energy
= = -Braginskii with fit

not the focus of the present study.

FIG. 5. Correction of Braginskii's fluid susceptibility by a

The dispersion relation used to isolate the effect of thephase-velocity-dependent collision frequency, given by @f),

Krook collisional models on ion acoustic waveq & ,27]

brings close agreement with the energy-conserving Krook model.
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FIG. 7. Dispersion relation of electron plasma waves using the
-0.004 . log-log display format introduced by Jackson in which the real and
imaginary parts ok are scaled tavw,, and the wave numbek is

)

55'0'006 i ] scaled to the Debye wave number. The collisionless results corre-
EE« -0.008 | 4 spond to the simple dashed and solid curves. The dashed curve with
- the dark triangles is the real part for the energy-conserving Krook
0.01 1 model and the curve with the dark diamonds is the corresponding
0012 L by - imaginary part forv/w,e=0.1.
-0.014 L - L L L . L mentioned that Koch and Hortdd] extracted an approxi-
02 04 06 08 1 12 14 . . . ;
Kk mate analytical expression from their electron pitch-angle

scattering model that also shows that such collisions enhance
FIG. 6. Dispersion relation of ion acoustic waves predicted byth® damping of ion acoustic waves.
different collisional models. The solid curve is the collisionless ~The next mode examined is the electron plasma oscilla-
case, the curve with dark triangles is the nonconserving model, andions (Langmuir waves Because there is a long-standing
the curve with open squares is the FKS predicti@.Frequency  tradition established by Jacks$®3] in how to display the
scaled tow,,; and (b) damping rate scaled t@,;. The collision  frequency and damping rate of electron plasma waves in the
frequency isv/ w,;=10. same graph using a log-log scale, we proceed here to present
the effect of collisions using such a format. The results are
1+ xi+x;=0, (1)  shown in Fig. 7, which displays four different curves. Two of
them correspond to the collisionless redtlite dashed curve
wherey; is xo of Eq. (1) with ion parameters. In Eq11) the  for Re w, the solid curve for Imw), while the two others are
x; of interest at this stage ang, xnc, and xeks, sincexc  obtained usingygks for a collisionality v/wp=0.1, where
has already been shown to be not very different frpss. wpe is the electron plasma frequency. The dashed curve with
The results obtained from a numerical root-finding studydark triangles correspond to the ewith collisions and the
in which k is a real, continuous parameter, andis the  solid curve with dark diamonds to I with collisions. The
unknown complex frequency of the ion acoustic mode ardirst impression obtained from Fig. 7 is that the knpre-
shown in Fig. 6. The results correspond to high collisionality,dicted with the energy-conserving model exhibits a continu-
i.e., v/l wpi=10 to emphasize the effects. Hang; is the ion  ous merging with the collisionless damping rate kag-
plasma frequency. In Fig. 6 the continuous curve correspondsreases. This is a highly desirable feature of a model that
to the collisionless result, the curve with the dark triangles igncorporates collisional and kinetic effects. At this level of
obtained with the nonconserving model, while the curve withcollisionality it is seen that fok/ky<0.2 the enhanced col-
open squares follows from the energy-conserving modellisional damping overwhelms Landau damping, bukés,
Both real and imaginary parts are scaleddg andk to the ~ —1 the strong collisionless dissipatiénhich in this regime
Debye wave numbekp, . is not proportional tofy/dv) takes over. In the extremely
It is seen from Fig. @) that the frequency of ion acoustic large wave number limit the energy-conserving collisions
waves is independent of electron collisions, hence the collicause a slight decrease in the damping and an associated
sionless prediction is always excellent. The damping rateincrease in the frequency.
however, is sensitive to electron collisions in the wave num- We note that the prediction of the nonconserving model is
ber regionk/kp<<0.5, as is illustrated in Fig.(6). As k/kp not included in Fig. 7 because it would be too confusing. We
—1, however, the damping also becomes insensitive to elesimply state that we have examined its effect, and find that in
tron collisions. Figure @) corroborates the previous conclu- a more pronounced manner than for the ion acoustic waves,
sion related to the inadequacy of the nonconserving Krookt also leads to unacceptable behavior.
model. It is seen that for ion acoustic waves this model pre- The shear Alfva wave of small transverse scdlen the
dicts a lowering of the damping, while the energy-conservingorder of the electron skin deptlis a mode of considerable
model illustrates that the damping is increased. It should bénterest{24—-26 at the present time. Because of its relatively
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FIG. 8. Dependence on scaled collision frequetioyw,;) of the

