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Convective heat transport in compressible fluids

Akira Furukawa and Akira Onuki
Department of Physics, Kyoto University, Kyoto 606-8502, Japan

~Received 1 February 2002; published 18 July 2002!

We present hydrodynamic equations of compressible fluids in gravity as a generalization of those in the
Boussinesq approximation used for nearly incompressible fluids. They account for adiabatic processes taking
place throughout the cell~the piston effect! and those taking place within plumes~the adiabatic temperature
gradient effect!. Performing two-dimensional numerical analysis, we reveal some unique features of plume
generation and convection in transient and steady states of compressible fluids. As the critical point is ap-
proached, the overall temperature changes induced by plume arrivals at the boundary walls are amplified,
giving rise to overshoot behavior in transient states and significant noise in the temperature in steady states.
The velocity field is suggested to assume a logarithmic profile within boundary layers. Random reversal of
macroscopic shear flow is examined in a cell with unit aspect ratio. We also present a simple scaling theory for
moderate Rayleigh numbers.
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I. INTRODUCTION

Recently much attention has been paid to organized fl
motion in turbulent convection in the Rayleigh-Be´nard ge-
ometry @1–7#. Although the conventional hydrodynam
equations are constructed for~nearly! incompressible fluids
@8#, we may mention a number of convection experiments
compressible one-component fluids in the supercritical
gion @9–19#, together with those in noncritical fluids such
water or Hg@20–22#. In these studies the Nusselt number N
representing the efficiency of convective heat transport
been measured at large values of the Rayleigh numbe
defined by

Ra5aprgL3DT/hD. ~1.1!

Hereg is the gravity constant,DT5Tbot2Ttop is the differ-
ence between the bottom and top temperatures, andL is the
cell height. As the critical point is approached in on
component fluids, the thermal expansion coefficientap
52(]r/]T)p /r grows strongly asjg/n ~in the same manne
as the isothermal expansion coefficientKT and the isobaric
specific heatCp), the thermal diffusivityD decreases asj21,
and the shear viscosityh is nearly a constant. Herej is the
thermal correlation length growing as (T/Tc21)2n on the
critical isochore withg>1.24 andn>0.625. Hence, in the
critical region, Ra can be extremely large; for example,
;1013 even for not very longL(&10 cm). The Prandtl
number Pr5h/rD was in the range of 1–100.

High compressibility of supercritical fluids gives rise
some unique features not encountered in incompressible
ids.

~i! First, the transient behavior after application of a h
flux from the bottom is strongly influenced by the so-call
piston effect@23–30#, as revealed by recent high-precisio
experiments on3He @17# and reproduced by subseque
simulation@31#.

~ii ! Second, asap grows, the usual mechanism of conve
tion onset Ra.Rac(>1708) is replaced by that of th
Schwarzschild criterion@32,33#. That is, for large compress
1063-651X/2002/66~1!/016302~14!/$20.00 66 0163
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ible fluid columns~even far from the critical point!, convec-
tion sets in when thermal plumes continue to rise upw
adiabatically. This occurs when the applied temperature g
dient udT/dzu is larger than the adiabatic gradient@34#,

ag5~]T/]p!srg, ~1.2!

which is equal to 0.034 mK/cm for3He and 0.27 mK/cm
for CO2. This is the condition that the entropys5s(T,p) per
unit mass decreases with height asds/dz5(Cp /T)@dT/dz
1ag#,0, under which the entropy of fluid elements adi
batically convected upward is larger than that of the ambi
fluid. More precisely, Gitterman and Steinberg@32# found
that the convection onset for compressible fluids is given
Racorr.Rac , where Racorr is a corrected Rayleigh numbe
defined by

Racorr5~aprgL3/hD !~DT2agL !5Ra~12agL/DT!.

~1.3!

This is a natural consequence because the effective temp
ture gradient seen by the raising plumes is given byDT/L
2ag . At the convection onset we thus have

~DT!on5agL1RacDh0 /~grapL3!, ~1.4!

as was confirmed in SF6 @11# and in 3He @16#. In Eq. ~1.4!
the ratio of the first to the second term behaves
L4/(T/Tc21)g1n and can exceed 1 asT→Tc even for small
L. In the experiment on3He @16# this was the case in the
rangeT/Tc21&0.05 forL;1 mm.

~iii ! Third, in steady convective states, experimen
curves of Ra (Nu-1) vs Racorr were collapsed onto a singl
universal curve for various densities and aboveTc @12# and
for various average reduced temperatures on the critical
chore@16#. These empirical results are highly nontrivial, b
cause Nu can in principle depend on Ra, Pr, andagL/DT,
while Nu is a function of Ra and Pr for incompressible fl
ids, neglecting the effects of confinement.
©2002 The American Physical Society02-1
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For various fluids under a relatively largeDT@agL
~where Racorr>Ra), data of Nu5QL/lDT have been fitted
to a simple scaling law,

Nu;Raa, ~1.5!

whereQ is the heat flux andl is the thermal conductivity.
The exponenta has been in a range from 0.28 to 0.31 and,
particular, a theoretical value 2/7@2,4# was generally consis
tent with data for Ra&1012 @9–18,21#. Moreover, measure
ments of the patterns of isothermal surfaces@20# and the
velocity @21,22# have been informative on plume motion an
a large-scale circulating shear flow in small-aspect-ratio c
@19,21#. Several authors have also performed numer
analysis of convection at large Ra in two dimensions~2D!
@35–39# and in three dimensions~3D! @40–43#. Even in 2D
salient features in the experiments have been reproduce
these simulations, if the temperature is averaged over a
time, the temperature gradient is localized in thin bound
layers with thickness,T related to Nu by

Nu5L/2,T . ~1.6!

