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Temperature statistics in two-dimensional stably stratified turbulence
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Using two-dimensional direct numerical simulations, the statistics of temperature differences in stably strati-
fied turbulence are studied. Comparison with passive scalar statistics in similar flows suggests that the stably
stratified case is qualitatively similar to the passive case. Probability distribution functions of temperature
differences between points separated by different distances collapse using the same scalings in both passive
scalar and stably stratified simulations. Some dependence on stratification strength is evident, but the qualita-
tive similarity may be due to the dominance of the large-scale flow in determining the temperature statistics.
We also explore the stratification dependence of the statistics of temperature values and gradients.
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I. INTRODUCTION

The mixing of a passive scalar field in turbulent flows h
been studied in great detail@1,2#. Recent work has suggeste
that large-scale anisotropies in the flow persist down to
smallest scales, and this has indicated a new kind of uni
sal scaling in the statistics of large scalar differences@3#.
This is possibly due to the existence of statistically co
served geometric objects in the flow@4,5#, in which case the
universal scaling may also apply to active scalars. Us
two-dimensional numerical simulations, we find eviden
that this universal scaling does extend to flows in which
scalar~temperature! is coupled to the turbulent dynamics b
buoyant forces in a stably stratified flow. Such flows ha
relevance to many geophysical and astrophysical proble
In our simulations, a stable temperature gradient is impo
on the fluid, which is then stirred to generate turbulen
Using the Boussinesq approximation, the temperature fie
coupled to the momentum equation by an imposed grav
tional acceleration. In the absence of gravity this scena
reduces to the passive scalar case, while increasing the
nitude of the gravitational acceleration strengthens the c
pling between the temperature field and the dynamics. T
coupling influences the large-scale motions most stron
determining a mixing length which is the major factor in t
statistics of large fluctuations. We find that the tails of t
probability density functions~PDFs! of temperature differ-
ences can be rescaled to obey a universal scaling which
eralizes the form proposed in@3# to explicitly include the
largest mixing length. The residual effect of the stratificati
on the dynamics is manifested only in minor changes to
shape of the rescaled PDF tails.

In addition to the statistics of temperature differences,
also study the statistics of temperature values and temp
ture gradients. Again, we find that the largest mixing len
plays a central role in determining the rare events of th
quantities.
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II. PROBLEM DESCRIPTION

To examine the statistics of the temperature field we e
ploy two-dimensional simulations analogous to those
scribed by Celaniet al. @3# and Boffettaet al. @6# for the
passive scalar case. As in@6#, we define the velocity field
using the stream functionc(x,t), from which the velocity
componentsu5]zc andw52]xc are derived. In addition,
the temperature fieldT(x,t) evolves with the flow and
couples to the fluid density via the buoyancy term in t
momentum equation. In the Boussinesq limit, the tw
dimensional Navier-Stokes equations are expressed in te
of the vorticity v(x,t)5¹2c andc as

] tv1J5nn¹2nv2lv2¹2f 2ga]xT, ~1!

whereJ[]zc]xv2]xc]zv is the usual Jacobian,f is a forc-
ing function which adds energy to the flow at small scal
lv is a friction term which dissipates energy at large-sca
g is the gravitational acceleration, anda is the volume ex-
pansion coefficient of the fluid. The temperature is passiv
the couplingga is zero. The friction term (lv) dissipates
energy at some characteristic wave numberkd in the passive
scalar case. This friction term is equivalent to one propo
by Paret and Tabeling@7,8# to parametrize the large-sca
dissipation in their magnetically driven two-dimensional tu
bulence experiments. A linear friction term also arises
two-dimensional magnetohydrodynamic turbulence@9#, in
which casel represents a particle collision frequency. T
forcing function f is a small-scale random source with am
plitude f 0 which generates velocity fluctuations with a cha
acteristic wave numberkf . As in @3# and @6#, the usual La-
placian term for the viscous dissipation is replaced by
eighth order (n54) hyperviscosity, adjusted so as to be ne
ligible except on scales smaller than the forcing scale. T
use of hyperviscosity to improve numerical efficiency is
standard practice, and since the velocity forcing already
troduces a degree of artificiality on the smallest scales
may not be any less physical than normal viscosity. Ho
ever, these details should be of minor consequence in
©2002 The American Physical Society06-1
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SCOTT WUNSCH AND YUAN-NAN YOUNG PHYSICAL REVIEW E66, 016306 ~2002!
work since our attention is focused on length scales lar
than the energy injection scale.

The temperature field is advected according to the us
equation:

] tT1uW •¹W T5k¹2T. ~2!

