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Lattice Boltzmann study of spinodal decomposition in two dimensions
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A lattice Boltzmann model using the Shan-Chen prescription for a binary immiscible fluid is described, and
the macroscopic equations obeyed by the model are derived. The model is used to quantitatively examine
spinodal decomposition of a two-dimensional binary fluid. This model allows examination of the early-time
period corresponding to interface formation, and shows agreement with analytical solutions of the linearized
Cahn-Hilliard equation, despite the fact that the model contains no explicit free-energy functional. This regime
has not, to the knowledge of the authors, been previously observed using any lattice Boltzmann method. In
agreement with other models, a scaling law with the exponent 2/3 is observed for late-time domain growth.
Breakdown of scaling is also observed for certain sets of simulation parameters.
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I. SPINODAL DECOMPOSITION If the dominant phase-separation mechanism is the diffu-
sion of particles down the gradient of chemical potential,
The separation of two immiscible fluids due to spinodalthen a treatment with the Cahn-Hilliard equatid] is ap-
decomposition is a process of significant intellectual and inpropriate. If it is assumed that there is a potential energy
dustrial importance. Much of the theory surrounding the pro+/(¢) associated with the order parameigrthen the evolu-

cess has been summarized by Bfayand Furukawd?2]. tion of the order parameter for particles of mobility and
A two-component fluid may be described by a net fluid giffusivity « is given by

velocity U(r) and the densities*(r) and n8(r) of each

component, at each pointin the fluid. In the incompressible @_ MV V2t

regime, it can be useful to work with the conserved order at “ d¢

parameter¢(r)=n”(r)—nB(r), describing the degree of

separation of the fluids. The process of phase separation c&®llowing the treatment given in, for example, Guntral.

be divided into several regimes, each dominated by a differt4], at very early times the order parameter may be treated as

ent physical process. For many of these regimes, it is thougt& small perturbation around its initial value of zero. Taylor-

that thedynamical scaling hypothestwolds—that is to say, €xpanding the derivative of potential energy to second order

snapshots of a system at two different times will have identhen gives
) b. 2
%0

vV
. 1)

tical morphology when each snapshot is scaled by its single

2
characteristic length scale(T), whose time dependence is @—MVZ —KV2+(9—\£

of the formL(T)~T*. at
If it is assumed that the only parameters determining the

behavior of the system are the dengitykinematic viscosity Taking the Fourier transform,

v, and surface tensiow, then only one length scalgg

=pv?/o and one time scal@y=p?v%/c? may be con- 4_

structed. Lengths and timésand T measured in simulations Zr¢(k,t)=—M k?

may then be described in terms of the reduced variables b0

=L/Ly, andt=T/T,. If dynamical scaling holds for a range ()]

of phase-separating systems, then the evolution of reduced )
domain sizef plotted against the reduced tirehould col- Hence, the Fourier-transformed order parameter has the form

2
_ 2,
Kk+072

)?&(k,t>=w(k>?&(k,t).

lapse onto the same curve for all such systems. B(k,t)="do(k)e*®t. The structural properties of isotropic
phase-separating systems are often described by the circular
A. Interface formation or spherical average of the structure factor, defined as

During the very early stages of spinodal decomposition 1 _
from a deep quench, the order parameter will be very small. S(k’t):<VU (p(r)—p)e’
Small fluctuations in the order parameter will gradually be-
come larger, as particles of a given component graduall
diffuse towards one another, and away from particles of th
other component. The fluid velocity will be small, so hydro-
dynamics may be neglected.

2
> : 4

Yhis description is particularly useful because it may be
%ompared directly with x ray measurements. For phase sepa-
ration in this regime, the structure factor takes the form