Both in 2D and in 3D~if visualized from side!, the plumes
tend to be connected from bottom to top for large Pr beca
of slow thermal diffusion, while they become diffuse f
from the boundaries for small Pr. In the 3D simulations w
periodic or free-slip sidewalls@42,43#, local boundary shea
flows were observed between incoming plumes and outgo
networks of buoyant sheets in horizontal planes close to
boundaries.

In this paper we will derive and examine hydrodynam
equations for compressible fluids under gravity in the sup
critical region, in which the oscillatory motion of sound h
been averaged out@23#. Since the time scale of convectiv
motions is much longer than that of the acoustic wavetac
5L/c ~typically of order 1024 s for L;1 cm), such a de-
scription is convenient theoretically and is even indispe
able for numerical analysis. Our dynamic equations ar
natural generalization of the usual hydrodynamic equati
@8#. Our new predictions are unique particularly when t
piston effect comes into play, as has been demonstrate
the previous simulation@31# relatively close to the convec
tion onset. This paper will present 2D simulations of o
hydrodynamic equations for much larger Racorr both in tran-
sient and~dynamical! steady states. Even in steady states,
will find some characteristic features of turbulent stat
which have not been reported in the previous simulati
@35–37,40–43#, such as the logarithmic velocity profile o
the velocity near the boundary@34# and random reversal o
the large-scale circulating flow in small-aspect-ratio ce
@19,21#. We will also point out that individual arrivals o
plumes at the boundaries cause global temperature fluc
tions in the cell via the piston effect. The resultant noise le
of the temperature fluctuations grows as the critical poin
approached.
01630
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II. THEORETICAL BACKGROUND

A. Hydrodynamic equations

We consider a supercritical fluid on the critical isochore
a cell with the bottom plate atz50 and the top plate atz
5L. Thez axis is taken in the upward direction and the to
fluid volume is fixed atV. The temperature disturbanc
dT(r,t)5T(r,t)2Ttop measured from the temperatureTtop at
the top boundary is much smaller in magnitude thanTtop
2Tc . Hereaftere will be used to denote the reduced tem
perature at the top boundary, which satisfies

e5Ttop/Tc21@DT/Tc . ~2.1!

We assume that the gravity-induced density stratification
not too severe such that the thermodynamic derivatives
nearly homogeneous in the cell. This is satisfied wh
ur/rc21u;(]r/]p)TgL!eb with b>0.33@44#. This condi-
tion is rewritten as

eb1g@agL/Tc . ~2.2!

In the theoretical literature on convection@2–7#, the top
and bottom temperaturesTbot and Ttop are constant param
eters. However, in most of the recent convection exp
ments, especially where the heat transport is to be measu
the heat flux at the bottomQ52l(dT/dz)z50 andTtop have
been fixed. Furthermore, if the top and bottom walls a
made of a metal with high thermal conductivity, the boun
ary temperatures become homogeneous in the lateral d
tions ~unless local temperature changes are too fast!. Then
Tbot(t) and henceDT(t) are functions of time only. This
idealization is more justified under cryogenic conditions th
at room temperatures, because the relative conductivity
the plates is much greater at low temperatures. Metcalfe
Behringer@45# performed linear stability analysis of conve
tion onset under this fixed-heat-flux boundary condition.
the nonlinear regime, it is of great interest how the bound
condition influences the boundary layer thickness, the plu
generation, and the boundary shear flow.

In equilibrium the pressure gradient is given by2rg>
2rcg. In nonequilibrium we set

p~r,t !5p02rcgz1p1~ t !1pinh~r,t !, ~2.3!

wherep0 is a constant,p1(t) andpinh are the homogeneou
and inhomogeneous parts induced bydT, respectively. That
is, we assumêpinh&50, where^•••&[*dr(•••)/V repre-
sents the space average in the cell. Thenp1 is related to the
space average ofdT by

p1~ t !5~]p/]T!r^dT&~ t !, ~2.4!

which follows from the thermodynamic relationdp
5(]p/]T)rdT1(]p/]r)Tdr and the condition that the
space average of the density deviation vanishes (^dr&50).
It is important that the combinationp(r,t)1rcgz is nearly
homogeneous orup1(t)u@upinh(r,t)u for fluid motions much
slower than the acoustic timetac5L/c(c;104 cm/s being
the sound velocity! @23,24,46#.
2-2
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Now we derive the equation fordT from the heat conduc
tion equation

rTS ]

]t
1v•“ D s5l“2dT, ~2.5!

wheres(r,t) is the entropy per unit mass. Here it consists
the equilibrium partseq(z) with

d

dz
seq~z!52S ]s

]pD
T

rg5T21Cpag ~2.6!

and the nonequilibrium deviation,

ds~r,t !5T21CpFdT~r,t !2S ]T

]pD
s

p1~ t !G . ~2.7!

