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Convective heat transport in compressible fluids
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We present hydrodynamic equations of compressible fluids in gravity as a generalization of those in the
Boussinesq approximation used for nearly incompressible fluids. They account for adiabatic processes taking
place throughout the celthe piston effegtand those taking place within pluméhe adiabatic temperature
gradient effegt Performing two-dimensional numerical analysis, we reveal some unique features of plume
generation and convection in transient and steady states of compressible fluids. As the critical point is ap-
proached, the overall temperature changes induced by plume arrivals at the boundary walls are amplified,
giving rise to overshoot behavior in transient states and significant noise in the temperature in steady states.
The velocity field is suggested to assume a logarithmic profile within boundary layers. Random reversal of
macroscopic shear flow is examined in a cell with unit aspect ratio. We also present a simple scaling theory for
moderate Rayleigh numbers.
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I. INTRODUCTION ible fluid columns(even far from the critical point convec-
tion sets in when thermal plumes continue to rise upward
Recently much attention has been paid to organized fluiddiabatically. This occurs when the applied temperature gra-
motion in turbulent convection in the Rayleigh+Bed ge- dient|dT/dZ is larger than the adiabatic gradig®],
ometry [1-7]. Although the conventional hydrodynamic
equations are constructed farearly) incompressible fluids ag=(dT/dp)spg, (1.2
[8], we may mention a number of convection experiments in
compressible one-component fluids in the supercritical reynich is equal to 0.034 mK/cm fofHe and 0.27 mK/cm
gion[9-19], together with those in noncritical fluids such as ¢, CO.,. This is the condition that the entropy=s(T,p) per
water or Hg[20—-22. In these studies the Nusselt number Nuunit mass decreases with height @s'dz=(C,/T)[dT/dz
representing the efficiency of convective heaF transport has. a,]<0, under which the entropy of fluid glements adia-
been measured at large values of the Rayleigh number Rayiically convected upward is larger than that of the ambient
defined by fluid. More precisely, Gitterman and Steinbdi8@] found
that the convection onset for compressible fluids is given by
R&°"™Ra., where R&" is a corrected Rayleigh number
defined by

Ra= a,pgL®AT/7D. (1.2

Hereg is the gravity constantAT=Ty,o— Ty is the differ-
ence between the bottom and top temperatureslasdhe
cell height. As the critical point is approached in one- Re*"=(appgL®/ nD)(AT—agl) =Ra(1-agL/AT).
component fluids, the thermal expansion coefficien 1.3
=—(dpldT)p/p grows strongly ag”” (in the same manner
as the isothermal expansion coefficiéqit and the isobaric
specific heaC,), the thermal diffusivityD decreases as *,
and the shear viscosity is nearly a constant. Her¢is the
thermal correlation length growing a3 /T.—1) " on the
critical isochore withy=1.24 andv=0.625. Hence, in the (AT)on=agL +RaD 7o/(gpa,lL?), 14
critical region, Ra can be extremely large; for example, Ra

~10" even for not very longL(=10 cm). The Prandtl as was confirmed in $H11] and in *He [16]. In Eq. (1.4)
number P& »/pD was in the range of 1-100. the ratio of the first to the second term behaves as

High compressibility of supercritical fluids gives rise to L*/(T/T.—1)”*” and can exceed 1 & T even for small
some unique features not encountered in incompressible fli-. In the experiment orfHe [16] this was the case in the
ids. rangeT/T,—1=<0.05 forL~1 mm.

(i) First, the transient behavior after application of a heat (iii) Third, in steady convective states, experimental
flux from the bottom is strongly influenced by the so-calledcurves of Ra (Nu-1) vs R¥" were collapsed onto a single
piston effect[23-3(, as revealed by recent high-precision universal curve for various densities and abdyg12] and
experiments on®He [17] and reproduced by subsequent for various average reduced temperatures on the critical iso-
simulation[31]. chore[16]. These empirical results are highly nontrivial, be-

(i) Second, as, grows, the usual mechanism of convec- cause Nu can in principle depend on Ra, Pr, agd/AT,
tion onset R&Ra.(=1708) is replaced by that of the while Nu is a function of Ra and Pr for incompressible flu-
Schwarzschild criteriofi32,33. That is, for large compress- ids, neglecting the effects of confinement.

This is a natural consequence because the effective tempera-
ture gradient seen by the raising plumes is givenAlly/L
—ag4. At the convection onset we thus have
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For various fluids under a relatively largaT>a4L Il. THEORETICAL BACKGROUND
(where R&"=Ra), data of NerQL/NAT have been fitted

. . A. Hydrodynamic equations
to a simple scaling law,

We consider a supercritical fluid on the critical isochore in
a cell with the bottom plate at=0 and the top plate at
Nu~ Ré&, (1.5 =L. Thezaxis is taken in the upward direction and the total
fluid volume is fixed atV. The temperature disturbance
] _ o oT(r,t)=T(r,t)— Ty, measured from the temperaturg,, at
whereQ is the heat flux and is the thermal conductivity. ihe top boundary is much smaller in magnitude tHag,
The exponena has been in arange from 0.28 to 0.31 and, in_T_ Hereaftere will be used to denote the reduced tem-

particular, a theoretical vglue 2[2,4] was generally consis- perature at the top boundary, which satisfies
tent with data for Re 10*? [9—18,2]. Moreover, measure-

ments of the patterns of isothermal surfa¢@6] and the €=Tip/Tc—1>ATIT,. (2.1
velocity [21,22 have been informative on plume motion and

a large-scale circulating shear flow in small-aspect-ratio cell$Ve assume that the gravity-induced density stratification is
[19,21]. Several authors have also performed numericahot too severe such that the thermodynamic derivatives are
analysis of convection at large Ra in two dimensi¢@®)  nearly homogeneous in the cell. This is satisfied when
[35—-39 and in three dimension@D) [40-43. Even in 2D |p/pc.— 1|~ (dp/ dp)+gL < €® with B=0.33[44]. This condi-
salient features in the experiments have been reproduced. tion is rewritten as

these simulations, if the temperature is averaged over a long

time, the temperature gradient is localized in thin boundary T r>alliT,. (2.2

layers with thicknesg'; related to Nu by i . .
In the theoretical literature on convectip®—7], the top