S(k,t) = So(k)e2®t, (5)
*Electronic address: j.chin@gmul.ac.uk From Eq.(3), it can be seen thab(k) is positive for wave
"Electronic address: p.v.coveney@qmul.ac.uk vectors smaller than a critical vallg . For such wave vec-
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tors, the structure factor retains the same shape, but grows Il. WHY A LATTICE BOLTZMANN MODEL?
exponentially in magnitude with time; the growth rate is a

functi ) of lenath. If th . | Kin th The lattice Boltzmann model provides a useful way of
unction w(k) of wavelength. €re Is a farge peax in .esimulating hydrodynamics. It is very simple to implement,

structure factor, its. position will stgy the same while it and since most lattice Boltzmann equatitrBE) models
grows, and there will be no change in the dominant lengthyp|y require interactions between nearest-neighbor sites on
scale of the phase-separating system. ~ the lattice, it scales well on massively parallel computers. It
Once domains containing a majority of one particularyyns substantially faster than MD and LGA methods, since it
component have formed, domain growth may proceedheijther tracks every molecule in the system as MD does, nor
through the Lifshitz-Slyozov ripening mechanism, whererequires as much ensemble averaging as LGA. In addition, it
droplets of the minority phase form and ripen through anjs easily modified to incorporate an arbitrary number of in-
evaporation-condensation mechanism, giving rise /& teracting fluid components.
growth law[1]. Lattice Boltzmann studies of spinodal decomposition
Evidence for Lifshitz-Slyozov growth has been seen inhave already been done in tf@9] and three[24] dimen-
Langevin models without hydrodynami¢$,6], dissipative  sjons, producing interactions between the components either
particle dynamicgDPD) [7], Monte Carlo renormalization- py forcing immiscibility in a manner similar to the Rothman-
group studie$8], and lattice Boltzmann studig¢$,10]. Keller method for LGA modelg25,26), or by positing a
macroscopic free-energy functional that must be minimized.
) _ The latter approach has the advantage that macroscopic pa-
B. Viscous hydrodynamic growth rameters such as surface tension may be chosen and supplied
Once sharp interfaces have formed and hydrodynamicgirectly to the model. However, such a “top-down” approach
has become important, one of several growth mechanisngives little information about how the microscopic interac-
may come into play. tions in a system give rise to its macroscopic behavior, and it
In the viscous hydrodynamic regime, the viscous term inis not always clear that such a free-energy approach is valid
the Navier-Stokes equation predominates over the inertidh systems that are far from equilibrium.
term vV2U~1/pV p, for pressure. Assuming that dynami- The “bottom-up” Shan-Chen model described below
cal scaling holds, and taking~ o/L, suggests that ~T. takes a different approach by specifying an explicit interac-
This linear growth law was predicted by Sigdial]; how-  tion force between components, which drives the phase sepa-
ever, San Miguelet al. [12] showed that Siggia’s growth ration. Phase separation has been examined qualitaf@/ély
mechanism would only occur in three dimensions, and not iising the Shan-Chen model, but until now no quantitative
two. Instead, they proposedtH? growth law based around studies have been made. The results of the studies presented
interface diffusion. here suggest that phenomena very similar to those examined
For two-dimensional2D) systems, early-time? growth ~ With free-energy models, including the very early stage of
has been observed in molecular dynanﬂm{)) simulations interface formation, may be studied using the Shan-Chen ap-
[13,14, DPD[15,16), lattice-gas automatd.GA) [17], and  Proach.
a lattice Boltzmann mode]18]. Other lattice Boltzmann

models have producedt&® growth law[10,19, which has i1 2D LATTICE BOLTZMANN MODEL FOR IMMISCIBLE
also been observed in models that did not conserve momen- FLUIDS
tum [8,20].

Lattice Boltzmann models describe the evolution of a
single-particle distribution functioy” defined on a discrete

_lattice of pointsx, where each point is connected to it
If the Reynolds number of the system becomes suffi-

. . o2 . ; ~"hearest neighbor by a vectar. f7(x,t) is proportional to the
C|ent_ly high, the_mertlal term n the Nz_mer-S_tokes equation,, mper of particles of component at sitex at timet trav-
dominates the viscous tserm, a brief d|menS|0_naI analysis aéling with velocity ¢, so that the number density” and
above then suggestst&4® growth law, as predicted by Fu- velocity u” of componentr are given by
rukawal2] for times much larger thai,. Grant and Elder
[21] suggested that for very high Reynolds numbers, turbu-
lent remixing would slow the domain coarsening process to a n(x)= 2>, f7(x), (6)

