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Stability of axisymmetric Taylor-Couette flow in hydromagnetics
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The linear marginal instability of an axisymmetric magnetohydrodynamics Taylor-Couette flow of infinite
vertical extension is considered. We are only interested in those vertical wave numbers for which the charac-
teristic Reynolds number is minimum. For hydrodynamically unstable flows minimum Reynolds numbers exist
even without a magnetic field, but there are also solutions sitlller characteristic Reynolds numbers for
certain weak magnetic fields. The magnetic field, therefore, destabilizes the rotating flow by the so-called
magnetorotational instabilittMRI1). The MRI, however, can only exist for hydrodynamically unstable flow if
the magnetic Prandtl number, Pr, is not too small. For too small magnetic Prandtl nui@beérso strong
magnetic fieldsonly the well-known magnetic suppression of the Taylor-Couette instability can be found. The
MRI is even more pronounced féwydrodynamically stabl@ows. In this case we can always find a magnetic
field amplitude where the characteristic Reynolds number is minimum. These critical values are computed for
different magnetic Prandtl numbers and for three types of geont@tmgll, medium, and wide gaps between
the rotating cylinders In all cases the minimum Reynolds numbers are running with 1/Pr for small enough Pr
so that the critical Reynolds numbers may easily exceed values®adfol@he magnetic Prandtl number of
sodium (10°%) or gallium (10°®). The container walls are considered either electrically conducting or insu-
lating. For insulating walls with small and medium-size gaps between the cylifigel® critical Reynolds
number is smaller(ii) the critical Hartmann number is higher, afiil) the Taylor vortices are longer in the
direction of the rotation axis. For wider gaps the differences in the results between both sets of boundary
conditions become smaller and smaller.
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I. INTRODUCTION Taylor-Couette flow dynamo experiments. The dependence
of a real Couette flow on magnetic Prandtl number and gap
The longstanding problem of the generation of turbulencevidth between rotating cylinders is investigated. The simple
in various hydrodynamically stable situations has found anodel of uniform density fluid contained between two verti-
solution in recent years with the so-called magnetorotationa#ally infinite rotating cylinders is used with constant mag-
instability (MRI), also referred to as the Balbus-Hawley in- netic field parallel to the rotation axig=ig. 1). The unper-
stability, in which the presence of a magnetic field has durbed state is any stationary circular flow of an
destabilizing effect on a differentially rotating flow, provided incompressible fluid. In the absence of viscosity, the class of
that the angular velocity decreases outwards with the radiusuch flows is very wide: indeed, ) denotes the angular
This MRI has been discovered decades f@] for ideal ~ Vvelocity of rotation about the axis, then the equations of mo-
Couette flow, but its importance as the source of turbulencéon allow Q) to be an arbitrary function of the distanée
in accretion disks with differentialKeplerian rotation was from the axis, provided the velocities in the radial and the
only recognized by Balbus and Hawlgg]. axial directions are zero. For viscous flows, however, the
However, the MRI has never been observed in laboratorglass becomes very restricted: in fact, in the absence of any
[4—7]. Moreover, Chandrasekh$®] already suggested the transverse pressure gradient, the most general forrfd of
existence of the MRI for ideal Taylor-Couette flow, but his allowed is
results for nonideal fluids for small gaps and within the small
magnetic Prandtl number approximation demonstrated the Q(r)=a+b/R? (N)
absence of the MRI for hydrodynamically unstable flow. Re-
cently, Goodman and co-workel8,9] claimed that this ab- wherea andb are two constants related to the angular ve-
sence of MRI was due to the use of the small magnetidocities Q;, and Q,, with which the inner and the outer

Prandtl number limit. The magnetic Prandtl number is reallycylinders are rotating. IR;, andR, (R, Rin) are the radii
very small under laboratory conditions-(L0™° and smaller.  of the two cylinders then
Obviously, a proper understanding of this phenomenon is
very important for possible future experiments, including A ~o o
m=7 , 1=
and b:QinRin—Az 2
1-9
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/ A LA A Stationary modes are always easier to excite than oscillatory
B L] ]\\\\ ones[2,10]. So, only marginal stability will be considered
| (w=0). The derivation of the equations describing this situ-
S~ | 1] ] ation is due to Chandrasekhd]; it should not be repeated
\\ N // 7™ out here. We only use a different normalization here. Ildet
Rin