With the aid of the thermodynamic identity (]T/]p)s
5(]T/]p)r(121/gs), we rewrite Eq.~2.5! to obtain the de-
sired equation fordT,

S ]

]t
1v•“2D“

2D dT52agvz1as

d

dt
^dT&, ~2.8!

whereD5l/Cp is the thermal diffusivity and

as512gs
21 . ~2.9!

The specific-heat ratiogs behaves as

gs5Cp /CV;e2g1a@1, ~2.10!

whereCp;e2g andCV;e2a are the specific heats~per unit
volume! at constantp andV, respectively, witha>0.1. The
first term on the right-hand side of Eq.~2.8! arises from
dseq/dz. Inside plumes the temperature is adiabatically lo
ered if they go upward (vz.0), or adiabatically increased i
they go downward (vz,0). In this way this term suppresse
upward motion of warmer plumes from the bottom a
downward motion of cooler plumes from the top, resulting
the Schwarzschild criterion of convection onset~the adia-
batic temperature gradient effect!. On the other hand, the
second term arises fromp1(t), leading to the piston effec
@24#. It is worth noting that the space integral of Eq.~2.8! in
the cell becomes

VCV

d

dt
^dT&5lE dan•“dT, ~2.11!

where use has been made of^v&50. The right-hand side
represents the rate of heat supply from the boundary surf
where da is surface element andn is the outward surface
normal. Its time-integration is the total heat supply expres
asVr^ds&, resulting in

CV^dT&~ t !5r^ds&~ t !, ~2.12!

which also follows from Eq.~2.4! and the space average
Eq. ~2.7!. The appearance ofCV on the left-hand side of Eq
~2.12! is a natural consequence under the fixed volume c
dition. Notice that Eq.~2.7! can also be written as
01630
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dT~r,t !5
rT

Cp
ds~r,t !1rTF 1

CV
2

1

Cp
G^ds&~ t !. ~2.13!

This relation holds even in gravity ifds is the deviation of
s2seq(z) as in Eq.~2.7!. In addition, the density deviation
dr5r2^r& is written in our approximation as

dr5rKTg~z2L/2!2rap~dT2^dT&!, ~2.14!

whereKT5(]r/]p)T /r and we have set̂dr&50.
Since Cp@CV near the critical point, the homogeneou

part of dT ~second term! in Eq. ~2.13! can easily dominate
over the inhomogeneous part~first term! even whends is
localized near a heated wall. Indeed, if a thermal disturba
is produced within a thermal boundary layer with thicknes,
near the boundary, the ratio of the homogeneous p
(}^ds&) to the localized inhomogeneous part (}ds) in Eq.
~2.13! is of order (gs21)l /L whereL is the characteristic
system length. Temperature homogenization is achie
when (gs21)l @L. By setting ,5(Dt1)1/2 we obtain the
time constant of this thermal equilibration~the piston time!
in the form

t15L2/D~gs21!2. ~2.15!

Next we consider the momentum equation for the veloc
field v(r,t). On long time scales, sound waves decay to z
and the incompressibility condition

“•v50 ~2.16!

becomes nearly satisfied (@thomo) @46#. Then the dissipation
of v is produced by the shear viscosityh and the usual
Navier-Stokes equation in the Boussinesq approxima
may be set up in the form@1#

S ]

]t
1v•“ Dv52“

pinh

r
1apgdTez1

h

r
“

2v, ~2.17!

where the inhomogeneous partpinh ensures Eq.~2.16!, ez is
the unit vector along thez axis, andr(>^r&) may be treated
as the average density. The two equations~2.8! and ~2.17!
are our fundamental dynamic equations closed under
~2.16!. In the conventional theory@1,8#, Eq. ~2.17! has been
used, but the right-hand side of Eq.~2.8! vanishes.

As another characteristic feature near the critical po
the Prandtl number behaves as

Pr5h/rD;e2n. ~2.18!

For example, Pr5350 atT/Tc2151023 in 3He. This means
that the time scale of the thermal diffusion is much slow
than that of the velocity in the critical region. Based on th
fact, the simulation in Ref.@31# was performed using the
Stokes approximation in which the left-hand side of E
~2.17! is set equal to zero. Good agreement with the exp
ments @17# was then obtained for Racorr/Rac21&5 at e
50.05.

For Pr@1, let us estimate the upper bound of Racorr below
which the Reynolds number Re is smaller than 1 or
2-3



m

-

-

re

o

an

m

he
ar

c
e

ns

c-

r

gh-
e-
ic at
he

is
e-

-

n

r

AKIRA FURUKAWA AND AKIRA ONUKI PHYSICAL REVIEW E 66, 016302 ~2002!
Stokes approximation is allowable. The characteristic te
perature variation (dT)' changing perpendicularly to thez
axis and the characteristic velocity fieldvpl are related by

vpl;~aprcg/hk2!~dT!' , ~2.19!

wherek;2p/L for roll patterns. If Racorr/Rac is consider-
ably ~but not much! larger than 1, (dT)' /DT is of order 1
~but somewhat smaller than 1!. Then we obtain

vpl;~Racorr/Rac!D/L. ~2.20!