The diffusivity k is chosen so that temperature fluctuatio
are dissipated at a scale slightly larger than the forcing s
kf . An average temperature gradientg0 aligned with the
gravitational acceleration is imposed by means of jum
periodic boundary conditions, and temperature fluctuati
u[T2g0z are then defined as deviations from the impos
gradient. The velocity boundary conditions are periodic.

The numerical resolution for all the results in this pape
204832048 and the statistics are collected over 10–25 lar
eddy turnover times in each of our simulations. For the p
sive case the friction coefficientl is chosen so that the dis
sipation scale is approximately 1/3 of the box size. F
nonzeroga, the dissipation scale decreases from its pass
scalar value.

In stably stratified turbulent shear flow, the influence
the stratification on the dynamics is characterized by the
chardson number Ri[gag0L2/UL

2 , which gives the ratio of
potential to kinetic energy on the length scaleL. We apply
the same definition to our two-dimensional simulations, w
L[2p/kd being the energy dissipation scale and the integ
scale velocity beingUL[A^w2&. We use the vertical veloc
ity component to defineUL because this is the compone
that transports fluid along the temperature gradient. Beca
the energy input occurs at the small scales in our simulatio
it is also useful to define a forcing-scale Richardson num
Rif given by Rif[gag0 / f 0kf

2 . It indicates the ratio of po-
tential to kinetic energy on the forcing scalekf

21 . In our
work, Rif is an input parameter defining the dimensionle
stratification strength while Ri must be computed from t
observed dissipation scale quantitiesL and UL . As Rif is
increased, the integral scale Richardson number Ri also
creases while the integral scaleL decreases.

As described in@6#, the two-dimensional Navier-Stoke
equations produce an inverse kinetic energy cascade w
k25/3 power spectrum within an ‘‘inertial range’’ bounded b
the large dissipation scalekd

21 and the small forcing scale
kf

21 . Figure 1 shows kinetic energy spectraE(k) for three of
the simulations, compensated by the expected scaling
k25/3. As Ri increases, the inertial range@in which E(k)k5/3

is approximately constant# shortens due to the influence o
the stratifcation on the largest scales~decreasingL). In the
inertial range the kinetic energy at any given length sc
increases slightly with the Richardson number@i.e., E(k)k5/3

increases slightly with Ri#. However, the principal dynamica
effect of the stratification is the decrease in the integral sc
L as Ri increases. There is also a slight asymmetry in
velocity component magnitudes which increases with Ri
ardson number, with (A^u2&) being approximately 30%
larger than (A^w2&) in the highest Ri case.

While a precise determination ofkd from the spectra is
not possible, we estimatekd from the wave number wher
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E(k)k5/3 first reaches 1/10 of its inertial range value. The
estimates are consistent with

L~Rif !5
L~0!

114546Rif
0.67

. ~3!

We use the estimate ofL given by Eq.~3! to rescale our
PDFs from different Richardson number simulations a
demonstrate a universal scaling. In our simulationsL(Rif)
varies by a factor of approximately 6. The dynamical impa
of the stratification is therefore quite significant. Althoug
the velocity spectra are slightly anisotropic due to the asy
metric effects of the buoyancy term, estimates ofL from
individual velocity component spectra differ from the es
mate of Eq.~3! by only a few percent at most. The precis
values of the input parameters (Rif) and computed quantitie
(Ri, L, etc.! for the six simulations presented here are su
marized in Table I.

In this paper we focus on the role of the integral scaleL
in the temperature statistics. The influence ofL is expected
to be strongest when one considers temperature values
deviate substantially from the mean gradient. This is beca
the fluid elements involved must have been transporte
large distance to achieve a large deviation. However,
length scaleL does not play a major role in determining th
statistics of the high probability, small-deviation events~the
core of the PDF!.

III. STATISTICS OF TEMPERATURE DIFFERENCES

We first consider the statistics of the two-point tempe
ture difference, defined asdu(r )[u(x¿r )2u(x). The PDF

TABLE I. Quantities for the simulations with a domain size
2p and a forcing wavelength ofkf;330.