A\
|
]

I
/ 4

=)

=Ry~ Ri, be the gap between the cylinders. We use
H=(R,d)"? 7

as unit of length, the Alfve velocity Va=Bg/(uop)Y? as
unit of perturbed velocity, an@,Pr*’? as unit of perturbed
magnetic field with the magnetic Prandtl number

L] R Pr=—, ®

\\\“(// 1+ % 7]

plin
| T J L v is the kinematic viscosityy is the magnetic diffusivity.

] | Note that wave numbers are given in unitskbf .
Using the same symbols for normalized quantities as be-
FIG. 1. Cylinder geometry of the Taylor-Couette flow. fore, the equations take the form

~ - Q
m=Qo/ Qi and  7=Riy /Ry 3 (DD*—kz)zuR+ kZHazuR—Zsze—u¢=0,

Qin
Following the Rayleigh stability criteriord(R2Q)%/dR>0,
rotation laws are hydrodynamically stable for- 7?. Taylor-
Couette flows with outer cylinders at res&(:O) are thus
never stable.
Here, in order to isolate the MRI we are mainly interested (DD, —k*)bg—kHaug=0,
in flows with rotating outer cylinders so that the

1d Q
L2 —Re— —|R2— =
(DD, —k“)u,+kHab, ReRdR(R Qin>UR 0,

ic- ili iterione> n2. i 1 : d /[ Q
hydrodynam|.cAstab|I|ty crfcerlom> n*, is fulfilled. Our ref (DD, — k2)b¢— kHau,+Re PR—(—) br=0, (9)
erence case ig=0.5 andu=0.33. dR\ Q;,

II. BASIC EQUATIONS with
R, ¢, andz are the cylindrical coordinates. A viscous elec- Ha BgH Re_ Q;H? 10
trically conducting incompressible fluid between two rotat- W’ v

ing infinite cylinders in the presence of a uniform magnetic

field parallel to the rotation axis admits the basic solutionnere Ha is the Hartmann number. Re is the Reynolds num-

Ug=U,=Br=B,=0 and ber of the inner rotatiory is the densityu, is the magnetic
constant. Chandrasekhar’s notatiols=d/dR and D,
=d/dR+1/R are also used.

Let us emphasize that Pr appears only once in the fourth
equation of the systent®). Recall that under terrestrial con-
itions Pr is small ¢ 10 ° and smallex. If the approxima-
on Pr=0 is adopted, the governing tenth-order syst@&n

B,=Bgp=const, Uz=aR+b/R, (4)

with U the velocity andB the magnetic fielda and b are
given by Eq.(2). We are interested in the stability of this
solution. The perturbed state of the flow may be described b?i

Ug,Ug+Uy,U,,br,by,Botb,, 5P (5)  can be factorized into an eighth-order system, which does
not involvebg, and a second-order system fog [the third
with 5P as the pressure perturbation. equation of the systenf)]. This fact was recognized by

The linear stability problem is considered with only axi- Chandrasekhd2] for the case of a narrow gap; but it is true
symmetric perturbations. By analyzing the disturbances int@lso in the case of a finite gap. An appropriate set of ten
normal modes the solutions of the linearized magnetohydrodoundary conditions is needed to solve the syst@mThe

dynamical equations are of the form situation is more difficult than in the small-gap-small-
Prandtl-number case where only eight boundary conditions
ur=uUr(R)e“ cogkz), bgr=Dbg(R)e*'sinkz), are needed. No-slip conditions for the velocity on the walls