and bottom temperaturel,,; and T,,, are constant param-
Nu=L/2¢+. (1.6)  eters. However, in most of the recent convection experi-
ments, especially where the heat transport is to be measured,
the heat flux at the botto®= —\(dT/d2),-, andT,, have
Both in 2D and in 3D(if visualized from sidg the plumes been fixed. Furthermore, if the top and bottom walls are
tend to be connected from bottom to top for large Pr becausgade of a metal with high thermal conductivity, the bound-
of slow thermal diffusion, while they become diffuse far ary temperatures become homogeneous in the lateral direc-
from the boundaries for small Pr. In the 3D simulations withtions (unless local temperature changes are too).fagten
periodic or free-slip sidewallp42,43, local boundary shear T, (t) and henceAT(t) are functions of time only. This
flows were observed between incoming plumes and outgoin@iealization is more justified under cryogenic conditions than
networks of buoyant sheets in horizontal planes close to that room temperatures, because the relative conductivity of
boundaries. the plates is much greater at low temperatures. Metcalfe and
In this paper we will derive and examine hydrodynamic Behringer{45] performed linear stability analysis of convec-
equations for compressible fluids under gravity in the supertion onset under this fixed-heat-flux boundary condition. In
critical region, in which the oscillatory motion of sound has the nonlinear regime, it is of great interest how the boundary
been averaged o{i23]. Since the time scale of convective condition influences the boundary layer thickness, the plume
motions is much longer than that of the acoustic waye generation, and the boundary shear flow.
=L/c (typically of order 10* s forL~1 cm), such a de- In equilibrium the pressure gradient is given bypg=
scription is convenient theoretically and is even indispens-p g. In nonequilibrium we set
able for numerical analysis. Our dynamic equations are a
natural generalization of the usual hydrodynamic equations p(r,t)=po—pcdz+ p1(t) + Pinn(r,t), (2.3
[8]. Our new predictions are unique particularly when the
piston effect comes into play, as has been demonstrated imherep, is a constantp,(t) andp;,, are the homogeneous
the previous simulatiof31] relatively close to the convec- and inhomogeneous parts induced &Y, respectively. That
tion onset. This paper will present 2D simulations of ouris, we assumépj,, =0, where(---)Y=[dr(---)/V repre-
hydrodynamic equations for much larger’Raboth in tran-  sents the space average in the cell. Theris related to the
sient anddynamical steady states. Even in steady states, wespace average afT by
will find some characteristic features of turbulent states,
which have not been reported in the previous simulations pl(t)=((9p/(9T)p(5T>(t), (2.4
[35-37,40-43 such as the logarithmic velocity profile of
the velocity near the boundaf4] and random reversal of which follows from the thermodynamic relatiordp
the large-scale circulating flow in small-aspect-ratio cells=(dp/dT),dT+(dp/dp)rdp and the condition that the
[19,21]. We will also point out that individual arrivals of space average of the density deviation vanis&pX=0).
plumes at the boundaries cause global temperature fluctult-is important that the combinatiop(r,t) + p.gz is nearly
tions in the cell via the piston effect. The resultant noise levehomogeneous dip;(t)|>|pinn(r,t)| for fluid motions much
of the temperature fluctuations grows as the critical point isslower than the acoustic timg.=L/c(c~10* cm/s being
approached. the sound velocity[23,24,48.
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Now we derive the equation fafT from the heat conduc-
tion equation

d
—+v-V

P\ 5t

(2.9

>s=)\V25T,

wheres(r,t) is the entropy per unit mass. Here it consists of5p:p_<p>

the equilibrium pars.{z) with

(2.6

d as .
d—zseq(z)=— % Tpg=T Cpay

and the nonequilibrium deviation,

aT
5s(r,t)=T_lcp[5T(r,t)— %) pl(t)} (2.7

With the aid of the thermodynamic identitydT/dp)s
=(dT/adp) ,(1—1lys), we rewrite Eq(2.5) to obtain the de-
sired equation folT,

‘9+ V-DV?
o v

d
) 5T=—agw, tas5:(5T), (29

whereD=\/C, is the thermal diffusivity and

ag=1—vy. . (2.9
The specific-heat ratigrg behaves as
ys=Cp/Cy~e 7" >1, (2.10

whereC,~¢~ 7 andCy~ €™ * are the specific heatper unit
volume at constanp andV, respectively, witha=0.1. The
first term on the right-hand side of E@2.8) arises from

dsgq/dz. Inside plumes the temperature is adiabatically low-

ered if they go upwardu(,>0), or adiabatically increased if
they go downward«,<0). In this way this term suppresses
upward motion of warmer plumes from the bottom and
downward motion of cooler plumes from the top, resulting in
the Schwarzschild criterion of convection ongtte adia-
batic temperature gradient effecOn the other hand, the
second term arises from,(t), leading to the piston effect
[24]. It is worth noting that the space integral of Eg.8) in
the cell becomes

d
VC\,a(&T):)\j dan- VT, (2.11)

where use has been made (@f)=0. The right-hand side

represents the rate of heat supply from the boundary surfac

whereda is surface element and is the outward surface
normal. Its time-integration is the total heat supply expresse
asVp(§s), resulting in

CU(STY(1)=p(S5)(1), (2.12

which also follows from Eq(2.4) and the space average of
Eqg. (2.7). The appearance @& on the left-hand side of Eq.

i
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o (8s)(1). (2.13

pT
ST(r,t)=—=98s(r,t)+pT
Cp

1

Cp
This relation holds even in gravity ifs is the deviation of
S—Se(2) as in EqQ.(2.7). In addition, the density deviation
is written in our approximation as
Sp=pK1g(z—LI2) = pap(5T—(8T)),  (2.14
whereKt=(dp/dp)1/p and we have sgtsp)=0.

Since C,>Cy near the critical point, the homogeneous
part of 8T (second termin Eq. (2.13 can easily dominate
over the inhomogeneous pdfirst term even whensés is
localized near a heated wall. Indeed, if a thermal disturbance
is produced within a thermal boundary layer with thicknéss
near the boundary, the ratio of the homogeneous part
(<(5s)) to the localized inhomogeneous partds) in Eq.
(2.13 is of order (ys—1)I/L wherelL is the characteristic
system length. Temperature homogenization is achieved
when (ys—1)I>L. By setting £ =(Dt;)"?> we obtain the
time constant of this thermal equilibratidthe piston timg
in the form

t;=L%/D(ys—1)2 (2.15

Next we consider the momentum equation for the velocity
field v(r,t). On long time scales, sound waves decay to zero
and the incompressibility condition

V-v=0 (2.16
becomes nearly satisfie@t,,mo [46]. Then the dissipation
of v is produced by the shear viscosity and the usual
Navier-Stokes equation in the Boussinesq approximation
may be set up in the forrfi]

|

where the inhomogeneous pat, ensures Eq2.16), €, is
the unit vector along theaxis, ando(=(p)) may be treated
as the average density. The two equati¢28) and (2.17)
are our fundamental dynamic equations closed under Eq.
(2.16. In the conventional theoryl,8], Eq. (2.17 has been
used, but the right-hand side of E®.8) vanishes.

As another characteristic feature near the critical point,
the Prandtl number behaves as

Pinh
—+v-V|jo=—-V—+
Pl v . a

205Te,+ gv%, 2.17)

Pr=n/pD~¢e™". (2.189

Bor example, P 350 atT/T,—1=10 2in 3He. This means

at the time scale of the thermal diffusion is much slower
an that of the velocity in the critical region. Based on this
fact, the simulation in Ref[31] was performed using the
Stokes approximation in which the left-hand side of Eg.
(2.17) is set equal to zero. Good agreement with the experi-
ments [17] was then obtained for Rd/Ra.—1<5 at ¢
=0.05.