t'2 law; however, but this has not yet been observed, and it '
has been pointed olii.5] that their assumptions are debat-
able. TUT(X) = T\
A t?3 late-time growth law in two dimensions has been nure El: fixe. )
seen in several numerical simulations, such as Ginzburg-
Landau model$§20], DPD[7], and lattice Boltzmann models Many lattice Boltzmann models use the “lattice Bhatnagar-
[19,18,22,23 Gross-Krook(BGK)” ansatz, where, after a streaming step
The purpose of this paper is to make a quantitative analywhere particles move to adjacent sites, the distribution func-
sis of 2D spinodal decomposition using the Shan-Chen lattion relaxes to an equilibrium valug;(n?,U), chosen to be
tice Boltzmann model, comparing if, where appropriate, withsome function of the macroscopic fluid velocltythat pro-
behavior reported from other models. duces the correct hydrodynamic behavior:

C. Inertial hydrodynamic growth
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1 It can be show33] that the constanﬁ is the squared speed

f7(x+c t+1)—f7(x,t)=— —U[fi"(x,t)— N;(n7,U)]. of sound of the model. Some straightforward algebra shows
T thatn=23;N;(n,U) andU=Z;N;(n,U)c;.

(®) In order to use the Shan-Chen interaction system for mod-

els on such anisotropic lattices, a weighting factor must be

Shan and Chef28] introduced a modification to this model included in the force term, modifying E¢L1) to give

to allow the simulation of fluids with many interacting com-

ponents. The equilibrium value of the distribution function —

for a given component is now set to be a function not of the FO=— (%) 2 oo Tith’(X+C)G. 17)
total fluid velocityU at a site, but of a velocity?, where v '

This may be written as a Taylor expansion:

o

-
vI=u'+ —F, ©® = - x4 L -
p” Y7 (X+C) =" (X) + Ci gd gth” (X) + 3Ci gCi g, 7 (X) + - - -
(18)
u’=(z p_uo> / (2 p_) (10) Substituting this expansion into E¢L7) and using the
o 77 o 77 isotropy property of the lattice tensors to simplify, gives, to
third order,
Here,p?=m’n? is the mass density of componentandF”
is the force acting on that component. The form of the inter- _ o _ 2 O — 1O
action force was given in terms of an arbitrary function F ; o= CSV(UE; V8ot ) (19)
P7(x)=¢[n?(x)] of the density of each component at each
site: c? is the speed of sound, which may be derived from the
B lattice properties.
Fo=—y7(X) D goo 7 (X+G)C. (11) In the Shan-Chen model, the momentum at a site is
o i changed during both the advection step and the collision

step—momentum is not conserved locally. Because of this,

The interaction strength between componemtsind o is  the macroscopic fluid velocity must include contributions
controlled by the Coup"ng Constagtr;_ from this momentum flux. It can be ShOVﬂB4,3Eﬂ that de-

Many lattice Boltzmann models, including the original fining the macroscopic velocity as the velocity at the tempo-

Shan-Chen model, have been performed on lattices on whidi@l midpoint between collision and advection, or requiring
the lattice tensorg™ =3,Ci,.- - Ci, are isotropic up that it go to zero at equilibrium, produces the same expres-

to fourth order, so that isotropic hydrodynamics can be re>10""

covered. The only regular lattice in 2D with the appropriate 1

properties is the hexagonal “FHP” latti¢29,30], although a pU,=> m’>, foci += >, FU. (20)
hydrodynamic lattice-gas model has recently been con- v i 2%

structed on a simpler irregular latti¢81]. Qian et al. [32]
pointed out that the correct hydrodynamic behavior can b
recovered from certain anisotropic regular lattices, provided

that a modified equilibrium distribution is used, incorporat- HQB:Z me >, f7Ci,Cig
ing a weighting factoiT; for each lattice vectog; : 4 i

oimilarly, the momentum flux tensor becomes

ci.U, ULU
N B

ia

c2 2¢2

Ni(n,U):nTi

12 —T 7)1
- CiaCip _ %) | +5 2 Qo T 0P (X+6)CCg.  (2D)

2 oo
CS

(12) It should be noted that the Shan-Chen scheme conserves the

L mass of each component, and the rate of change of total
The weighting factors are chosen such that the tensorg,omentum is proportional to the force:

TEy”l) _.aaniTicial- “Cig, are isotropic to fourth order, that

is to say, m"E a7=o, (22
I
TW=0, (13
T@)=c25,4, (14) > m”Z Q7ci,= > FY. (23
(3) _
Tapy=0, (15) A full derivation of a more general form of the macro-
@) . scopic equations of the Shan-Chen model is presented in the
Taﬂyﬁz CS( 5aﬁ575+ 6(15537_{— 5ay5ﬁ§) . (16) Appendix.
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IV. LONG-TERM STABILITY 0.16
Kendonet al. observed instabilities with a free-energy lat- 014 ¢
tice Boltzmann mode|36], and suggested that any simula- 02|

tion using the algorithm would eventually become unstable.
The Shan-Chen model used here has certainly shown insta-
bilities, for example, for systems with very high surface ten-
sions, which lead to large particle velocities and numerical
overflow. Unconditional instability has not been observed:
systems that became unstable usually did so within the first 4]
few thousand time steps. As a further check on stability, a
phase-separation simulation was performed on axZ®
lattice for 2x 10° time steps without showing any signs of 0 e s
instability. Between time step 1.8510° and time step 2 0 0F 04 06 08 g 12 1418 18222

X 1P, the value in lattice units of the order parameter at any o _ _ _
lattice site differed at most by 4:810 12 FIG. 1. Surface tension in lattice units vs coupling consggfior
p=1.0 andr=1.0.

Surface tension

V. SURFACE TENSION In regimes where only one length scale exis&t)

In order to conduct investigations of spinodal decomposi-ShOUId scale with the same exponent as any other measure of

tion, the surface tensiom must be determined. A convenient domain size.

method for doing this is to evaluate the integral of the dif-

ference between the components of the pressure t¢asor A. Interface formation
defined in Eq.(21)] perpendicular and parallel to the inter-

face: A simulation was performed with the coupling constant

g=1.08, giving a surface tensiar= 0.005, as seen in Fig. 1.
For the period approximately between time steps 1000 and
[ e 5000, no change in the typical domain siRét) was ob-
7= J,m[ni_n”]dz_ J,m[HXX_HVV]dX' 24 served, as can be seen in Fig. 2. However, when the structure
factor S(k) is plotted as a function of a wave vector, the
. . ) ) _ exponential growth predicted by a Cahn-Hilliard treatment
All simulations described here used relaxation times of.gn pe clearly seen, as in Fig. 3.
= r'_’z 1.0, and a mean density of 1.0. For ea_ch value of the e wavelength-dependent growth rai¢k) was deter-
coupling constang =g, =gy [Eq. (11)] used in a phase- ined from the results by fitting a straight line through a
separapon S|mu.la.t|.on', 'the corr_espon_dmg surface tenspn Weraph of logS(k,t) against for each wave vectdk. The form
determined by initializing a simulation on a 1282 grid 5 (k) obtained is close to the quartic functional form sug-
(initially split into two 64X 32 regions containing one single gested in Eq(3), as can be seen in Fig. 4.
component and allowing the interface to relax. The surface™ |, Fig. 5, it can be seen that during this stage of phase
tension was then calculated once fluctuations had died dow%eparation, the sizes and positions of the domains remain
usually after approximately 40 000 time steps. roughly the same, while the interfaces between each domain
gradually sharpen as separation proceeds. Once sharp inter-
V1. SPINODAL DECOMPOSITION STUDY faces have formed, the domains then begin to coarsen
Spinodal decomposition simulations were performed on a 30
256X 256 lattice. The simulations were initialized to contain
a number density of 066 red particles and 056 blue
particles at each site, whew® is randomly chosen from a
uniform distribution in the range-0.025< §<0.025 at each
lattice site, to provide a small initial perturbation in the order
parameter. Since there are no thermal fluctuations in this lat-
tice Boltzmann algorithm, the system would sit in a meta-
stable state forever if both the order parameter and density
were exactly uniform across the system.
A conventional measurement of the typical domain size
R(t) in simulations of phase separation is the inverse first