Thus the small Reynolds number regime is written as

Racorr/Rac&Pr, ~2.21!

where use has been made of Re;vplLr/h. For Pr@1 there
is a sizable range of Racorr in which the Stokes approxima
tion is justified. In passing, for 0,Racorr/Rac21!1, the
theory of the amplitude equation@47# predicts

vplL/D;~dT!' /DT;~Racorr/Rac21!1/2, ~2.22!

from which we have Nu-1;Racorr/Rac21 because the con
vective heat current is of orderCp(dT)'vpl . In the following
section we will estimatevpl for a much larger Ra.

Analogously to Eq.~2.19!, the inhomogeneous pressu
deviationpinh is estimated aspinh;(aprcg/k)(dT)' . If we
assume p1(t);(]p/]T)sDT from Eq. ~2.4! and DT
;(dT)' as in Eq.~2.20!, we find thatpinh /p1(t) is of order
e2gag /Tck and is much smaller than 1 from Eq.~2.2!. This
estimation justifies the assumption of the homogeneity
dp(r,t)1rcgz made below in Eq.~2.4!.

B. Free energy and heat production rate

In the presence of small deviations of the temperature
the density,dT and dr, around an reference equilibrium
state, we have an increase of the free energy functionaldF.
Up to the bilinear order of the deviations, it is of the for
@23,48#,

dF5E drFCV

2T
~dT!21

1

2r2KT

~dr!21gzdrG ,

~2.23!

where the third term is the potential energy in gravity. All t
deviations are assumed to change slowly in space comp
with the thermal correlation lengthj. If we expressdr in
terms ofdT as in Eq.~2.14!, we obtain

dF5
1

2TE dr@Cp~dT2^dT&!21CV^dT&2#, ~2.24!

where the constant term is omitted. We notice thatdF de-
creases dramatically forgs@1 in the process of adiabati
temperature homogenization. Furthermore, in the presenc
velocity field, the total free energy change is the sum ofdF
and the kinetic energy of the velocity field,
01630
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FK5
1

2E drrv2. ~2.25!

Its time derivative is calculated from our dynamic equatio
~2.7! and ~2.17! in the form,

d

dt
~dF1FK!52E dr~e th1evis!

1lT21E da@dT~n•“dT!#, ~2.26!

wheree th and evis are the thermal and viscous heat produ
tion rates~per unit volume! @34#, respectively, defined by

e th5lT21u“dTu2, ~2.27!

evis5h(
i j

~]v i /]xj !
2. ~2.28!

In the second term of Eq.~2.26! the surface integral is ove
the boundary of the cell,n being the outward unit vector. In
terms of the heat flux from the bottomQ, it is expressed as
VQDT/TL if the top temperature is fixed.

C. Basic relations in steady states

We consider steady convective states in the Raylei
Bénard geometry, in which the flow pattern is either tim
independent not far above the convection onset or chaot
larger Ra. We treatDT as a constant parameter. Under t
condition of fixed heat flux at the bottom, however,DT(t)
exhibits rapidly varying fluctuations in chaotic states. In th
case DT in the following relations represents the tim
average ofDT(t). The steady state averages~over space and
time! will be denoted bŷ •••&s to distinguish them from the
space averageŝ•••& used so far.

We make Eqs.~2.8! and~2.17! dimensionless by measur
ing space and time in units ofL and L2/D and settingr̃
5L21r and t̃ 5DL22t. The temperature deviation is writte
as

dT~r,t !/DT512 z̃1Ra21F~ r̃, t̃ !, ~2.29!

wherez̃5z/L. The dimensionless functionF becomes non-
vanishing in convective states and obeys

S ]

] t̃
1V•“̃2“̃

2DF5RacorrVz1as

d

d t̃
^F&, ~2.30!

where“̃5L“ is the space derivative in units ofL. Then the
~average! heat flux at the bottom is written asQ
5(lDT/L)@11Ra21f l#, where

f l52^~]F/] z̃! z̃50&s . ~2.31!

The f l is a function of Racorr and Pr. The Nusselt numbe
Nu5QL/lDT is expressed as
2-4
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Nu511Ra21f l . ~2.32!

As the boundary condition ofF we requireF50 at z̃50 and
1 if Ttop and Tbot are fixed. However, ifTtop and Q at the
bottom are fixed, we haveF50 at z̃50 and ]F/] z̃

5Ra(Nu21) at z̃50. The dimensionless velocityV( r̃, t̃ )
5(L/D)v obeys

1

PrS ]

] t̃
1V•“̃ D V52“̃Pinh1Fez1“̃

2V, ~2.33!

wherePinh ensures“̃•V50.
Here we assume that the piston term, the second term

the right-hand side of Eq.~2.30!, can be neglected in stead
states. Fore50.05, the piston term in steady states is le
than a few percents of the convection termv•“̃F in Eq.
~2.30! except at the boundaries. It thus produces no sign
cant effects on steady state heat transport~on Nu!, while it
can be crucial in the initial transient stage@31#. Then, if the
piston term in Eq.~2.30! is neglected, Eqs.~2.30! and~2.33!
become of the same form as those of usual incompress
fluids except that Racorr appears in place of Ra. At muc
smallere, however, this assumption might be questionab
because the noise part of^F& grows ase→0, as will be
discussed in the following section. We may conclude
following ~at least for not very smalle). ~i! It follows the
Gitterman-Steinberg criterion Racorr.Rac in convective
states in the compressible case@32,33#. ~ii ! It is more non-
trivial that the combination