(2.12 is a natural consequence under the fixed volume con- For P&-1, let us estimate the upper bound of'®ebelow

dition. Notice that Eq(2.7) can also be written as

which the Reynolds number Re is smaller than 1 or the
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Stokes approximation is allowable. The characteristic tem-

perature variation 4T), changing perpendicularly to the
axis and the characteristic velocity fiedd, are related by

Uplw(appcg/ sz)(m’h ) (2.19

wherek~2#/L for roll patterns. If R&"/Ra. is consider-
ably (but not much larger than 1, §T), /AT is of order 1
(but somewhat smaller than.IThen we obtain

v~ (R&"/Ra;)DI/L. (2.20
Thus the small Reynolds number regime is written as
R&°"/Ra.<Pr, (2.21

where use has been made of-Reg,Lp/ 7. For Pe>1 there

is a sizable range of RY" in which the Stokes approxima-

tion is justified. In passing, for @R&°"/Ra.—1<1, the
theory of the amplitude equatidd7] predicts

vpl/D~(ST), IAT~(R&Ra,—1)"%  (2.22

from which we have Nu-+R&°"/Rg,— 1 because the con-

vective heat current is of ord€r,(5T) vy . In the following
section we will estimate , for a much larger Ra.

Analogously to Eq.(2.19, the inhomogeneous pressure

deviationpj,y is estimated apj,n~ (a,pc9/K)(6T), . If we
assume p(t)~(dp/dT),AT from Eqg. (2.4 and AT
~(8T), asin Eq.(2.20), we find thatp;,,/p1(t) is of order
€ 7a4/Tck and is much smaller than 1 from E@.2). This

PHYSICAL REVIEW E 66, 016302 (2002

1
FKzzf drpuv?. (2.25
Its time derivative is calculated from our dynamic equations
(2.7 and(2.17) in the form,

d
a((ﬂ:‘i‘ Fr)=— f dr(emTt €is)

+)\T’1f da[ sT(n-VsT)], (2.26

where ey, and €,;5 are the thermal and viscous heat produc-
tion rates(per unit volume [34], respectively, defined by

en=NT Y V&T|? (2.27

€yis= 7,%_) (9v;ildx;)2. (2.28

In the second term of Ed2.26) the surface integral is over
the boundary of the celh being the outward unit vector. In
terms of the heat flux from the botto@, it is expressed as
VQAT/TL if the top temperature is fixed.

C. Basic relations in steady states

We consider steady convective states in the Rayleigh-
Benard geometry, in which the flow pattern is either time-
independent not far above the convection onset or chaotic at
larger Ra. We treaAT as a constant parameter. Under the

estimation justifies the assumption of the homogeneity otondition of fixed heat flux at the bottom, howevarT (t)

op(r,t) + p.gz made below in Eq(2.4).

B. Free energy and heat production rate

In the presence of small deviations of the temperature an
the density,6T and ép, around an reference equilibrium

state, we have an increase of the free energy functiéhal

Up to the bilinear order of the deviations, it is of the form

(23,48,

5F=f dr

Cy )
ﬁ((ﬂ—) +

(8p)>+ 925;)1,
(2.23

2p°K1

where the third term is the potential energy in gravity. All the
deviations are assumed to change slowly in space compared

with the thermal correlation length. If we expressép in
terms of 6T as in Eq.(2.14), we obtain

— 1 d 2 2
5F—ﬁf [[Cp(ST—(STH2+C\(ST)?], (2.24

where the constant term is omitted. We notice that de-

creases dramatically foys>1 in the process of adiabatic

exhibits rapidly varying fluctuations in chaotic states. In this
case AT in the following relations represents the time-
average ofAT(t). The steady state averag@ever space and
time) will be denoted by - - - ) to distinguish them from the
gpace averages - -) used so far.

We make Eqgs(2.8) and(2.17 dimensionless by measur-

ing space and time in units df and L?/D and settingr
=L"!r andt=DL 2. The temperature deviation is written
as

ST(r,\)/AT=1-Zz+Ra A1), (2.29

wherez=2z/L. The dimensionless functio becomes non-
vanishing in convective states and obeys

d - - d
= +V.V- V2> F=R&"V,+ asﬁ(f-}, (2.30

whereV =LV is the space derivative in units bf Then the
(average heat flux at the bottom is written a®)
=(MNAT/L)[1+Ra f,], where

fr=—((9F192)30)s- (2.31

temperature homogenization. Furthermore, in the presence of

velocity field, the total free energy change is the sundief
and the kinetic energy of the velocity field,

The f, is a function of R&" and Pr. The Nusselt number
Nu=QL/NAT is expressed as
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Nu=1+Ra f,. (2.32 equations for incompressible fluids, the right-hand side of
Eqg. (2.35 becomesathu, while Egs.(2.36 and(2.37) re-
As the boundary condition of we requireF=0 atz=0 and  main the sam¢2]. In addition, Eq.(2.35 indicatesay,> ay
1 if Ty, and Ty, are fixed. However, ifTi,, and Q at the  in convective states in which Nul. This is consistent with
bottom are fixed, we haveF=0 at z=0 and 9F/gz the convection criterion Rd"™>Ra,. We obtain the averages

—Ra(Nu-1) atz=0. The dimensionless velocity(r.?) of the two dissipation rates in Eq®.27) and(2.28 by mul-

_ tiplying A/T and # to Egs.(2.39 and (2.36), respectively.
=(L/D b ; o .
(L/D)v obeys Using the thermodynamic identity a,=C,(dT/dp)s, we
P obtain
—| =+V-V |V=-VP, -+ Fe,+ V2, (2.33
Pr\ 5t o (em)s+ (€vie)s=T \aZ Nu, (2.39
whereP,,, ensuresV - V=0. ((emys— T Nad)/(egs=am/ag—1.  (2.39

Here we assume that the piston term, the second term on )
the right-hand side of Eq2.30), can be neglected in steady The first relation(2.38) also follows from the average of Eq.
states. Fore=0.05, the piston term in steady states is less(2.26. The second relatiof2.39 holds only in convective

than a few percents of the convection teemV F in Eq. states (No-1) wheree,s>0. For the usual hydrodynamic

(2.30 except at the boundaries. It thus produces no Sigmﬁ_equations of incompressible fluids the right-hand side of Eq.

cant effects on steady state heat transpomtNu), while it~ (2-39 is replaced byCpan/Tappg=an/ag.
can be crucial in the initial transient stafgl]. Then, if the
piston term in Eq(2.30 is neglected, Eqg2.30 and(2.33 lll. SIMULATION RESULTS

become of the same form as those of usual incompressible perform numerical analysis of Eq€.8) and(2.17) in
fluids except that R" appears in place of Ra. At much 2D using parameters dHe in a cell withL=1.06 mm. The