[\]
(]
T

N
(=3
T

Characteristic length (lattice units)
=} o
~— ﬂ\

o
T

moment of the circularly averaged structure fadtoq. (4)]: o . . . .
0 2000 4000 6000 8000 10000
Time step
R(t)zzﬂ.( > (k) / > kSK)|. (25) FIG. 2. Characteristic lengtR(t) vs simulation time step, both
K Kk in lattice units, forg=1.08,p=1.0, 7=1.0.
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FIG. 3. The structure factdd(k) plotted against wave vectdr ] ) ) ] )
for time step 100Qlowest curvé, every 500 time steps up to time FIG. 5. A one-dimensional cross section of the lattice, showing
step 10 500thighest curve Since the vertical axis is logarithmic the order parameter in lattice units vs position in lattice units, for

the even spacing of the curves demonstrates the exponential growdgveral different time steps during the interface formation stage.
present at early stages of phase separation. Note that the domain width remains constant, while the depth in-
creases.

through other mechanisms; the exponential growth in structhe early-time period, no viscous hydrodynamic growth has
ture factor stops and the structure factor peak moves toward¥en observed, since the Cahn-Hilliard mechanism appears
longer wavelengths. to dominate. For large timess Ty, the t* inertial growth
In addition to the previously detailed analytical treatment,|aw was observed. Note that since the power-law curve is of
early-time exponential growth of the structure factor hasthe formR=(T—T)" rather thanT" (T, corrggponc_ilng to
been simulated in DPD studig87]. Our results show that it the time at which interfaces have formetie t“* regime is
is now also possible to examine the regime with latticeN©t Quite a straight line, as it would bZ/eS were=0.
Boltzmann models. It is perhaps worth noting that the results T dynamical scaling holds in the™" regime, then the
of a free-energy Cahn-Hilliard model are reproduced here b)?escaled structure fa_ctd?r();]) = %(k’lt)/R(t)h of aﬂy 5|mula]:
a model that does not employ an explicit free-energy funC'vlvohr;zr?tp?gtilerzjogg;a:inngtnlek;(?)u Tkﬁswsgrf bgvseterf if‘agge ;)rm
tional in its implementation of interactions between SpeCIGSAccording t0 Porod’s law8], a system with a sufficiently
large amount of interface should produce a structure factor of
the form F(x)ox 2 for sufficiently largex in two dimen-
Simulations were performed for parameters correspondsions; this curve is plotted for comparison. However, for very
ing to reduced times 0.64T/T,=<1000, withT,,,=10000. large wave vectors, Porod’s law is not expected to be obeyed,
The characteristic domain si®(t) was calculated from the since the corresponding length scale is similar to that of the
inverse first moment of the structure factor. The reduced domnterface width.
main sizeR(t)/R, for any simulation was observed to col-

B. Long-time growth exponent

lapse onto the same curve, as can be seen in Fig. 6. During VII. BREAKDOWN OF SCALING
o001 The dynamical scaling hypothesis does not always hold
' ' ' © 7, Fittedcurve —— during phase separation, as has been observed both experi-
0.0009 - e 1
™ 100 j ! " Scaled domain size -
50.0008 - 7 , g 2/3 power 1aw ————
s y h
% 0.0007 | \ E
) b
E ¥ 3
+ 0.0006 \ J
£ va | 10}
g 0.0005 | L \ ] %
@ b o
£0.0004 W | _ 3
= ) i 3
800003 | o ; ] g
2 V ; [id
£ " 1L "
Go.0002 - & ' J
0.0001 | P -
/’7
_,,,/j" N 1 I 1 L
00 0.1 0.2 0.3 0.4 0.5 0.6
k (inverse lattice units) 0.1 L s L L
0.01 0.1 1 10 100 1000

) . Rescaled time
FIG. 4. Growth rataw(k) against wave vectdt compared with

the analytical Cahn-Hilliard form. FIG. 6. Reduced domain size plotted against reduced time.
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10 . for extreme values of the simulation parameters.
In the Appendix, we report a derivation via a Chapman-
10 R 3 Enskog procedure of the general macroscopic equations

obeyed by the model when implemented on any of the lat-
tices described by Qiaat al. [32]. Since the model allows
for many lattice types and an arbitrary number of interacting
fluid components, it should be useful for treating other com-
plex fluids, such as those involving surfactaf9].