are used throughout, i.e.,
ug=uy(R)e“' cogkz), by=by(R)e sinkz),

u,=u,(R)e“'sin(kz), b,=b,(R)e“ cogkz). (6) Ur=0, Uy=0, =0, (1)
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FIG. 2. The stability line for Taylor-Couette flow with outer FIG. 3. The same as in Fig. 2 but forP£0" 5. The minimum
cylinder at rest forp=0.5 and P+1. The flow is unstable above for Pr=1 has now disappeared completely.
the line. There is instability even without magnetic fields but its

excitation is easier with magnetic fields with He4.5. The line is 5 \which determine the basic velocity state and magnetic
marked with those wave numbers for which the Reynolds numberﬁe|’d strength, we seek the minimum real positive Re over
are minimum. realk=0 for which there is a solution far=0.

(see[2]). The magnetic boundary conditions depend on the
electrica_l properties of the walls. The_ transverse currents and IIl. RESULTS FOR CONDUCTING WALLS
perpendicular component of magnetic field should vanish on
conducting walls, hence We start with the results for containers with conducting
walls and outer cylinders at rest but with various gap sizes
db, b, (medium, wide, and smallln all these cases there are linear
drR E:O’ br=0. (120 instabilities even without magnetic fields. We are here con-
cerned with the influence of the magnetic field. If the result-
The above boundary conditior{é1) and (12) are valid for ~ ing eigenvalue with magnetic field exceeds the eigenvalue
R=R;, and forR=R,. without magnetic field then we have only the well-known
The situation changes for insulating walls. The magneticeffect of magnetic stabilization rather than magnetic destabi-
field must match the external magnetic field for nonconductlization. As we shall see, this is indeed the case for suffi-
ing walls. The boundary conditions are differentRR;,  ciently small magnetic Prandtl numbers.
and R=R,,; due to the different behavior of the modified

Bessel functions foR—0 andR—x, i.e., A. Outer cylinder at rest

b—0 2 _ . kRI(kR) In Fig. 2 an outer cylinder at rest is considergd<0) for
6=0, —p(Rbg)=br—— = (13 . _ ~
IR I1(kR) a medium-size gap of=0.5 and for P=1. As we know for
for R=R.. and vanishing magnetic field and fc;y=0.5 the exact Reynolds
Or R=Rin & number for this case is 68.&ee[2])—well represented by
P KRKy(kR) the result for Ha= 0 in Fig. 2. But for increasing magnetic
b,=0, ﬁ(RbR): — bRW (14)  field the Reynolds number is reduced so that the excitation of
1

the Taylor vortices becomes easier than without magnetic
field. The minimum Reynolds number Reof about 63 for
Pr=1 is reached for Hg=4-5. This magnetically induced
subcritical excitation of Taylor vortices is due to the MRI.

. . ) We shall always refer to the minimum Reynolds number as
ditions either Eqs(11) and(12) for conducting walls or EQS. yhe critical Reynolds number and the corresponding Hart-

(12, (13), and(14) for insulating walls determine the eigen- mann number as critical Hartmann number.

value problem of the fornk(u,7,k,Pr,Re,Ha)=0. System For stronger magnetic fields, the instability is suppressed
(9) was approximated by finite differences. The typical num-py the magnetic field—as it must be—so that the Reynolds
ber of grld pOintS used in calculations was 200. The reSUlting']umber grows without bounds. In F|g 3 the same container
determinantl., takes the value zero if and only if the values js considered but for a small magnetic Prandtl number of
Re are the eigenvalues. Since the determinant changes sig0~5. The minimum, which is well pronounced for Pi

on passing through a zero, an automatic search routine mawse, disappears completely. A suppression of the instability
be employed to locate these zeros. For given values, Pr, by the magnetic field can only be observed.

for R=R,,; wherel, andK,, are the modified Bessel func-
tions (cf. [9]).
The homogeneous set of equatig@swith boundary con-
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FIG. 4. The stability line for the flow in a small gap;y(

—0.95) with an outer cylinder at rest and forP0-S FIG. 5. The stability line forp=0.5 and P 1. The outer cyl-

inder rotates with 33% of the rotation rate of the inner cylinder so
that, from the Rayleigh criterion, the hydrodynamic instability for