smallere, howeyer, this assumption might be quegtionablereduced temperature is=0.05 (except in Fig. 11 where
bgcause th'e noise part o) grows ase—0, as will be 7e=22.8, Ta,=26.9, \=1.88x 104 ergs/(cd sK), D
dlscus_sed in the following section. We_may conclude the:5.42>< 1075 cm?/s, and P=7.4[16,17,31. The condition
fqllowmg (at Igast for ngt very smak). ('),It follows the (2.2) is well satisfied. The piston timg, in Eq. (2.15 is
Gltterm_an—Stelnberg cntenon Ra> R'z.aC in convective given by 0.42 s. We apply a constant heat fl@xat the
states in the compressible cg$2,33. (ii) It is more non-  p446m z=0 for t>0 with a fixed top temperaturg, at z
trivial that the combination =L. In steady states we have ®R4Ra,=0.90AT/a,L
Ra(Nu-1) = f, (R&°", Pr) (2.34) —1], where agL=3.57 uK. Thus (AT),,=7.6 uK and
Qon=13.5 nW/s at the convection onset. We assume homo-
should be a universal function of R4 and Pr from Eq. geneity of the boundary temperatur@s,, and Ty, in the
(2.32 in agreement with the experimerfts2,16. Notice that  lateralx direction.
Ra(Nu-1)=f,(Ra,Pr) holds for incompressible fluids in In the experiments the aspect ratio was 57, so in the simu-
terms of the samé, . These experiments and more deci- lation [31] the periodic boundary condition was imposed in
sively that by Ahlers and X{i15] indicate thatf, should be the x direction with period 4. This period was chosen be-
nearly independent of Pr once Pr considerably exceeds 1. lgause the roll period is close td_Zslightly above the onset
the 3D simulation by Verzicco and CamuB4i], Nu became  for infinite lateral dimensiofil]. Then, in steady states in the
independent of Pr for Pr0.5. Theoretical support of this region 1<Q/Q,,<5, the linear relation
behavior using scaling arguments was presented in[REf.
In steady states we may also derive some exact relations Q/Qon=1=Ao[AT/(AT)on— 1] 3.1
for variances amongT andv. Using the dynamic equations
(2.8) and (2.17) we calculate the averages of5T)?/dt,
dv?lat, andd(z8T)/dt to obtain

was numerically obtained witlh,=2.2 in good agreement
with the experiments. From Ne[Q/AT]/[Qon/(AT)onl,
the behavior of Nu is known from Ed3.1) in the range 1

<|V5T|2>s:at2h+ ag(an—ag)(Nu—1), (2.35 <Q/Qy:=5. In particular, slightly above the onset, we have

Nu—1=A,(R&*"Rg,—1)+- -, (3.2
> ((dvildx)D=RaD/L?)Z(Nu—1). (2.36
ij (il 7)%)s whereA;=0.64 in fair agreement with the theoretical value
) ) (A1=0.70 for Pe=7.4) [49]. This behavior is also consistent
We also obtain a cross correlation, with Eq. (2.22.

In this work we are interested in fluid motion for rela-

6T)s=anD(Nu—1), 23 . :
(v20T)s=arD(Nu=1) (2.39 tively large Ra up to X 1. In the following we show two

which is nothing but the average convective heat fliix C,, sets of the numerical results. In the first set, periodic side-
is multiplied. Herea,=AT/L=—(d6T/d2) is the average Walls are assumed at=0 andx=L, with periodL, =4L as
temperature gradient arg is the adiabatic temperature gra- in Ref.[31]. In Table | the steady state values&T, R,
dient defined by Eq(1.2). If we use the usual hydrodynamic Ra, Nu, and R are written, where ®is a Reynolds number
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TABLE |. Parameters ag=0.05 in steady states for periodic (a) 0.4 T — T T T

sidewalls. _/"/ d — : Simulation st fixed volume

’ : Simulation at fixed pressure

AT . : Theory at fixed volume
Q(uWlcms)  (mK) R Ra Nu-1 Re < without gravity
E : Experiment

0.0458 0.0154 3.4810° 6.69<10° 0.714 0655 = 1
0.965 0.135 5.7%¥10" 58710 3.04 3.035 = g
122.2 6.89 2.9%10° 2.91x10° 929  7.89 <

to be defined in Eq.(3.11). They are obtained forQ
=0.0458 uWicn? (=3.4Q,,), 0.965 uWi/cn?
(=71Q,y, and 122.2uW/cm?(=9%X10°Q,,). For the
smallestQ the system tends to a time-independent convec-
tive state, as already studied in RES1], while for the other (b) 16 . ——— T T
values ofQ the system tends to a chaotic state without mac- : Simulation at fixed volume
roscopic boundary shear flow. In the second set, we perforn : Simulation at fixed p
simulations forA=1, 2, and 3 with insulating and rigid side- R 12 y R : Theory at fixed volume
walls atx=0 and AL, at whichv=0 and through which é 10} A without gravity

el

there is no heat fluxdéT/dx=0), as will be presented in
Figs. 4, 12, and 13. &

In addition, if the temperature difference will be simply <«
written asAT, it should be taken as the time average of
AT(t) in a steady state. We also assume that Pr is consider
ably larger than 1 in the following arguments.

F

o

L I

A. Transient behavior

We show numerically calculateSiT(t) = Tpot) — Top for FIG. 1. AT(t) vs time(solid line) calculated from Eqg2.8) and
Q=0.965 uW/cn? in  Fig. 1@ and for Q  (2.17 for (3 Q=0.965 xW/cn? and(b) Q=122.2 uW/cr?. The
=122.2 uW/cn? in Fig. 1(b). They nearly coincide with the temperature profiles for the pointslj on the curve ir{b) are given
upper broken curve without convection € 0) in the initial  in Fig. 2. The experimental data() [17] are shown in(b). The
stage before the maximum is attained. The latter curve ispper broken curves ife) and (b) represent the theoretical result
calculated from Eq(2.8) as (3.3 obtained from integration of Eq2.8) with v =0. The dotted

curves represent the numerical ones in the fixed pressure condition
AT Q /Dt 4 »ds 1—e’S
[AT( )]O_)\ (0 0 \/775. s+t/t;

without the piston effect.

where t; is defined by Eq.(2.15 and the integral in the o )
brackets behaves asr(; /t)¥2 for t>t, [23]. If the piston which is 2.37_ cm/s. In this case t_he plu_mes Ie:_;we the bottom
term is absent and =0, Eq. (2.8) becomes the simple dif- at zero velocity and go upward with their velocity roughly of
fusion equation, yielding [AT(t)]o=(2Q/\)(Dt/m)v2 ~ the form,
which is about half of AT(t)]y in Eq. (3.3) for t>t; (see
Fig. 3 in Ref.[31]). We also show the numerically calculated vpl(t) =ve{1—exd — (t—to)/tysl}, (3.5
AT(t) at fixed pressure where the piston term is abgeqt
=0 in Eq.(2.8)] butv#0. In (a) the experimental curve is wheret, is the departure timet,s~pR?/ 7 is the viscous
shown to have a lower peak and overdamp more slowly thapelaxation time withR being the plume size, and
in our simulation. In(b) the selected value o is in the
region where no overshoot was observed in the experiment.
See also Fig. 11, where the numerical curved{t) will
be given for other choices of the parameters. . _ . _

In Fig. 2 we show time evolution of the temperature pro-1S the terminal velqcny achieved by balancg between the
file at Q=122.2 wW/cm for periodic sidewalls. I andB ~ Puoyancy and the viscous drag. I:tf?"gtzvis the viscous drag
small-scale mushroomlike plumes are ejected from the botS negligible and we havevy(t)~vg(t—to)/L and t;
tom. InC andD they reach the top and are flattened there. In~L/vg. Thus, if the initial velocity is much less than , the
this initial stage the typical raising speeg is estimated as free-fall condition becomes
L/t, wheret,, is the traversing time. Fro’A—C we find that
it is nearly equal to the free-fall velocity, defined by R/L>(Pr/R3Y4, (3.7

. (33

vg=(Lga,AT)?=(Ra Py'DIL, (3.9

vaRzgpapAT/n (3.6
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0 5 10(mK)

<
E
=
_ N'\
=

A t=124s

2/L

B $=138s FIG. 3. Time evolution ofﬁ(z,t) defined by Eq.(3.5) at the
pointsA, C, E, andF in Fig. 1(b) for Q=122.2 uWi/cn?.

duced from the top. In the steady stdigthe temperature
deviation becomes considerably smaller than in the transient
states, and the localized boundary shear flows are produced
between outgoing and incoming plumes with thicknéss
much smaller thar.