SR
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FIG. 7. Rescaled structure factor in the scaling regime, with the
dotted line representing a2 curve for comparison with Porod’s
law.

APPENDIX: MACROSCOPIC EQUATIONS
FROM THE SHAN-CHEN MODEL

. ) The treatment below works for arbitrary numbers of im-
mentally by Tanakd38], and in free-energy lattice Boltz- iqcipie or forced components, and is valid famy of the

mann S|mula§|ons by Wagner z_ind Yeoma@k They all ob- lattices defined by Qiaret al. [32]. Previous Chapman-
served a regime where domains form due to hydrodynamig gy g procedures for the Shan-Chen model seem to have
effects, but too quickly for the order parameter to obtain itSyaen jimited to specific lattices such as FHP, and produced
equilibrium value, leading to a second phase separation g5 croscopic equations containing lattice-specific terms such
side the initially established domains. as the number of nearest neighbors in single-velocity lattices.
The same effect has been observed with this model, foﬁowever, these may be absorbed into the speed of chu,nd

example, with the parameter set1.8765, p=1.0, ¢ hich i . f h . f the lat-
=3.266. The system quickly separates into domains, witri/ivceIC In tumn can be derived from the properties of the lat

smaller circular domains appearing at longer times, leading
to a variety of length scales, as shown in Fig. 8. There is no

clear scaling behavior when this effect occurs. 1. Moments of the equilibrium distribution
By multiplying N by the appropriate number of lattice
VIll. CONCLUSIONS vectorsc;, summing overi, and substituting the relations

A 2D lattice Boltzmann model has been described. Wher{l3_16’ the following moments of the equilibrium distribu-

used to examine spinodal decomposition, the model showedP" €an be found:

agreement with the Cahn-Hilliard theory during interface

formation at very early times. Dynamical scaling was seen m?>, N7 (u)=p", (A1)
for the late-time inertial stage of phase separation, with the '

typical domain size scaling as the time raised to the power of

2/3. However, under certain circumstances, breakdown of o o _ o

dynamical scaling was also seen, as has been observed both m El NP (U)Cia=p U A2
experimentally and in another LBE model. Viscous-regime

dynamical scaling was not observed.

For certain parameter sets, the model was found to remain m"E Ni"(u)ciaciﬁ=p“(c§5aﬁ+ UuUg), (A3)
numerically stable for many time steps, in contrast to a free- :
energy model, which apparently does not display such be-
havior [36]. In our model, instabilities only appear to set in mUZ Nf’(U)CmCiﬁCiy=p”C§(Ua5ﬁy+ UpBay Uy Bu).

(Ad)

2. Power series expansion

The collision operator may be written as a Taylor expan-
(a) Time step (b) Time step (c) Time step (d) Time step sion in time and space:

250 1000 2500 10000
Q7=f7(r+c¢,t+1)—f7(r,t)=(Cijodot I)f{
FIG. 8. Order parameter during breakdown of scaling on a 1 .
256x 256 lattice. Note the many different droplet sizes at late times. +3(Ciadat ) (Cigdptd)fi+---.

016303-6



LATTICE BOLTZMANN STUDY OF SPINODAL . .. PHYSICAL REVIEW E 66, 016303 (2002

The distribution function is written as a power series ex- For notational convenience, define thén-order momen-
pansion in a parameter, used to keep terms of the same tum flux tensors:
order together. This parameter will be dropped from the re-

mainder of this treatment:
Hg(ln) 'an: mazi fia.(n)cial' o Cian1
fr=f7O0+ My 2f0@ 4 ... (A5)
. o . . . mne . =1
The time derivative is also written as a series expansion, @14 adn’
with each term corresponding to a different physical time
scale. Spatial derivatives are treated as first order: I => e
agcap ~ aq- .an-

&t=(91t+192t+~-~. (AG)

_ . . _ Substituting the first-order expansidA7) into the con-
Substituting these expansions into the Taylor series for thgervation relation€22,23 gives

collision operator gives

(o o T aaHZ‘F(? 020, (AlS)
Q7 =(Ciadat a1 7O+ (cigdg+ 1) FH up

+[ 21+ 3 CiadalCigdpt 1) gl g5t oIl = >, FU. (A16)