21

2__
K= -
Xj

: 12

. . . ’ FIG. 9. The same information presented in Fig. 8 but with
dispersion relation of shear Alfmewaves of small transverse scale — ) )
(k c/wpe=1) and for cold ions. The parallel wave number is scaled electron bet@=(a/va)®=1.0, corresponding to a strongly
(inertial regime. The real parta) and imaginary partb) are scaled
to w¢i. The dashed curve is the nonconserving model and the solithcreases. The appropriate trend displayegibys is that the
damping coefficient experiences a linear increase leading to
low frequency this mode is a suitable candidate for a descripan enhancement by a factor of two over the collisionless
cold ions the relevant dispersion relation takes the form The complementary behavior obtained as the scaled elec-
) tron B is increased t@3=1.0, is displayed in Fig. 9. In this
w kJ_C
a) 1- (_ guency and stronger damping, but the same trends obtained
for the 8=1.0 case are seen for the two collisional models.
is the electron susceptibility given by one of the expressionéncrease in the damping coefficient that roughly doubles its
presented in Sec. Il. In this notatidg represents the wave value at a collisionality level o¥/w=0.3.
ponent across the flc-_,\ld. Becguse of the_ unique topology of V. COMPARISON TO CONTEMPORARY STUDIES
this mode, it is more informative to examine the dependence
the collisionality for fixed values ok, andk;. conserving Krook model to two contemporary studies in
Figure 8 exhibits the dependence of Reand Imw ob-  which the issue of modeling collisional effects on wave
increased inync and ygks. All the quantities in Fig. 8 are and the other to electron plasma waves.
scaled to the ion cyclotron frequenay;;. For these results In 1994, Bychenkov, Myatt, Rozmus, and Tikhonchuck
tric fields), kja/w=0.2 (resulting in frequencies below of ion acoustic waves in a collisional plasma. In their ap-
w¢i), and relatively cold electrong&he inertial regimg in proach the ion response is essentially hydrodynamic and a
curve corresponds to the energy-conserving model and th&ults in a suitable ion-fluid susceptibilify , which is used to
dashed curve to the nonconserving model. It is quite evidentalculate the ion acoustic dispersion relation. The description

k,a/w=0.2 for a scaled electron plasma befa (a/v,)?=0.1 kinetic regime of the shear Alfvemode.
curve is the energy-conserving model. frequency exhibits a relatively small change, while the
tion based on the Krook collisional model. In the limit of damping in the range of examined.

case, the collisionless result corresponds to a lower fre-

w

wherev 5 is the Alfven speedg is the speed of light, ang); Again, the energy-conserving model predicts a monotonic
number along the confining magnetic field, dndthe com-
of the frequency and damping coefficient on the strength of In this section we compare the predictions of the energy-
tained numerically as the value of the collision frequency isproperties is emphasized. One pertains to ion acoustic waves
the parameters aie c/w,.=1 (yielding strong parallel elec- (BMRT) [15] investigated a quasihydrodynamic description
which the parametep=(a/v,)?=0.1. In Fig. 8 the solid formulation based on a generalized 21-moment closure re-
in this case thaj\c gives rise to rather bizarre behavioras used for the electron response, however, is not so straightfor-
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2 r . - T sure” over a wide range of wave numbers. From Figbl
—BMRT v =100 v=100 is found that the energy-conserving Krook model gives a
—=-FKS V=100 V=100 larger (less than a factor of)2damping fork/kp<1.0, but

the overall functional dependence predicted by the two mod-
els is quite similar. In particular, fdt/kp>1.5 the two mod-

els merge into each other, again confirming that the method
used by BMRT to incorporate electron Landau damping
through a fluid response approximates the actual kinetic re-
sponse quite well.

From the cross comparison between Figgaland Ga) it
0 . . . . can be deduced that the frequency of ion acoustic waves is
very robust to the inclusion of collisions of any form. This
quantity is intrinsically determined by the collisionless ki-
netic response of the electrons. From the behavior seen in
Figs. 1Ga) and 6b) one deduces that for the level of colli-
sionality examinedi.e., v;/w,;=10) the dissipation due to
ion collisions plays a significant role and leads to an en-
hancement over the collisionless prediction in the wave num-
ber range ok/kp<1 by as large as a factor of 3.