The overshoot is more clearly illustrated in Fig. 3, which
displays the average @&T(x,z,t) taken in thex direction,

_ L dx
D t=155s 5T(z,t)zf TR sT(x,2,), (3.8
o Ly

for the pointsA, C, E, andF in Fig. 1(b). As a characteristic
feature, the temperature in the interior consists of global
changes due to the piston effect and bumps due to localized
plumes. InE the cooler layer becomes thicker temporarily
near the top due to the excess heat flow.

In our simulation the raising plumes leave the bottom and
reach the top nearly simultaneously, resulting in a homoge-
neous temperature change.

(i) Not far above the onset this mechanism is the main

F t=414s cause of the overshoot in compressible fluids. Note that a
small peak appears iAT(t) even in the fixed pressure case

FIG. 2. Temperature profiles &t B, C, D, E, andF on the curve  (ys=1) as shown in Fig. 2 of Ref31] and as was observed
of Q=122.2 uW/cn? in Fig. 1(b) (OJ). The temperaturéand ve- by Behringer and Ahlerg50]. Furthermore, in Ref.31], the
locity) deviations are more enhanced in the transient states time scale of the overshoffrom the maximum to the mini-
than in a steady staté. The 5T at the bottom boundarg=0 is  mum of AT(t)] due to the piston effect was predicted to be
equal toAT(t) in Fig. 1(b). The plumes tend to be connected be- of order ty /(RE"/Ra,— 1), wheretp=L2/4D(=50 s) is

tween bottom and top because=Pt.4. the diffusion time. This fairly agrees with later analysis of
the experimental datib1].

under whichv,.=(R/L)?(Ra/Pr}/% >v,. In Fig. 2, R/L (i) For much largeR such as those in Figs(d) and 1b),

~1/3 and (Pr/Ra)*~0.04, so the above condition is satis- however, the downward flow from the top is also rapid

fied. enough to produce large overshoot, as demonstrated by the

With the arrival of the plumes the heat current increases aturves at fixedheight-dependejppressure. Whether fixed is
the top, becaus®, is fixed, and a negative deviation 66  the volume or the pressure, the time scale of the overshoot is
is produced in a layer near the top. As can be known frormof the order of the traversing time/v 4 of the plumes due to
Eqg. (2.13, the piston effect is then operative, resulting in agravity.
homogeneous lowering of the temperature in the whole cell. As regards the overshoot behavior 6T (t), agreement
In the time region around the fluid is vigorously mixed between our simulation and the experim¢h?] becomes
with high Reynolds numbers. More precisely, the height-worse with increasin@. We point out the possibility that in
dependent Reynolds number Rgj to be defined in Eq. the experiment a synchronous arrival of plumes at the top
(3.12 below is about 20 except in the vicinity of the bound- might have not been realized for very lar@or for very
aries. A downward flow of cooler fluid regions is then pro- short L/v4 because of large lateral dimensions of the cell
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AKIRA FURUKAWA AND AKIRA ONUKI PHYSICAL REVIEW E 66, 016302 (2002

T T T 1 T T T T
08 F | -
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— ! ] 02} ! .
s 1k EJ Periodic b.c. 4+ -
S et e A=1 X ] 0 L L L L
S R / 0 0.2 0.4 06 0.8 1
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Experiment FIG. 5. Height-dependent average temperature profilE&)
0.1 N RN BN | divided byAT in steady states for the thr€evalues in Table I. The

1 10 100 1000 10000 arrows represent the maxima ©f (z) in Fig. &a).

Ra®"/Ra, — 1 . . .
z=¢{, andL—¢,, of the variance of the horizontal velocity
FIG. 4. Numerical results of Ra (Nul)/(R€°"—Ra) vs defined by
R&°"/Ra,—1 in steady states, obtained under the periodic bound-
ary condition () and forA=3 (), 2 (*),and 1 (X). The first
curve (+) is close to the experimental results ## 57 [17] (solid
line) and is well fitted to the scaling formil.5 with a=2/7 for
R&°"/Ra,=10. With the aspect ratié decreasing, crossover to the
scaling occurs at much larger Ra

1/2

L dx
f L_UX(X,Z,t)Z (39)
1

0

v (2)=

In Fig. 6 we plot the normalized velocity variances,
vy (2)/vgin (@) andv (2)/vg in (b), wherev 4 is defined by
used. That is, if some plumes arrive at the top and othergq' (3.4 and
leave the bottom at the same time, negative interference be-

tween currents up and down will suppress overshoot. v¥(2)= f o x,z,0?| . (3.10
O Ll 1 ’

B. Steady-state behavior ) ) 5. ) )
The time average af; andvy in the brackets is also taken in

these figures. On one handl; take maxima agz=¢, and
L—<€,, where¢, is hardly distinguishable froni+. On the
other handp} is largest at the middle of the cell. We also

Now we discuss the Nusselt number Nu in steady state
Figure 4 shows the combination Ra(MJ/(R£°"—Ra.) vs
R&"/Ra,— 1 for periodic sidewalls and foh=1, 2, and 3.
This combination depends on RaandA from Eq.(2.34) in : e i
steady states. The datolid line) [17] excellently agree with  "d *tr;qt the sum(the kinetic-energy varllanq\,e(vj)zl
the numerical results for periodic sidewalls. We find that the™ (vz)® is nearly constant in the interior, which was a find-
scaling relation(1.5) nicely holds for R&"/Ra,= 10 for pe-  ing reported in Ref[42]. At large Ra the maxima af} and
riodic sidewalls, while it holds only for R47Ra.=10° at v are of the same order and will be identified as the typical
A=1. The exponenta in Eq. (1.5 is close to 2/7, bu  plume velocityv,. In our simulation we have ,~0.1v4
—1/4 is also consistent with our numerical dataAl 1 and  («<R&’?), which is consistent with velocity measurements
R&°"is not very large such that the plume size is of onder [9,22].
large-scale fluid motions are suppressed by the rigid side- Kerr and Herring[43] made similar plots of the height-
walls. This marked tendency of tiledependent crossover of dependent velocity variances in their 3D simulations for
Nu was already reported in measurements¥er0.5, 1, and free-slip sidewalls. They found that the characteristic length
6.7[10]. ¢, defined by the peak positions of (z) becomes longer
__In Fig. 5 we show the steady-state temperature deviatiothan €t=L/2Nu with increasing Ra; for example, for Pr
5T(2) averaged in the direction as in Eq(3.8) and in time =7 they obtained(,/¢~1 at Ra=10" and ¢,/¢~3 at
for the three values o in Table | for periodic sidewalls Ra=10". Verzicco and Camussi obtained a similar slow
with periodL, =4L. The averages taken along tkalirec-  growing of ¢, /¢y at large Ra for P#1 in their 3D simula-
tion become only weakly fluctuating in time in steady cha-tion with A=1 [41]. Also similarly, our 2D simulation with
otic states(the relative fluctuations being of order 10% for Pr=7.4 gives €,/¢{1=2.54 and 1.1 forQ=122.2 and
the largestQ). As has been observed ubiquitously in the 0.965 wW/cm, respectively, but we cannot draw a definite
previous simulations, the temperature gradient becomes Igonclusion because of our limited range of Ra.
calized within thermal boundary layers with thickness. In Fig. 7 we plot an overall Reynolds numb&e vs
BecauseA T=2¢;Q/\ for £1<L, it is related to Nu by Eq. R&°"/Ra.—1 in the simulation for periodic sidewalls. It is
(1.6). The arrows in Fig. 5 represent the maximum points,defined by