Rif3106 0 0.405 1.22 4.05 12.2 40.5
Ri 0.0 0.9 2.2 3.9 8.1 13.9
A^u2& 0.24 0.21 0.11 0.049 0.019 0.0056
A^u2& 0.63 0.63 0.59 0.53 0.45 0.37
A^w2& 0.60 0.55 0.51 0.44 0.36 0.28
L 2.10 1.68 1.42 0.90 0.60 0.34

FIG. 1. Velocity spectra for three different Richardson numbe
Energy is injected atkf;330 and cascades to lower wave numbe
until reaching the integral scale~which depends strongly on Ri!.
6-2
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TEMPERATURE STATISTICS IN TWO-DIMENSIONAL . . . PHYSICAL REVIEW E66, 016306 ~2002!
of du quantifies the likelihood of observing a ‘‘jump’’ in the
temperature ofdu between two points separated by a d
tancer . While little is known experimentally about the fu
PDF of du, its moments@known as structure functions
S2n(r )[^du2n(r )& for moment 2n# have been observed t
scale with the separationr with exponentsz2n which are
nonlinear functions ofn @10–12#. Based on two-dimensiona
simulations similar to ours, it was suggested by Celaniet al.
@3# that these exponents approach a constant valuez in the
limit n→` due to an underlying PDF with tails of the form

p~du~r !!;S r

L D z

QS du

g0L D , ~4!

where Q(du/g0L) is some universal function. The nond
mensionalization with the integral scaleL is introduced here
to expedite comparisons between PDFs from simulati
with different stratification strengths~and hence differen
L ’s!. This is a generalization from@3#, in which temperature
differences were scaled withu rms , but this change is of no
consequence when comparing PDFs for differentr within the
same simulation~sameL and u rms). The form of Eq.~4!,
utilizing L, is based on the assumption that the largest m
ing length is the dominant factor in determining the ra
event statistics. The significance of the largest mixing len
was previously suggested in a simple stochastic mix
model, in whichQ(du);exp(2Cuduu) and the constantC
was shown to scale as (g0L)21 @13#. The approach of the
structure function scaling exponentsz2n to a constant was
observed in the simple model as well.

Due to the directional asymmetry of the flow, we studi
PDFs of temperature differencesdu between points sepa
rated by a distancer in the horizontal and vertical directions
as well as PDFs constructed from separations in all dir
tions. Similar qualitative conclusions apply to all cases,
the quantitative details are directionally dependent. Figure
and 3 present PDFs ofdu from the passive scalar simulatio
(Ri50) for all directions and for vertical separations on
respectively. Horizontal separation PDFs are omitted
brevity. Both PDFs are presented in the form of Eq.~4!,
showing the collapse of the tails for different values of t
separationr. The exponentz that produces the best collaps

FIG. 2. Scaling of the PDF of temperature differences at pair
points separated by five different distancesr ~in any direction! in
the inertial range of Ri50. The tails~but not the cores! collapse to
the same form.
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is directionally dependent, withz51.28 collapsing the hori-
zontal separation PDFs,z51.12 collapsing the vertical sepa
ration PDFs, andz51.22 collapsing PDFs constructed usin
all separation directions. Our error estimate for the expone
is approximately60.06. The collapse is demonstrated f
five inertial range separations from just larger than the fo
ing scale to approximately 1/5 of the integral scaleL, a
factor of 16. The tails collapse foruduu>g0L, suggesting
that the universal form applies to events in which fluid e
ments initially separated by at least one integral scale~and
hence differing in temperature by at leastg0L) are trans-
ported to close proximity before equilibrating with their ne
environments. The long transport distance required
achieve the temperature differences that obey Eq.~4! sup-
ports the assumption that it is the large-scale motions wh
are primarily responsible for the collapse of the PDF tails

Figures 4 and 5 demonstrate the same collapse of
PDFs of temperature differencesdu in a strongly stratified
simulation (Ri58.1). The exponentsz required for the col-
lapse are the same as in the passive scalar case. Due t
smaller integral scaleL, only four values ofr, up to 1/3 of
the integral scale separation~eight times the smallest separ
tion!, are shown in this case. The PDFs from all six simu
tions described in Table I collapsed when rescaled using
same numerical exponents as in the passive scalar case

f FIG. 3. Scaling of the PDF of temperature differences at pairs
points separated by five different distancesr ~in the vertical direc-
tion only! in the inertial range Ri50. The tails~but not the cores!
collapse to the same form.

FIG. 4. Scaling of the PDF of temperature differences at pairs
points separated by four different distancesr ~in any direction! in
the inertial range for Ri58.1. The tails~but not the cores! collapse
to the same form.
6-3
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SCOTT WUNSCH AND YUAN-NAN YOUNG PHYSICAL REVIEW E66, 016306 ~2002!
These values ofz reported here differ from the valuez
51.4 reported in@3#. However, the value ofz may depend
on many factors, as suggested by a recent numerical stud
thermal plume turbulence in whichz50.8 @14#. The impor-
tant fact is that the same value ofz works for all stratification
strengths~all Ri) in our simulations.