In 1999, Ng, Bhattacharjee, and SkifBS) [16] pub-
lished a study in which they revisited the damping of elec-
tron plasma oscillations in a weakly collisional plasma using
05 1 15 2 2.5 the model collision operator introduced by Lenard and Bern-

Kk, stein[27]. The study uses a procedure based on a complete
set of Hermite polynomials to derive an infinite determinant
%rom which a recurrence relation is obtained that yields a
discrete spectrum of values for the frequency and damping of
the electron plasma oscillations. The study reports on the
results in the form of a table for the real and imaginary parts
of the scaled eigenvalues for different values of the scaled
ward because for this mode, the electrons behave kineticallgollision frequency covering four orders of magnitude.
To handle this issue BMRT constructed a model that mixes Since the NBS study utilizes a model for the merging of
an electron collisional heat conductivity with a heuristic kinetic and collisional effects that is considerably different
form of Landau damping. from the approach based on the energy-conserving Krook

Because in the BMRT study the electron population ismodel, it is of interest to explore how the discrete modes
treated in a special manner to merge kinetic and collisionateported by NBS compare to the roots obtained for electron
effects, it is suggestive that it would be useful to compareplasma waves based Qfgys.
their results to the energy-conserving Krook model in which  To make the comparison meaningful we utilize the same
the kinetic behavior is automatically included. To implementnotation and scaled variables introduced by NBS. They de-
a suitable comparison we replace thgused in the BMRT fine the scaledcomplex frequency as)=w/(v2ka) and
study byyxexs but retain the 21-momeng; that they derived. the scaled collision frequency as=v/(v2ka). In addition,
From these two susceptibilities we then solve numericallythey introduce the inverse, scaled wave number as the pa-
for the complex frequency as a function of the real wave rametera=(kp/k)2. The goal is to identify how the value of

15}

Re(m/u)pi)

0.5

-0.04 ) L L
0

FIG. 10. Comparison of the prediction of the energy-conservin
model (curve with dark squarg¢sand results of the BMRT study
[13] (solid curve for the dispersion relation of ion acoustic waves.
Real part(a) and imaginary parto) are scaled ta,; . Collisionality
is v=1v;= 10w corresponding to th&,/T;>10 regime.

numberk. Q) varies asv is changed. In Table Il of Ref{16] NBS
Figure 10 displays the results obtained for the choice opresent results foww=9.0.
ion collision frequencyy;=v=10w,;. For singly ionized With the previous translations in notation, we proceed to

ions, this choice corresponds to an electron to ion temperasolve for the roots predicted using-xs and varyingv in

ture ratioT; /T,=(M/m)Y3 whereM andm refer to the ion  very small steps over a very wide dynamic range that re-
and electron masses, respectively. This in turn implies a requires a semilog display. The results of this numerical survey
gime of the ion acoustic waves in which the ions behaveare shown in Fig. 11, in which, again we duplicate the NBS
hydrodynamically and is thus consistent with the BMRT de-notation of Q1=Rew and Q;=Im w. The continuous solid
scription. The choice of collisionality also permits a crosscurve corresponds to the roots of the energy-conserving
comparison to the results of Fig. 6 in which the ion behaviorKrook model while the dark triangles are the discrete modes
is collisionless. In Fig. 10 the continuous curve correspondseported by NBS. It is seen that the discrete modes found by
to the BMRT prediction while the curve with solid squares isthe NBS formalism closely overlap the continuous roots pre-
obtained usingygxs. It is seen from Fig. 1@) that the fre-  dicted by the energy-conserving Krook model.

guency of the mode is identical for both methods. This im- At this stage we refrain from speculation about the mean-
plies that the fluid-electron model introduced by BMRT doesing of the agreement displayed in Fig. 11, but from the per-
an excellent job in describing the effective “electron pres-spective of the present study we conclude that the energy-

016407-8



KROOK COLLISIONAL MODELS OF THE KINETIC . .. PHYSICAL REVIEW E66, 016407 (2002

2.6 , v r v . v conserving approach can be used with confidence. However,
+ NBS it should not be extrapolated that the number-conserving ver-
—FKS sion is suitable for all applications. If heat transport is im-
255 l portant, then energy-, momentum-, and number-conserving
rﬁ are required.