016302-8



CONVECTIVE HEAT TRANSPORT IN COMPRESSIBLE FLUIDS

PHYSICAL REVIEW 66, 016302 (2002
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FIG. 7. Oveall Reynolds numbée defined by Eq(3.1) as a
function of R&°/Ra.— 1 in steady states fa@=122.2 uW/cn?.
(b) °® ' ' ' ' where vy~vy(€,). This relation indicates "®(,)
~Ra’* 2 with a=2/7 from vy~0.1vg and €,~¢€r. The
IA?e(z) becomes considerably smaller in the interior than at
o 0T 1 z~{,, whose origin is the sparseness of the_plumes in the
% interior [see Eq(3.20 below]. We confirm that R is of the
§ order of the space averagf(%szAze(z)/L. In the literature
0.05 |- 1 [2-7], howexer, thglarge-scalg Reynolds number has been
identified asRe=wv ,L p/ 7, which is much larger thandg( ,)
in Eq. (3.13 by L/I,. [For roll patterns, as was discussed
0 . . . L following Eq. (2.21), we uniquely have Reuv,Lp/7.]
0 02 0.4 06 08 1 At very large Ra the boundary layers should gradually
z/L

FIG. 6. Normalized height-dependent variance$(z)/v for
the horizontal velocity ifa) andv (z)/v for the vertical velocity
in (b) in steady states for the thr&gvalues in Table I.

Re= %[(|v-Vv|2>/<|V2v|2)]1’2,

(3.11)

crossover from a laminar state to a turbulent state except
within thin viscous sublayers with thicknezg much shorter
thanl,. In the inertial regionzo<z=<+¢, of the boundary
layer, it is natural to expect the logarithmic velocity profile
[34],

v} (2)=by (0/p) YA IN(ZZg) +¢ol, (3.1
whereo is the amplitude of the shear stress at the boundary
with by andcy being dimensionless numbers of order 1. We

where the averages are taken in the whole space region. Thgay setoy= 7lim, . oD,,(z), whereD,,(z) is the variance

Re is smaller than 1 fdR*°"/R. =<5 [31]. For larger values of
effective

R it exceeds 1 and the

exponent

of the velocity gradient,

20 T T T T

d(In Re)/o(InR&°™) is from 1/4 to 1/3. However, as sug-
gested by Fig. 6, the strength of the velocity fluctuations
strongly depends on the distance from the boundary, so it is
more informative to introduce a height-dependent Reynolds
number,

15

10

Re(z)

1/2

_ L L
Re(z)=p“ idx|v~Vv|2/f "X V2o
nlJo 0

(3.12

where the time averages of the integrands are taken. A 0

shown in Fig. 8, R(z) takes maxima at~ ¢, andL— ¢, of
order

0.2

0.4 06 08 1
z/L

ﬁagl})’\del)vl’:)|p/77!

(3.13

FIG. 8. Height-dependent Reynolds numtﬁéﬂ(z) defined by
Eq. (3.9 in steady states for the thr&gvalues in Table I.
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(a)

04 F T T —

0.01 0.1

z/L

FIG. 9. (@ Height-dependent velocity varianed (z) defined by Eq(3.9) (solid line) on a semilogarithmic scale in steady states for
Q=122.2 uWicr?. (b) v} (2) (upper curveand velocity gradient varianceD,(z) defined by Eq(3.15 (lower curveé on a logarithmic

scale.

DyA2)=

0z

o Lo
Thenv} (z)=(0y/7n)z asz—0. It is appropriate to defing,
as[34]

zo=nl(poy
which ensure&e(zo)~1. The size ofry should be equal to
the typical size opv,v, atz=¢, even if we consider local-

ized shear flows for periodic sidewalls, so we also have

(To’vva,. (3.17

which is of order Ffrllie(lv)*%l from Eq. (3.13. For
much larger Ra, the plumes will generate smaller scale ed-

The ratio of the two lengthg, and €, is given by
ty1zo~vpt,pl n~Re((,), (3.18

which grows with increasing Ra. In Fig(®, v} (2) is fitted

to the above logarithmic form in the inertial region fQr
=122.2 uWicm, where ¢4/p)*?=0.0614=0.16 cm/s,
by=1.2c,=0.97, andz,=0.024.. In Fig. 9b), we plot
vy (2) andzD,,(z) on a logarithmic scale. We may conclude
that these quantities do not behavezas the inertial region
of the boundary layers, although the present Ra is not large
enough to unambiguously demonstrate the logarithmic ve-
locity profile. Here we point out that our results are not con-
sistent with Shraiman and Siggia’s primary assumptions of
€1<£, and the linear profile of the mean shear flawysz,
in the regionz< ¢ [2,3].

In contrast to the averages taken along xhdirection,
those taken along the direction are rapidly varying func-
tions of time at large Ra due to the random plume motions;
We consider the vertical velocity variance defined by

(,t)/v

*

z

v

vy (X,t)=

JLdZ 5
. Tvz(x,z,t)

016302-10

~~
=

»(2)(cm/s)

2Dy, (2),v

0.25

0.2

0.1

0.1

0.001

PHYSICAL REVIEW E 66, 016302 (2002

¢p~Dlrvy,

z/L

Lidx /[ d 21112 In Fig. 10 we display snapshots of (x,t), where the time

J ( Ux(X,Z,t)) } (3.19 average is not taken and peaks arising from the plumes be-
come more apparent with increasi@Qg For our Ra realized,

the space regions occupied by the plumes become more
sparse with increasing Ra in the interior. As the plumes move
through the cell, they remain distinguishable from the ambi-
)12 3169  ont fluid because the thermal diffusion lengtL(/v )"
' does not much exceeds, . So we may define the volume
fraction of the plumesp,. The convective heat current is of
order ¢ Cp,AT~N NUAT/L, leading to

(3.20

FIG. 10. Snapshots of the normalized velocity variance
vy (x,t)/vg averaged in the direction defined by Eq3.19 for the
three values of) in Table I. The system is periodic with period. 4
in the x direction. The peak heights increase with increagigror
12 the largestQ this quantity changes in time as the plumes move in

(3.19 the cell, while for the othef it is weakly dependent on, or inde-
pendent of, time.