It has been shown that the tails of the PDFs are of
form of Eq. ~4! for both zero and nonzero stratificatio
strengths. Although the scalings withr /L appear to be iden
tical in both cases, this does not imply that the functi
Q(du/g0L) is necessarily independent of Ri. Figure 6 sho
this function for four different Ri at the same value ofr /L
for all separation directions, and Figure 7 shows theQ for
vertical separations only. The nonzero RiQ’s appear to con-
verge to a single shape function, while the passive sc
(Ri50) case has a distinctQ. Hence, when different nonzer
stratification strengths are compared~such thatL is signifi-
cantly smaller than its passive scalar value!, the value ofL
appears to completely control the PDF scaling, sinceQ be-
comes independent of Ri. It is worth emphasizing that t
collapse of the PDFs for different Ri does not occur if t
original form of Eq.~4! proposed in@3# ~using u rms rather
than L) is used. It is not surprising that the passive a
stratified cases have a different shape functionQ, since the
large-scale dynamics are controlled by thel dissipation term

FIG. 5. Scaling of the PDF of temperature differences at pair
points separated by four different distancesr ~in the vertical direc-
tion only! in the inertial range Ri58.1. The tails~but not the cores!
collapse to the same form.

FIG. 6. Comparision of the shape functionQ for different Rich-
ardson numbers for an inertial range separationr .0.08L ~in any
direction!. The shape functionQ for the passive scalar case is di
tinct from the stably stratified cases, which collapse.
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in the former case but by thega coupling term in the latter
case. However, sinceg0L varies by a factor of 6 between th
passive scalar case and the largest-Ri case, the tails o
actual PDFsP(du) differ by many orders of magnitude a
any specific value ofdu, while the reduced shape function
Q differ by less than one order of magnitude. The large m
ing lengthL is therefore the principal factor in determinin
the PDF, with differences in the detailed dynamics of t
passive and stratified simulations playing a secondary role
reflected in the distinct shape functionsQ.

Since the structure functionsS2n(r ) are the moments of
the PDFs, they should scale as

S2n~r !;~g0L!2nS r

L D z

~5!

in the limit n→` if Eq. ~4! is a good description of the tails
of the PDF. Figure 8 shows structure functions for separat
increments in all directions from the Ri50 simulation. The
straight lines on the log-log plot in the inertial range indica
scaling behavior. Similar results were observed in the n
zero Richardson number simulations~with shorter scaling
ranges!. Actual scaling exponents for three different Richar
son number cases are shown in Fig. 9. The exponentz2 of
the secord order structure function has the expected valu
2/3 in the Ri50 case. In all Ri cases the exponents approa
a constant value for largen which is consistent with the
exponent 1.22 that best collapses the PDF tails. The sca

f FIG. 7. Comparison of the shape functionQ for different Rich-
ardson numbers for an inertial range separationr .0.08L ~in the
vertical direction only!. The shape functionQ for the passive scalar
case is distinct from the stably stratified cases, which collapse.

FIG. 8. Structure functions for the passive scalar (Ri50) case.
6-4
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TEMPERATURE STATISTICS IN TWO-DIMENSIONAL . . . PHYSICAL REVIEW E66, 016306 ~2002!
exponent of any finite moment structure function depends
the PDF core as well as the tails, and hence can take a v
that depends on Ri despite the universal scaling of the t

Thus far the importance of the integral scaleL in deter-
mining the statistics of large temperature deviations has b
demonstrated. One would not expectL to play a crucial role
in the statistics of small temperature deviations~the PDF
core!, since the generation of small temperature deviati
does not require transport across great distances. The sc
of Eq. ~4! applies only to the tails and does not collapse
core of the two-point PDFs. A possible scaling for the co
was recently suggested in@14#:

p„du~r !…;S r

L D 2a

FX du

g0LS L

r D aC. ~6!

Again, we have normalized the separationsr and temperature
differencesdu using the integral scaleL, as in Eq.~4!. This
scaling appears to apply only to horizontal separations in
passive scalar case, witha50.55. Due to the asymmmetry o
the PDFs constructed using vertical separations at all Ri~see
Figs. 3 and 5, for example!, the vertical PDFs do not col
lapse, as the degree of asymmetry varies withr. We also find
that the collapse fails in all stably stratified cases, even w
restricted to horizontal separations. These results sugges
the PDF cores depend sensitively on the details of the

FIG. 9. Structure function scaling exponents for three differ
Richardson numbers. The exponents appear to approach a con
in the limit n→`. The exponents are consistent with the limitz`

51.22 inferred from the PDF collapse.