Ra~Nu-1!5 f l~Racorr,Pr! ~2.34!

should be a universal function of Racorr and Pr from Eq.
~2.32! in agreement with the experiments@12,16#. Notice that
Ra(Nu-1)5 f l(Ra,Pr) holds for incompressible fluids i
terms of the samef l . These experiments and more de
sively that by Ahlers and Xu@15# indicate thatf l should be
nearly independent of Pr once Pr considerably exceeds
the 3D simulation by Verzicco and Camussi@41#, Nu became
independent of Pr for Pr*0.5. Theoretical support of thi
behavior using scaling arguments was presented in Ref.@7#.

In steady states we may also derive some exact relat
for variances amongdT andv. Using the dynamic equation
~2.8! and ~2.17! we calculate the averages of](dT)2/]t,
]v2/]t, and](zdT)/]t to obtain

^u“dTu2&s5ath
2 1ath~ath2ag!~Nu21!, ~2.35!

(
i j

^~]v i /]xj !
2&s5Ra~D/L2!2~Nu21!. ~2.36!

We also obtain a cross correlation,

^vzdT&s5athD~Nu21!, ~2.37!

which is nothing but the average convective heat flux~if lCp
is multiplied!. Hereath[DT/L52^ddT/dz&s is the average
temperature gradient andag is the adiabatic temperature gr
dient defined by Eq.~1.2!. If we use the usual hydrodynami
01630
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equations for incompressible fluids, the right-hand side
Eq. ~2.35! becomesath

2 Nu, while Eqs.~2.36! and ~2.37! re-
main the same@2#. In addition, Eq.~2.35! indicatesath.ag
in convective states in which Nu.1. This is consistent with
the convection criterion Racorr.Rac . We obtain the average
of the two dissipation rates in Eqs.~2.27! and~2.28! by mul-
tiplying l/T and h to Eqs.~2.35! and ~2.36!, respectively.
Using the thermodynamic identityTap5Cp(]T/]p)s , we
obtain

^e th&s1^evis&s5T21lath
2 Nu, ~2.38!

~^e th&s2T21lath
2 !/^evis&s5ath /ag21. ~2.39!

The first relation~2.38! also follows from the average of Eq
~2.26!. The second relation~2.39! holds only in convective
states (Nu.1) whereevis.0. For the usual hydrodynami
equations of incompressible fluids the right-hand side of
~2.39! is replaced byCpath /Taprg5ath /ag .

III. SIMULATION RESULTS

We perform numerical analysis of Eqs.~2.8! and~2.17! in
2D using parameters of3He in a cell withL51.06 mm. The
reduced temperature ise50.05 ~except in Fig. 11!, where
gs522.8, Tap526.9, l51.8831024 ergs/(cm2 s K), D
55.4231025 cm2/s, and Pr57.4 @16,17,31#. The condition
~2.2! is well satisfied. The piston timet1 in Eq. ~2.15! is
given by 0.42 s. We apply a constant heat fluxQ at the
bottomz50 for t.0 with a fixed top temperatureTtop at z
5L. In steady states we have Racorr/Rac50.90@DT/agL
21#, where agL53.57 mK. Thus (DT)on57.6 mK and
Qon513.5 nW/s at the convection onset. We assume ho
geneity of the boundary temperatures,Ttop and Tbot, in the
lateralx direction.

In the experiments the aspect ratio was 57, so in the si
lation @31# the periodic boundary condition was imposed
the x direction with period 4L. This period was chosen be
cause the roll period is close to 2L slightly above the onse
for infinite lateral dimension@1#. Then, in steady states in th
region 1,Q/Qon&5, the linear relation

Q/Qon21>A0@DT/~DT!on21# ~3.1!

was numerically obtained withA0>2.2 in good agreemen
with the experiments. From Nu5@Q/DT#/@Qon/(DT)on#,
the behavior of Nu is known from Eq.~3.1! in the range 1
,Q/Qon&5. In particular, slightly above the onset, we ha

Nu21>A1~Racorr/Rac21!1•••, ~3.2!

whereA1>0.64 in fair agreement with the theoretical valu
(A1>0.70 for Pr57.4) @49#. This behavior is also consisten
with Eq. ~2.22!.

In this work we are interested in fluid motion for rela
tively large Ra up to 33106. In the following we show two
sets of the numerical results. In the first set, periodic si
walls are assumed atx50 andx5L' with periodL'54L as
in Ref. @31#. In Table I the steady state values ofDT, Racorr,
Ra, Nu, and R̄e are written, where Rē is a Reynolds numbe
2-5
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to be defined in Eq.~3.11!. They are obtained forQ
50.0458 mW/cm2 (>3.4Qon), 0.965 mW/cm2

(>71Qon), and 122.2mW/cm2(>93103Qon). For the
smallestQ the system tends to a time-independent conv
tive state, as already studied in Ref.@31#, while for the other
values ofQ the system tends to a chaotic state without m
roscopic boundary shear flow. In the second set, we perf
simulations forA51, 2, and 3 with insulating and rigid side
walls at x50 and AL, at which v50 and through which
there is no heat flux (]dT/]x50), as will be presented in
Figs. 4, 12, and 13.