The results for small and wide gaps between the cylindersia=0 disappears. The minimum Reynolds number is almost the
are presented in Fig. 4 and Table |. The situation is analogousame as in Fig. 2.

to the medium-size gap. The magnetic suppression of the

Taylor-Couette flow InStablllty is Only observed for small Pr. This is the reason Why Chandrasekhar did not find the MRI
in his detailed numerical calculations for small gaps and very

TABLE I. Conducting walls: Minimum Reynolds numbers and small magnetic Prandtl numbers. Figure 4 shows the result

related wave numbers for a flow with outer cylinder at regt ( for the small-gap-small-Prandtl approximation used by

=0). Chandrasekhdi2]. Obviously, the MRI does not work effi-
ciently in the limit of small magnetic Prandtl numbers, i.e.,

7 Pr Ha Re k for too low electrical conductivity.

In order to find a minimum due to the MRI the magnetic

5
025 105 0.0 8.8 L9 Prandtl number must exceed some critical value,,Rrfor
0.25 10 1.0 84.4 1.9 . A ny ..

5 hydrodynamically unstable flow y{<#%“). The critical
0.25 o 2.0 100. 2.0 Prandtl number can be calculated b
0.25 10°5 4.0 157. 2.1 y

5 ~ ~
0.25 10 8.0 350. 2.5 . . .
0.25 10°5 10.0 475 57 This expression provides reasonable accuracy of about
0'25 1 0'0 78 é 1‘9 30% for all calculated casémore than presented hegrd&he
0‘25 1 1'0 71'4 1'8 critical magnetic Prandtl numbers lie in the narrow interval
0.5 1 20 621 17 0.25...1.75 for anyu and%. Thus, if the electrical conduc-
0'25 1 4'0 57'7 1'6 tivity is so small as it is for sodium or gallium then the MRI
0'25 1 6'0 61'9 1'5 cannot be observed by corresponding experiments with hy-

' ' ' ' rodynamically unstable flows.

0.25 1 8.0 68.7 1.4 drodynamically unstable flows
0.25 1 10.0 76.6 1.3
0.95 1 0.0 185 13.6 B. Rotating outer cylinder
0.95 1 10 190 133 Another situation occurs if the outer cylinder rotates so
0.95 1 20 203 12.6 fast that the rotation law no longer fulfills the Rayleigh cri-
0.95 1 40 248 10.9 terion, and a solution for Ha0 cannot exist. Then the non-
0.95 1 60 303 10.5 magnetic eigenvalue along the vertical axis moves to infinity
0.95 1 80 362 8.4 and we should always have a minimum. This is the basic
0.95 1 100 423 7.6 situation in astrophysical applications such as accretion disks
0.95 2 0.0 185 13.6 with a Kepler rotation law. The main question is whether the
0.95 2 10 173 12.8 critical Reynolds number and the critical Hartmann number
0.95 2 20 166 12.0 can be realized experimentally. _The Figs. 5, 6, and Table II
0.95 2 40 185 10.6 present the results for both various Hartmann numbers and
0.95 2 60 220 9.4 magnetic Prandtl numbers for a medium-sized gapzof
0.95 2 80 261 8.4 =0.5. There are always minima of the characteristic Rey-
0.95 2 100 303 7.6 nolds numbers for certain Hartmann numbers. The minima

and the critical Hartmann numbers increase for decreasing
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magnetic Prandtl numbers. Fgr= 0.5 andu = 0.33 the criti- FIG. 7. The main results fop=0.5 andx=0.33: The critical

cal Reynolds numbers together with the critical HartmanrReynolds numbers for given magnetic Prandtl numbers marked
numbers are plotted in Fig. 7. For the small magnetic Prandthith those Hartmann numbers where the Reynolds number is mini-
numbers we find rather simple relations. With mum.

Rm=PrRe, 16 . .
(16) Reynolds number and the corresponding characteristic Lun-

and dquist number are thus independent of the value of the kine-
matic microscopic viscosity.