FIG. 10. Rescaled PDFs of temperature valuesu, illustrating the
collapse of the nonzero Ri PDFs.
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namics at all length scales, rather than being governed
marily by the value of the integral scaleL. This is not sur-
prising, since small temperature differences can be gener
by motions much smaller thanL.

IV. OTHER STATISTICAL MEASURES

The simplest statistical quantity examined in passive s
lar flow is the fluctuation of the temperature from the me
gradient,u(x). While it has been observed experimental
that the probability distribution functionp(u) exhibits expo-
nential tails, i.e.,p(u);exp(2uuug0L) for uuu@g0L, in
both grid turbulence@15,16# and pipe flow@17# experiments,
we do not see clear evidence of this in our simulations. F
ure 10 shows PDFs ofu from our simulations at four differ-
ent stratification strengths. The PDFs are normalized byg0L,
and two distinct shapes—one for the passive scalar and
for strong stratification—are evident. The collapse of t
PDFs in the limit of strong stratification is an indication th
the largest mixing lengthL is the major factor in determin-
ing the statistics of large temperature fluctuations as wel
temperature differences.

In the limit of zero separation (r→0), temperature differ-
encesdu(r ) reduce to temperature gradients. The PDFs
temperature gradients,]xu and ]zu, have been observed to
have exponential tails in stably stratified grid turbulence e
periments@18#. Searching for a universal form for the PDF
of temperature gradients, we consider equation 4 in the li
of small separationsr, such thatdu(r ).r ]xu. However,
since Eq.~4! only applies to inertial range separations, w

t
tant

FIG. 11. Rescaled PDFs of horizontal temperature gradients

FIG. 12. Rescaled PDFs of vertical temperature gradients.
6-5



rt

ific
i-
o
n
s

d
e
th
e
a

s.
al
b

e

st
w
b

ive

the
ifi-
hen
ape
ay

as-
The
fied

of
cal-

pare

jor
and
the
m-
be-
ting
ses
in-

ith
by

gy
ash
and
e-
nd

SCOTT WUNSCH AND YUAN-NAN YOUNG PHYSICAL REVIEW E66, 016306 ~2002!
guess that at separations smaller than the minimum ine
separationr;kf

21 the PDFs will no longer scale withr but
rather retain the form of ther;kf

21 PDF. This leads us to
assume the scaling

p~]xu!;S 1

kfL
D b

Q8S ]xu

kfg0L D ~7!

for the PDF of temperature gradients~which applies to
p(]zu) for vertical separations as well!. This expresses the
expected dependence of the gradient PDFs on the strat
tion strength throughL. Figures 11 and 12 show the hor
zontal and vertical temperature gradient PDFs in the form
Eq. ~7! for five different Richardson numbers. The expone
b51.9 was fitted from the three largest Ri simulation
which collapse perfectly, withQ8 taking the form of an ex-
ponential ~as in the experiments!. The passive scalar an
low-Ri simulations do not match perfectly but the differenc
are small. As with inertial range separations, it appears
the large length scaleL dominates the statistics of rar
events even at small scales, but that passive scalar
strongly stratified flows are slightly different in their detail
Again, the different dynamics at the largest length sc
~controlled by the friction term in the passive case, but
buoyancy in the stratified case! may be the source of th
distinction.

V. CONCLUSIONS

The simulations presented here suggest that the stati
of large temperature differences in stably stratified flo
obey a universal scaling determined by the separation
tween the points. This extends the scaling suggested
Celani et al., @3# for the passive scalar case to the act
s

la

et
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scalar regime. Using an integral scale determined from
velocity spectra, PDF tails from a range of nonzero strat
cation strengths were shown to have identical shapes w
rescaled, although this shape differed slightly from the sh
of the rescaled passive scalar PDF tails. This distinction m
be attributed to the different large-scale dynamics in the p
sive scalar case, which are due to the friction term used.
convergence of the rescaled PDFs in the stably strati
simulations indicate that the largest mixing length~integral
scale! is the dominant factor in determining the statistics
large temperature differences, and that the generalized s
ing of the PDFs suggested here may be used to com
statistics between flows with different integral scales.

Similarly, the integral scale was also shown to be a ma
factor in the rare event statistics for temperature values
temperature gradients, as indicated by the collapse of
tails of the rescaled PDFs of these quantities. As with te
perature differences, a slight distinction was observed
tween passive scalar and strongly stratified flows, reflec
the residual effects of the different dynamics in the two ca
after accounting for the consequences of the variation in
tegral scale.
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