In addition, if the temperature difference will be simp
written asDT, it should be taken as the time average
DT(t) in a steady state. We also assume that Pr is cons
ably larger than 1 in the following arguments.

A. Transient behavior

We show numerically calculatedDT(t)5Tbot(t)2Ttop for
Q50.965 mW/cm2 in Fig. 1~a! and for Q
5122.2 mW/cm2 in Fig. 1~b!. They nearly coincide with the
upper broken curve without convection (v50) in the initial
stage before the maximum is attained. The latter curve
calculated from Eq.~2.8! as

@DT~ t !#05
Q

l
ADt

p F42E
0

` ds

Aps
•

12e2s

s1t/t1
G , ~3.3!

where t1 is defined by Eq.~2.15! and the integral in the
brackets behaves as (pt1 /t)1/2 for t@t1 @23#. If the piston
term is absent andv50, Eq. ~2.8! becomes the simple dif
fusion equation, yielding @DT(t)#05(2Q/l)(Dt/p)1/2,
which is about half of@DT(t)#0 in Eq. ~3.3! for t@t1 ~see
Fig. 3 in Ref.@31#!. We also show the numerically calculate
DT(t) at fixed pressure where the piston term is absent@as
50 in Eq. ~2.8!# but v5” 0. In ~a! the experimental curve is
shown to have a lower peak and overdamp more slowly t
in our simulation. In~b! the selected value ofQ is in the
region where no overshoot was observed in the experim
See also Fig. 11, where the numerical curves ofDT(t) will
be given for other choices of the parameters.

In Fig. 2 we show time evolution of the temperature pr
file at Q5122.2 mW/cm for periodic sidewalls. InA andB
small-scale mushroomlike plumes are ejected from the
tom. InC andD they reach the top and are flattened there
this initial stage the typical raising speedvpl is estimated as
L/t tr wheret tr is the traversing time. FromA–C we find that
it is nearly equal to the free-fall velocityvg defined by

TABLE I. Parameters ate50.05 in steady states for periodi
sidewalls.

Q(mW/cm s)
DT

~mK! Racorr Ra Nu21 Re

0.0458 0.0154 3.433103 6.693103 0.714 0.655
0.965 0.135 5.713104 5.873104 3.04 3.035
122.2 6.89 2.913106 2.913106 9.29 7.89
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vg5~LgapDT!1/25~Ra Pr!1/2D/L, ~3.4!

which is 2.37 cm/s. In this case the plumes leave the bot
at zero velocity and go upward with their velocity roughly
the form,

vpl~ t !5v`$12exp@2~ t2t0!/tvis#%, ~3.5!

where t0 is the departure time,tvis;rR2/h is the viscous
relaxation time withR being the plume size, and

v`;R2grapDT/h ~3.6!

is the terminal velocity achieved by balance between
buoyancy and the viscous drag. Fort tr!tvis the viscous drag
is negligible and we havevpl(t);vg

2(t2t0)/L and t tr

;L/vg . Thus, if the initial velocity is much less thanvg , the
free-fall condition becomes

R/L@~Pr/Ra!1/4, ~3.7!

FIG. 1. DT(t) vs time~solid line! calculated from Eqs.~2.8! and
~2.17! for ~a! Q50.965 mW/cm2 and~b! Q5122.2 mW/cm2. The
temperature profiles for the points (h) on the curve in~b! are given
in Fig. 2. The experimental data (1) @17# are shown in~b!. The
upper broken curves in~a! and ~b! represent the theoretical resu
~3.3! obtained from integration of Eq.~2.8! with v50. The dotted
curves represent the numerical ones in the fixed pressure cond
without the piston effect.
2-6
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under whichv`5(R/L)2(Ra/Pr)1/2vg@vg . In Fig. 2, R/L
;1/3 and (Pr/Ra)1/4;0.04, so the above condition is sati
fied.

With the arrival of the plumes the heat current increase
the top, becauseTtop is fixed, and a negative deviation ofds
is produced in a layer near the top. As can be known fr
Eq. ~2.13!, the piston effect is then operative, resulting in
homogeneous lowering of the temperature in the whole c
In the time region aroundE the fluid is vigorously mixed
with high Reynolds numbers. More precisely, the heig
dependent Reynolds number Re(z,t) to be defined in Eq.
~3.12! below is about 20 except in the vicinity of the boun
aries. A downward flow of cooler fluid regions is then pr

FIG. 2. Temperature profiles atA, B, C, D, E, andF on the curve
of Q5122.2 mW/cm2 in Fig. 1~b! (h). The temperature~and ve-
locity! deviations are more enhanced in the transient statesA–E
than in a steady stateF. The dT at the bottom boundaryz50 is
equal toDT(t) in Fig. 1~b!. The plumes tend to be connected b
tween bottom and top because Pr57.4.
01630
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duced from the top. In the steady stateF, the temperature
deviation becomes considerably smaller than in the trans
states, and the localized boundary shear flows are produ
between outgoing and incoming plumes with thickness,v
much smaller thanL.