Ha* = \/PrHa, (17)
it follows C. Wide gap
Let us now vary the size of the gap. In view of the ex-
Rm=21, (18 perimental possibilities, we shall only work for conducting

fluids with the magnetic Prandtl number of sodium, i.e.,

1075, In the present section cylinders with a gap with
Ha* ~3.5. (199 =0.25 are discussed. The outer cylinder is either at rest

(Table ) or it is rotating with a frequency satisfying the
Rm is the magnetic Reynolds number, Rft;;H2/» (or ~ Rayleigh criterion for stabilityFig. 8. In the first case, of
dynamo numberand H& is the Lundquist number Ha course, there is a solution without magnetic field, i.e., for
=BH/ 7eop. For small Pr both quantities do not depend Ha=0. The corresponding Reynolds number is 78.8. Note

on the microscopic viscosity. Both the minimum magnetic@gain that a minimum appears for=Pt which, however,
does not survive the decrease of the magnetic Prandtl num-

TABLE II. Conducting walls: Minimum Reynolds numbers and Per to realistic small values.
related wave numbers for flow with rotating outer cyIindéz (

and

=0.33) and medium-sized gaﬁy(: 0.5) 2.4x10° T
Pr Ha Re k - ]
0.9
104 200 8.5% 10° 1.0 B a0k ]
o x10
1074 300 2.1%10° 1.7 S
1074 350 2.15¢10° 1.7 " i o ]
104 400 2.1 10° 1.7 =
1074 500 2.3810° 1.6 § 1.6x10°} ]
1072 20 8.9%x 10° 1.0
1072 25 2.96x 10° 1.6 s o .
1072 30 2.3 10° 1.7 \
1072 35 2.22<10° 1.8 1.2x10 U —
_ 5 400 800 1200 1600
10 50 2.44< 10° 1.6 HARTMANN NUMBER
1072 70 2.9 10° 1.5 A
102 100 3.9%10° 1.3 i FIG. 8. The stability line for wide gap7#=0.25), P=105,
pn=0.1.
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For experiments with a hydrodynamically stable flow ( 8x107 ' '
> 77), the minimum always exist®.g., for=0.1, see Fig. o8
8). The resulting critical Reynolds number is x.40° and r
the critical Hartmann number is about 600. Let us turn to &
first estimates. Withv=10"2 cm?/s the frequency of the 2 o)
inner cylinder is -
[=]
1.6xX 10 °Re[ 10 cm)? 2 '
f=— - R Hz, (20 &
7( 7) out 1ol
so that
120 5.0x10° 1.0x10* 1.5%10* 2.0x10*
(21) HARTMANN NUMBER

f= - Hz
(Routllo Cm) P
FIG. 9. Small gap =0.95): The same as in Fig. 4 but for a

corresponding to the frequency of about 19 Hz for a con+otating outer cylinder withx=0.95, Pr=10"°. The critical Rey-
tainer with an outer radius of 25 cfi1]. nolds number is extremely high.

For a Hartmann number with the density of liquid sodium
(p=1 glcn?) one finds

Ha=28 B
a= Gaus

hence forp=0.25 and Px 10",

rotation frequency is of order $0Hz). Obviously, magne-
tohydrodynamics Taylor-Couette flows with too small gaps

R = =
10 Ozt Vu(l—n)Pr, (22 between the cylinders are not suitable for experimental work.