CONVECTIVE HEAT TRANSPORT IN COMPRESSIBLE FLUIDS PHYSICAL REVIEW 66, 016302 (2002

(a)

. T average ofAT(t) asAT to avoid confusion. In Fig. X&)
: Simulation at fixed volume (upper figure we sete=0.05 (ys=22.8), AT=0.17 mK,
Pr=7.4, Ra=7.38x 10%, and Nu=4.06, while in Fig. 11b)
- (lower figure we sete=0.01 (ys=119), AT=0.19 mK,
Pr=37.7, Ra=4.14x10°, and Nu=6.04. The time average

: Simulation at fixed pressure

AT() AT is chosen to be only slightly different in the two cases. At
7 fixed volume, the fluctuations ofST)(t) and AT(t) are
6T i strongly correlated, and are larger and slower for Figbjl1

than for Fig. 11a) in steady statest& 100). The normalized

] variance ofAT(t), the square root of the time average of

. . [AT(t)/AT—1]2, is equal to 0.0069 for Fig. 14) and 0.012

100 150 200 for Fig. 11(b) at fixed volume. At fixed pressure, where the
Hs) piston effect is absenfAT(t) exhibits noises much smaller

than those at fixed volume afdT)(t) smoothly changes in

(b) o ' ' ' ' ' time. It is worth noting that this noise increase at fixed vol-

03| — . Simulationat fixed volume ume accompanied by an increase of Ra is contrary to the

usually measured noise behavior of the temperature. For

noncritical fluids, if the temperature is measured at the center

of a cell, its fluctuation amplitude divided kYT is known to

decrease with increasing Ra as Ra The exponeng,, was

about 0.15 in a cell wittA=1 [5,18].

- : Simulation at fixed pressure

D. Random reversal of macroscopic flow

E For a convection cell withA~1, it is well known that
0 100 200 300 400 500 €00 large-scale shear flow develops near the boundary of the cell
#(s) for large enough R§19,21,23. Moreover, it has also been
observed that the global circulation changes its orientation
FIG. 11.(6T)(t) andAT(t) at fixed volume(solid line) and at  gyer long time scale$21,19. For the case ofA=1, L

fixed pressurgbroken ling for €=0.05 (upper figurg¢ and 0.01 —=1.06 mm. €=0.05 Q=40.7,uW/sz Ra=1.68x 10°

(lower figurr?. Th(;e no(ijses of thesg ((qjuantitiesdat fixed volume in- (=R&™, Nu=5.97, we plot a numerical time sequence of a
crease as the reduced temperattiie decreased. circulationT(t) in Fig. 12. Here

dies, ultimately leading to fully developed turbulence in the L-d
interior, as will be discussed in Sec. IV. I'(t)= L dXvx(X,L—=d,t) —vy(x,d,t) J/L

C. Overall temperature fluctuations + JL_ddZ[vZ(L—d,Z,t)—vz(d,z,t)]/L,
When a plume with a volum¥/, reaches the boundary, it d
transfers a heat of ord€,ATV,, to the boundary wall. As (3.22
indicated by Eq(2.13, the piston effect then gives rise to a
homogeneous change {&#T)(t) of order where the integration is along a square contour with distance
d=0.08. from the cell boundary. This quantity is positive
(6T)pi~ 7s(Vp/V)AT. (32D for clockwise circulation and negative for counterclockwise
circulation. In Fig. 12AT(t) is also plotted, which exhibits
Of course, the real plumes are extended objects and are coparticularly large fluctuations on the occasion of orientation
tinuously arriving at the boundary in high Ra convection.changes. This is a natural result because large-scale reorga-
ThusV,/V in the above formula should be regarded as thenization of the flow pattern is needed for an orientation
fluctuation amplitude of the plume volume fractigi, in the  change.
interior, although we do not know about its dependence on Figure 13 illustrates the velocity patternstat228, 269,
Ra, etc., at present. T,, andQ at the bottom are fixed as in and 311 s in Fig. 12. They closely resemble a picture of the
our simulation,AT(t) should also consist of fluctuations of measured velocity pattern in R¢R22]. Here the typical ve-
the same origin. Because of the strong critical divergence dbcities of the macroscopic flow and the plumes are both of
¥s, We expect that the relative noise amplitud®l}, /AT  order 0.2 cm/s in agreement with the estimatiét®). The
would increase as is decreased with a fixed size AfT. circulation time ¢~4L/vy) is of order 2 s and is much
Figure 11 displays time sequences(éf)(t) and AT(t) shorter than the average period of the global orientation re-
at fixed volume and pressure for periodic sidewalls withversal (-50 s). At any times a small number of plumes with
L, =4L, which demonstrates strong correlations betweerirregular shapes are emerging from the bottom, top, and side
these two deviations at fixed volume. Here we write the timeboundaries. In most times a large primary eddy is dominant
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0.04 T T T T T T T T enough kinetic energies such that they do not generate fully
developed turbulence in the interior. In thiseasymptotic
regime of steady states, we may understand the numerical
and experimental data using a very simperoth-order
‘ ‘ theory. First, we set = €+={, neglecting the possible small
o kMY ‘ ‘ difference betweenf; and ¢, mentioned following Eg.
(3.10. The plume sizes in the horizontal direction are also of

‘ ‘ ' order €. Second, in our simulation the plumes are ejected
-0.02 [ | into the interior with a velocity,, for which the viscous
drag and the buoyancy are balanced or

0.02 1

['(t)(cm/s)

-2
0.04 L L L L L L L L | " v~ pga,AT. 4.1
0O 50 100 150 200 250 300 350 400  45( n pI = PO%p 4.

Thus vy, is of the order of the terminal velocity.,

t(s) ~RaDI?/L® in Eq. (3.6) with R~¢. In the interior we find
that (i) gravity-induced acceleration of the plumes is sup-
5 : : : : : : : : pressed by the viscous dra@,) (v})?+ (v¥)? is nearly in-
dependent of as stated below Ed3.10), and(iii) the last
s J two terms on the left-hand side of E@.17) are numerically

of the same order. For example, the ratio of the average of
(pgdT)? in the x direction to that of (5/p) V2v|? is about

4 atz~1 and is fluctuating around 1 in the interior for the
largestQ in Table I. These suppott,~uv., in the interior.
Third, to the sum rulg2.36) for the velocity gradients, the
contribution from the boundary layers is of orde@/fL,
while that from the interior is of ordeg,v5/¢?~Duv /(3
from Eq.(3.20. If use is made of Eq4.1) and the sum rule

28 100 150 200 250 200 a0 4o o  (2.36, these boundary-layer and bulk contributions both be-
come of order Ra NWj/L?)?, which has also been con-

35|

AT (t)(mK)

i(s) firmed numerically. Thus,
FIG. 12. Time evolution of the circulatiofi(t) defined by Eq. v~ Ra”DIL, (4.2
(3.22 (upper figure¢ and AT(t) (lower figure for Q P
=122.2 uWicn? in a cell withA=1. The orientation of the mac- Nu~L/€~ 1/~ Ra™. 4.9

roscopic flow changes on a time scale of 50 s. The sigit' (6] These quantities are independent of Pr. In particular, the in-
represents the orientation of the macroscopic circulation, while the : - . .