The overshoot is more clearly illustrated in Fig. 3, whi
displays the average ofdT(x,z,t) taken in thex direction,

dT~z,t ![E
0

L' dx

L'

dT~x,z,t !, ~3.8!

for the pointsA, C, E, andF in Fig. 1~b!. As a characteristic
feature, the temperature in the interior consists of glo
changes due to the piston effect and bumps due to local
plumes. InE the cooler layer becomes thicker temporar
near the top due to the excess heat flow.

In our simulation the raising plumes leave the bottom a
reach the top nearly simultaneously, resulting in a homo
neous temperature change.

~i! Not far above the onset this mechanism is the m
cause of the overshoot in compressible fluids. Note tha
small peak appears inDT(t) even in the fixed pressure cas
(gs51) as shown in Fig. 2 of Ref.@31# and as was observe
by Behringer and Ahlers@50#. Furthermore, in Ref.@31#, the
time scale of the overshoot@from the maximum to the mini-
mum of DT(t)# due to the piston effect was predicted to
of order tD /(Racorr/Rac21), where tD5L2/4D(>50 s) is
the diffusion time. This fairly agrees with later analysis
the experimental data@51#.

~ii ! For much largerQ such as those in Figs. 1~a! and 1~b!,
however, the downward flow from the top is also rap
enough to produce large overshoot, as demonstrated by
curves at fixed~height-dependent! pressure. Whether fixed i
the volume or the pressure, the time scale of the oversho
of the order of the traversing timeL/vg of the plumes due to
gravity.

As regards the overshoot behavior ofDT(t), agreement
between our simulation and the experiment@17# becomes
worse with increasingQ. We point out the possibility that in
the experiment a synchronous arrival of plumes at the
might have not been realized for very largeQ or for very
short L/vg because of large lateral dimensions of the c

FIG. 3. Time evolution ofdT(z,t) defined by Eq.~3.5! at the
pointsA, C, E, andF in Fig. 1~b! for Q5122.2 mW/cm2.
2-7
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used. That is, if some plumes arrive at the top and oth
leave the bottom at the same time, negative interference
tween currents up and down will suppress overshoot.

B. Steady-state behavior

Now we discuss the Nusselt number Nu in steady sta
Figure 4 shows the combination Ra(Nu-1)/(Racorr2Rac) vs
Racorr/Rac21 for periodic sidewalls and forA51, 2, and 3.
This combination depends on Racorr andA from Eq.~2.34! in
steady states. The data~solid line! @17# excellently agree with
the numerical results for periodic sidewalls. We find that
scaling relation~1.5! nicely holds for Racorr/Rac*10 for pe-
riodic sidewalls, while it holds only for Racorr/Rac*103 at
A51. The exponenta in Eq. ~1.5! is close to 2/7, buta
51/4 is also consistent with our numerical data. IfA;1 and
Racorr is not very large such that the plume size is of orderL,
large-scale fluid motions are suppressed by the rigid s
walls. This marked tendency of theA-dependent crossover o
Nu was already reported in measurements forA50.5, 1, and
6.7 @10#.

In Fig. 5 we show the steady-state temperature devia
dT(z) averaged in thex direction as in Eq.~3.8! and in time
for the three values ofQ in Table I for periodic sidewalls
with period L'54L. The averages taken along thex direc-
tion become only weakly fluctuating in time in steady ch
otic states~the relative fluctuations being of order 10% f
the largestQ). As has been observed ubiquitously in t
previous simulations, the temperature gradient becomes
calized within thermal boundary layers with thickness,T .
BecauseDT>2,TQ/l for ,T!L, it is related to Nu by Eq.
~1.6!. The arrows in Fig. 5 represent the maximum poin

FIG. 4. Numerical results of Ra (Nu21)/(Racorr2Rac) vs
Racorr/Rac21 in steady states, obtained under the periodic bou
ary condition (1) and forA53 (h), 2 (*), and 1 (3). The first
curve (1) is close to the experimental results forA557 @17# ~solid
line! and is well fitted to the scaling form~1.5! with a>2/7 for
Racorr/Rac*10. With the aspect ratioA decreasing, crossover to th
scaling occurs at much larger Racorr.
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z5,v andL2,v , of the variance of the horizontal velocit
defined by

vx* ~z!5F E
0

L' dx

L'

vx~x,z,t !2G1/2

. ~3.9!

In Fig. 6 we plot the normalized velocity variance
vx* (z)/vg in ~a! andvz* (z)/vg in ~b!, wherevg is defined by
Eq. ~3.4! and

vz* ~z!5F E
0

L' dx

L'

vz~x,z,t !2G1/2

. ~3.10!

The time average ofvx
2 andvz

2 in the brackets is also taken i
these figures. On one hand,vx* take maxima atz5,v and
L2,v , where,v is hardly distinguishable from,T . On the
other hand,vz* is largest at the middle of the cell. We als
find that the sum ~the kinetic-energy variance! (vx* )2

1(vz* )2 is nearly constant in the interior, which was a fin
ing reported in Ref.@42#. At large Ra the maxima ofvx* and
vz* are of the same order and will be identified as the typi
plume velocityvpl . In our simulation we havevpl;0.1vg
(}Ra1/2), which is consistent with velocity measuremen
@9,22#.