IV. RESULTS FOR INSULATING WALLS

For the sake of completeness containers with insulating
ROUtm)' (23) walls must be considered. Thieomplicatedl boundary con-
10 c ditions are then given by the relatioff3) and(14). Surpris-
] ] ) ingly, the basic differences can already be demonstrated by
For a container ofsay 25 cm a field of 500 Gauss yields a the simplest model given in Fig. 10 for the outer cylinder at
Hartmann number of 500. Thus, it is not a problem to reachest and Pe1 (see Fig. 2 for comparisonOf course, the
Hartmann numbers of order 4ith the standard laboratory curve starts with the same Reynolds number for-la The
equipment. Note thrilt the Hartmann number is maximum fo"minimum, however, is deeper than in Fig. 2 and the corre-
the experiment withy=0.5. sponding Hartmann number is higher. Note that the vertical
We have to realize that there is only suppression of thavavelength in the minimum irger than in containers with
instability by the magnetic field for Rr10~° and hydrody- conducting walls. We check these findings under the restric-
namically unstable flowTable ). There is no minimum of tion of small magnetic Prandtl number (1) and for rotat-
the Reynolds number due to the MRI instability. This effecting outer cylinders for smallFig. 11), medium(Fig. 12, and
is a consequence of the low magnetic Prandtl number. As Wide (Fig. 13 gaps and for the outer cylinder at ré¥able
must, the instability disappears for H&® and »=0.25 if  Ill). The results must be compared with the results given in

2=0.1(Fig. 8. However, we find the instability again for a F19S- 6, 8, 9, and Table | valid for conducting walls. For
finite Hartmann number. For Ha500 an instability occurs

Ha=0.39

Gaus&l

for a Reynolds number of about&@For example, an experi- 70 T T T T
ment with a Reynolds number of 8.0° and an increasing
magnetic field should yield the MRI instability between two 68
known very sharp limit§12,13. The rotation frequency of o
the inner cylinder must fulfill the above relatig@l), i.e., a &
container with an outer radius of 31 cm must rotate with a § 66
frequency of about 10 Hisee[14]). @
S e
D. Small gap E
For small gaps and outer cylinder at rest there is no mini- 62
mum due to the MRI for magnetic Prandtl numbers equal or
smaller than Ry, but it exists for Pr» Pmy;;, where Pg;
is given by Eq.(15). If the outer cylinder rotates so fast that 600 ) " 6 8 10
the hydrodynamic instability disappears the minimum again HARTMANN NUMBER
appears due to the MRIFig. 9. However, the Reynolds
numbers are far too high for a technical realizatiamer FIG. 10. The same as in Fig. 2, but for insulating walls.
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FIG. 11. Small gap 4=0.95): The same as in Fig. 9, but for a

rotating outer cylinder £=0.95) embedded in a vacuum. Pr
=105,

small and medium gaps one finds indeed ttiathe mini-
mum Reynolds numbers are smallér) the corresponding
Hartmann number is higher, affid ) vertical wave number is
smaller(i.e., the cells of Taylor vortices are vertically more
elongated for the container with insulating walls. For wide

gaps the critical Reynolds number is slightly higher for the

PHYSICAL REVIEW E 66, 016307 (2002
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FIG. 13. Wide gap §=0.25): The same as in Fig. 8 but for the

rotating outer cylinder £=0.1) embedded in a vacuum. Pr
=10"°.

In the case of hydrodynamically unstable flows we have
6z=Ry,— R, for small magnetic field (Ha0) indepen-
dently of gap size and boundary conditioisee Figs. 2, 10
and Tables I, 1). The cell has the same vertical extent as it
has in radiugsee[15]).

As all our figures demonstrate, the influence of strong

container with nonconducting walls, but the vertical size ofmagnetic fields on turbulence consists of suppression and

the cell is practically the same.

V. VERTICAL CELL STRUCTURE

The unstable Taylor-Couette flow forms Taylor vortices.
With our normalizations the vertical extedtz of a Taylor
vortex is given by

_ %z I (24)
Rout—Rin K 1- ;7

The dimensionless vertical wave numbkeis given in all of
the above figures.