Q 25l | The robustness of the frequency of ion acoustic waves to
various collision models has been documented. This quantity
is essentially determined by the collisionless kinetic response

245 | . of the electrons.
EI a) An empirical fit has been found in which the simple re-
placement of the Coulomb collision frequency by a kinetic
24 . n * n y * factor brings the Braginskii susceptibility into close agree-
0 ' " T T T ' ment with that obtained in the energy-conserving Krook
005l | model.
* * Based on the classic plot format introduced by Jackson
01l _ [23] for electron plasma waves, a pedagogically valuable
presentation that illustrates the continuous transition from
o 15t - collisional to collisionless behavior has been obtained using

i the energy-conserving model.

021 . A comparison of the predictions of the energy-conserving
model to the study by BMRT15] of ion acoustic waves in a

0.25 1 b) | 1 collisional plasma yielded useful insight. One perspective is

03 o . . that the heuristic model for the electron response introduced

107 10° 10° 10% 107 107 100 10° by BMRT to incorporate Landau damping shows good agree-

H ment with the energy-conserving Krook model. The comple-

mentary perspective is that in attacking problems of this na-

FIG. 11. Comparison of the prediction of the energy-conservingture the use of the heuristic model can be replaced by the

Krook model(continuous solid curyeto prediction of discrete elec-

tron plasma mode¢dark triangleg according to the NBS study suitable K.rO.Ok model. .
[14]. The notation used is that introduced in Réfld], Q A surprising result has been obtained for electron plasma

—w/(vV3ka), u=v/(v2ka). Note that the scaled collision fre- Waves in comparing the predictions of the energy-conserving

quency is varied logarithmically over a large dynamic range. model to a recent study by NBEL6], in which a set of
discrete eigenmodes was identified. In spite of the signifi-

conserving Krook model is capable of reproducing a variet)Fa”“y different collisional models used, it is found that the

of predictions based on seemingly different collisional meth-£igenvalues predicted by NBS lie on the continuous curve
ods that incorporate the intrinsic kinetic behavior of thePredicted by the Krook model over a very large range in
plasma. variation of the collision frequency. This again illustrates the

usefulness of the energy-conserving model in describing
subtle features that mix the kinetic response and collisions.
VI. CONCLUSIONS It is noteworthy that contemporary studies of condensed

This numerical study has aimed to elucidate some featuré®atter and quantum fluids.8,19 are addressing analogous

related to the usage of Krook collisional models in the delSSU€S to those considered in this plasma-oriented study and

scription of kinetic wave phenomena, which have not beerihat similar results are being obtained. Hopefully, the con-
widely discussed. The study focused primarily on an eaereCt'onS m_ent|0ned in this study will brmg awareness of the
formulation of an energy-conserving model by Fried, Kauf-commonality of approaches developed independently to de-
man, and SachEL2] (FKS), which has not received much Scribe the different states of matter. B ,
attention. In fact, twenty years after the original FKS study, N summary, this study provides through specific numeri-
Rewoldt, Tang, and Hast[&] (RTH) were motivated, as part cal comparisons a use_ful perspective on the limitations gnd
of a larger investigation, to examine the role of this type Ofpapablllt]es of the various Krook coII|S|onaI models. Thls
collision model and obtained an expression that algebraicalljiformation should be useful to future studies that try to find
differs significantly from the FKS form. In this work we & Compromise in handling the yet unresolved problem of
have illustrated that these two developments are identical. NOW t0 unify the kinetic response and collisions in wave
A strong conclusion that follows from the present surveyPh€nomena.
is that the nonconserving Krook model is entirely inadequate
for.the prediction of collisional effet;ts on kinetic wave prop- ACKNOWLEDGMENTS
erties. Another valuable conclusion is that the particle-
conserving and the simultaneously particle- and energy- This work was sponsored by The Office of Naval Re-
conserving models do not differ significantly in their search and The U.S. Department of EnefgDOB), Grant
predictions. Thus, in practical situations in which a simplerNo. DE-FG03-01ER54617 at UCLA. The authors thank Dr.
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