+ %(Ciaaa_{—alt)]fio-—'— T
Equation (A15) describes the conservation of mass for a

Hence,07=0M+ 7@+ ... where single component. Equatidi16) is an inviscid Euler equa-
(1) o(0) tion for the fluid mixture, with a scalar, velocity-independent
Q7= (Ciadat 1) (A7) pressure proportional to the density:

QP =(ci 05+ 1) TP+ [ dp+ 3Ci 0 04(Ci g0 5+ d1t)
' 'f g ' ) TP 0,C2p+dgpU gt dypu,= > FS.  (AL7)
+§(Cia(9a+a1t)]fig( ) (A8) 7

In order to produce a set of macroscopic equations, the Requiring continuity to second order gives
leading-order distribution function is set to be the equilib- o(1) oo 1 - e, 12 o
rium distribution about the macroscopic fluid velocity de- Iollg ™+ 9aup”+ 30001l g+ 011dalla+ 393,07 =0.
fined in Eq.(20), i.e., (A18)
f7O=N;(n?,U). (A9)  Equation (A15) can be differentiated to givelyd,lly
= — #2,p”; substituting into(A18) gives
SubstitutingU into the moment$A1,A2) of the equilibrium

T_ Tl o 2 o
distribution function shows that the density and macroscopic Inp”= = I = 30,0510+ 303,07, (A19)
momentum may be found from the first-order equilibrium i o .
distribution function: Summing overo, then substituting EqtA13) to get rid of
the term inl17(Y), gives
meY, f7O=p7, (A10)
| Iatp=30a2 Fo—30a0pllapt 3 4. (A20)
g m"zi f7ci,=pU,,. (A1) The terms on the right-hand side now cancel out upon sub-
stitution of Eqgs.(A15) and(A16), giving
However, the full distribution functiotA5) must still pro- 9yp=0. (A21)

duce the single-component density=;f and the kinetic
momenturm?2;f{’c; . This requirement leads to restrictions T4 second order, conservation of momentum gives
on the higher-order terms in the expansion:

B ISR I  BASS RSO | S TP | P | B

aBy
m*fEi ffMW=0 for n>0, (A12) L 12M7=0. (A22)
1 The first-order terms may be simplified by substituting the
> m7Y g, =~ > > F7, (A13) first-order terms in the BGK operator:
ag | [0
f7 W= —79(c; 0, + 91 7O (A23)

> moY, 7MW, =0 for n>1. (A14)
I

(o8

This gives
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= — 779,117 5~ 779,117, (A24)

Hgﬁ(l): Tﬂ[&yﬂgﬁy-i- (91tl_[g’3]. (A25)

Substituting into the momentum equatioh22) gives
Iod19=(77=3) 90 N1 5, + (77— 3) I3, 11

+(277=1) 93511 (A26)

PHYSICAL REVIEW E566, 016303 (2002

I+ 311 =2 X7(17=3) 50 M1 g+ >, FO.
(A27)

Here, the mass fraction of components written asx’. This
can be expanded to give

Following, for example, Wolfrani29], the last two terms The kinematic viscosity is given by
are dropped since they become negligible for a sufficiently

small Mach number. This is not an entirely satisfactory
move—Qian and Orszaf@0] pointed out that these two
terms give rise to a term cubic in the velocity, whose mag-

1 2
HatUpdpUat da(C2p)— 2 Fo|=vdgigU,.
(A28)
v=c2Y, x’(r7-1). (A29)

The force term for immiscible fluids is usually treated by

nitude relative to the other terms varies roughly as the squargypstituting the continuum approximation into E9).

of the Mach number. Suggestiof4l] have been made to

correct this effect.

It is perhaps worth noting that the force acting between
components igto second order in the expansjopropor-

Recombining the above equation with the first-order mo-ional to the concentration gradient because of the lattice
mentum equatioltA16), summing over components, and us- isotropy. It is possible that expansion beyond second order
ing all,=0,11,+0d,1I1, gives a Navier-Stokes equation may provide a method for treating surfactant interactions as

for an incompressible low Mach number flow:
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