3x10% 21 | T

o
w
m
=
=3
-4
(]
7] 2x10°
[
_
o
z
>
w
o
1x10% ) L
500 1000 1500 2000

HARTMANN NUMBER

FIG. 12. Medium-size gap;(= 0.5): The same as in Fig. 6 but

for the rotating outer cylinder[(=0.33) embedded in a vacuum.
Pr=10"°.

deformation. The deformation consists of a prolongation of
the cell structure in the vertical directigqii16]) so thatdz is
expected to become larger and larddre wave number be-
comes smaller and smal)efor increasing magnetic field.
This is true for P+ 1, but for smaller Pr the vertical cell size
has a minimum for an intermediate value of the magnetic
field (see Figs. 3 and Table. |

The cell size is minimum for the critical Reynolds number
for all calculated examples of hydrodynamically stable flows
with a conducting boundarisee, e.g., Figs. 5, 6, 8, and. 9
This is not true, however, for containers with insulating walls
for which the cell size grows with increasing magnetic field.
For experiments with the critical Reynolds numbers the ver-
tical cell size is generally two to three times larger than the
radial one. The dependence of the vertical cell size on the
magnetic Prandtl number is illustrated in Fig. 14. The
smaller the magnetic Prandtl number the bigger are the cells
in the vertical direction.

The influence of boundary conditions on the cell size dis-
appears for wide gaps between the cylinders. For the small

TABLE Ill. Insulating walls: Minimum Reynolds numbers and

related wave numbers for a flow with outer cylinder at rest (
=0).

;7 Pr Ha Re k
0.95 10°° 0.0 185 13.6
0.95 10°% 20 254 12.3
0.95 10°° 40 427 8.2
0.95 10°° 60 635 5.2
0.95 10°° 80 846 3.8
0.95 10°° 100 1058 3.0
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2.5 ' ' ' ' Plmin iS given by Eq.(15). The Py, is of the order of unity.
This means that the MRI cannot be observed in real labora-
tory conditions (P£10 ).

§ If the outer cylinder rotates so fast that the flow is hydro-

z 20f 1 dynamically stable 4> %), the minimum Reynolds number

i always exists for some magnetic field strength. The coordi-

§ nates of the minima depend strongly on the magnetic Prandtl

. number Pr. The critical Reynolds number scales as 1/Pr

'c‘__5 15k i [17,18 with the magnetic Prandtl number and the critical

x Hartmann number scales as/Pr for small Pr(see Fig. 7.

> Therefore, for sufficiently small values of Pr, both the critical
magnetic Reynolds number Rm and the critical Lundquist

10 . . . . number H& hardly depend on the magnetic Prandtl number.

s -4 -3 -2 -1 o Thus, for hydrodynamically stable flows with small Pr, the
Log MAGNETIC PRANDTL NUMBER critical numbers are almost independent of viscosity.

o _ From Eq. (20) with »=10"2 cné/s, =0.5, and Re

FIG. 14. The same as in Fig. 7 but for the vertical wave number.:zl:L>< 10f for Pr=10"5 and,&=0.33 (see Fig. 6 follows
and medium gap, however, one finds the cells vertically more
X I ) 135
elongated for containers with insulating walls. =
(Rouf10 cm)?

for the frequency of the inner cylinder. Hence, a container
We have shown how the MRI works in Taylor-Couette with an outer radius of 30 cm and an inner radius of 15 cm
flow experiments for fluids with high and low electrical con- requires a rotation of about 15 Hz in order to exhibit the MRI
ductivity and for conducting walls as well as for insulating for liquid sodium with its magnetic Prandtl number of 70
ones. For given microscopic viscosity the electrical conductollowing Eq.(19) the required magnetic field is about 900
tivity determines the magnetic Prandtl number which, in theGauss.

(25

VI. DISCUSSION

present paper, is varied from 1 to 10 The MRI is charac- The MRI has only been considered for axisymmetric dis-
terized by a clear minimum in Reynolds number for a certairturbances. According to the results for small gap and small
(critical) magnetic field strengtfor Hartmann number Pr (cf. [19]), the nonaxisymmetric disturbances might be

However, there are drastic differences between hydrodymore unstable for small magnetic fields. The influence of
namically stable and unstable flows. For hydrodynamicallynonaxisymmetric disturbances on the MRI will be consid-
unstable flows the minimum exists for PPr,,, where ered in a forthcoming paper.
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