. . . dependence of Nu on Pr is consistent with the experiments
fluctuations ofAT(t) become large when the orientation changes.

[13,15,17. In accord with Egs(3.4) and (4.2), our data of
in the middle region in coexistence with small counter-the velocity ratiov, /v 4 can well be fitted to 0.26 P12 for
oriented eddies near the corners. However, when a plum@r=7.4, 37.7, and 74.8 or foe=0.05, 0.01, and 0.005,
moving through the cell is strong enough, it can suppress theespectively, at high Ra. In his 3D simulatip#2] Kerr cal-
preexisting primary eddy and cause a global orientatiorfulated the typical horizontal velocity, atz=¢, (u,, in his

change. notation and obtained /v 4=0.24 for P=0.7.
Our height-dependent Reynolds numberzat{ in Eq.
IV. SCALING THEORY (3.13 becomes
Rayleigh numbers realized in the existing simulations are ﬁe(l)~Ré’4/Pr. (4.9

still moderate in the sense that the plumes do not have .
The usual large-scale Reynolds number is given by Re

' ~vyLp/np~Ra"Pr. As Re(l) exceeds a crossover value
Re*, plumes will induce turbulence in the interior. Our
simple scaling theory is valid for Ra(Re*Pr)*. In our

simulation we have &(1)=0.38 R&"*, for Pr=7.4 or for e
=0.05 sothat if we set R&~10° (regarding plumes as jets
[34]), the upper bound is crudely estimated as B3 The
transition from the scalinfEq. (4.3)] to the asymptotic scal-
FIG. 13. Velocity patterns at=228, 269, and 311 s for the run NG occurs over a very wide range of Ra. the sparseness of

in Fig. 12. Att=228 s the orientation of the primary eddy is coun- the plumes indicated by Eq$3.20 and (4.3) should also
terclockwise, while at=311 s it is clockwise. At=269 s two Serve to decelerate the changeover into the asymptotic turbu-

large eddies with different orientations can be seen. Here a warmdent regime. Similarly, Grossmann and Lol$é considered
plume is going upward in the region where the two large eddiesa transition of a laminar boundary-layer flow to a turbulent
collide. It is suppressing the upper counterclockwise eddy. boundary layer when the local Reynolds number on the scale

\,,.._..-__-
PRy e
.
N T
: 7N
. =N
. 7~\
: 1 )
o N4

PSR AE o
Sy P IRER  ini /
Rk A

t=23l1s
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of €, atz~ ¢, exceeds a value of order 420. Then Nu wasperature gradient and the velocity gradients, the incompress-

claimed to be better expressed by ible version of Eqs(2.35 and(2.36. Their primary assump-
M tion is that the boundary layer thickness for the velocity is
Nu~Ra’(1+C, R&) (4.9  given by ¢,~L/Re“2 in terms of the large-scale Reynolds

number Rd34]. Note that this assumption is not consistent
¥vith our zeroth-order scaling theory with respect to the Pr
dependence. In particular, in the case where Prand the

than by the single power-law foriti.5), whereC, andb are
small coefficient and exponent, respectively, both being o

prder 0.1. This propo;ed form of Nu was later claimed to be[)oundary-layer contributions are dominant both for the tem-
in good agreement with dafd4].

H H ~1/1. 14
Here it would be informative to add more supplementaryperature and the velocity, they obtained-NBr~ "*Ra™ In

explanations of the previous scaling theorié$.Shraiman this case we also find, /(;~Pr' from their theory. They
and Siggial2,3] assumed fully developed turbﬁlence in the pred|cted. that this pretqrbulent scaling crossovers to the
interior. Then the maximum of the turbulent velocity gradi- asymptotic turbulent scaling very slowly as in £4.5).

ent is of orderSy= 7k3/p= (v5p/L 7)*? at the smallest eddy

sizekg ' [~ (n/pvy)**L*] if the Kolmogorov cascade is V. CONCLUDING REMARKS

assumed with the energy dissipation raty/L [34] (the We have presented a hydrodynamic model of compress-
sparseness of ejected plumes being negIeJcZﬂéFIhe left-iple fluids properly taking into account the piston effect and
hand side of the sum rul@.36 is estimated aSy, it follows  he adiabatic temperature gradient effect. Though performed
the relation in two dimensions, our simulation has revealed some impor-
_ 13 tant effects in near-critical fluids, such as the overshoot be-
vpr~ (PTNUR3TDIL. (4.6 havior and the amplification of the overall temperature fluc-
Furthermore, they assumed the linear horizontal velocitfuations asT—T.. It generally explains the experimental
profile vy~ (oo/ %)z in the regionz= ¢~L/Nu, wherea, fmdmgs[lG,lﬂ, but a dlscrepancy remains in the overshioot
is given by Eq.(3.17. From the thermal diffusion equation Pehavior at high heat fluR as discussed in Sec. lll. It is

v,08TI9x=DV25T (the time-dependent fluctuations being desirable to extend simulation to smallerand higher Ra.
neglected they obtained the scaling, Also, more experiments on the overshoot and the tempera-

ture noises, etc., are needed to resolve the discrepancy and to
(5{3~pv§|/77DL, 4.7 confirm the new predictions. As by-products, we have nu-
merically examined steady state properties not treated in the
by settingd/9x~L~* and V2~ (d/3z)?~ €+ for a cell with  previous simulations, such as the logarithmic velocity profile

A~1. From Eqgs(4.6) and(4.7) they found and the random reversal of macroscopic shear flow. They are
oy 7 universal aspects present in both compressible and incom-
Nu~Pr 7 Re". (48 pressible fluids.

We have assumed that the fluid is in the supercritical re-
rgion not very close to the critical point such that the condi-
tions (2.1) and (2.2) are satisfied. However, AT exceeds
T—T orif Ty is below T, we encounter a variety of new
effects such as boiling and wetting under heat flow and grav-

v~ (29, AT/ 7~RaNu 2D/L., (4.9 ity [23,52. We believe that such problems should provide us

a new challenging field in which nonlinear dynamics and

They further assumed that the typical temperature scale iphase transition dynamics are coupled. These problems are
the interior is ©T).~va/aygl and that the average heat beyond the scope of this paper.
current ENUNAT/L) is of orderCp(6T)cvp . From these
relathns ©T). may be eliminated to give Ed4.6). If we ACKNOWLEDGMENTS
combine Eqs(4.6) and(4.9), we are again led to Eq4.8).
Therefore, to justify their arguments, the presence of fully We thank H. Meyer for valuable suggestions and com-
developed turbulence in the interior seems to be requirednents. Thanks are also due to P. Tong for informative corre-
(iii) Grossmann and Lohsk6,7] estimated the bulk and spondence. This work is supported by Japan Space Forum
boundary-layer contributions to the sum rules for the tem-Grant No. H13-264.

However, as discussed below E§.14), our simulation sug-
gests that the velocity deviates significantly from the linea
profile in the boundary layerdii) Castainget al. [5] as-
sumed the balanc@.l) at the length¢,
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