Kerr and Herring@43# made similar plots of the height
dependent velocity variances in their 3D simulations
free-slip sidewalls. They found that the characteristic len
,v defined by the peak positions ofvx* (z) becomes longer
than ,T5L/2 Nu with increasing Ra; for example, for P
57 they obtained,v /,T;1 at Ra5104 and ,v /,T;3 at
Ra5107. Verzicco and Camussi obtained a similar slo
growing of ,v /,T at large Ra for Pr.1 in their 3D simula-
tion with A51 @41#. Also similarly, our 2D simulation with
Pr57.4 gives ,v /,T52.54 and 1.1 for Q5122.2 and
0.965 mW/cm, respectively, but we cannot draw a defin
conclusion because of our limited range of Ra.

In Fig. 7 we plot an overall Reynolds numberRe vs
Racorr/Rac21 in the simulation for periodic sidewalls. It i
defined by

-

FIG. 5. Height-dependent average temperature profilesdT(z)
divided byDT in steady states for the threeQ values in Table I. The
arrows represent the maxima ofvx* (z) in Fig. 6~a!.
2-8
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Re5
r

h
@^uv•“vu2&/^u“2vu2&#1/2, ~3.11!

where the averages are taken in the whole space region.
Re is smaller than 1 forRcorr/Rc&5 @31#. For larger values of
Rcorr, it exceeds 1 and the effective expone
](ln Re)/](ln Racorr) is from 1/4 to 1/3. However, as sug
gested by Fig. 6, the strength of the velocity fluctuatio
strongly depends on the distance from the boundary, so
more informative to introduce a height-dependent Reyno
number,

Re~z!5
r

h F E
0

L'

dxuv•“vu2/E
0

L'

dxu“2vu2G1/2

,

~3.12!

where the time averages of the integrands are taken
shown in Fig. 8, Rˆ e(z) takes maxima atz;,v andL2,v of
order

R̂e~,v!;,vvplr/h, ~3.13!

FIG. 6. Normalized height-dependent variances,vx* (z)/vg for
the horizontal velocity in~a! andvz* (z)/vg for the vertical velocity
in ~b! in steady states for the threeQ values in Table I.
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where vpl;vx* (,v). This relation indicates Rˆ e(,v)
;Ra1/22a with a>2/7 from vpl;0.1vg and ,v;,T . The
R̂e(z) becomes considerably smaller in the interior than
z;,v , whose origin is the sparseness of the plumes in
interior @see Eq.~3.20! below#. We confirm that R̄e is of the
order of the space average*0

LdzR̂e(z)/L. In the literature
@2–7#, however, the~large-scale! Reynolds number has bee
identified asRe5vplLr/h, which is much larger than Rˆ e(,v)
in Eq. ~3.13! by L/ l v . @For roll patterns, as was discusse
following Eq. ~2.21!, we uniquely have Re5vplLr/h.#

At very large Ra the boundary layers should gradua
crossover from a laminar state to a turbulent state exc
within thin viscous sublayers with thicknessz0 much shorter
than l v . In the inertial regionz0&z&,v of the boundary
layer, it is natural to expect the logarithmic velocity profi
@34#,

vx* ~z!5b0
21~s0 /r!1/2@ ln~z/z0!1c0#, ~3.14!

wheres0 is the amplitude of the shear stress at the bound
with b0 andc0 being dimensionless numbers of order 1. W
may sets05h limz→0Dxz(z), whereDxz(z) is the variance
of the velocity gradient,

FIG. 7. Oveall Reynolds numberRe defined by Eq.~3.11! as a
function of Racorr/Rac21 in steady states forQ5122.2 mW/cm2.

FIG. 8. Height-dependent Reynolds numberR̂e(z) defined by
Eq. ~3.9! in steady states for the threeQ values in Table I.
2-9
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FIG. 9. ~a! Height-dependent velocity variancevx* (z) defined by Eq.~3.9! ~solid line! on a semilogarithmic scale in steady states
Q5122.2 mW/cm2. ~b! vx* (z) ~upper curve! and velocity gradient variancezDxz(z) defined by Eq.~3.15! ~lower curve! on a logarithmic
scale.
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Dxz~z!5F E
0

L' dx

L'
S ]

]z
vx~x,z,t ! D 2G1/2

. ~3.15!

Thenvx* (z)>(s0 /h)z asz→0. It is appropriate to definez0

as @34#

z05h/~rs0!1/2, ~3.16!

which ensuresR̂e(z0);1. The size ofs0 should be equal to
the typical size ofrvxvz at z5,v even if we consider local-
ized shear flows for periodic sidewalls, so we also have

s0;rvpl
2 . ~3.17!

The ratio of the two lengthsz0 and,v is given by

,v /z0;vpl,vr/h;R̂e~,v!, ~3.18!

which grows with increasing Ra. In Fig. 9~a!, vx* (z) is fitted
to the above logarithmic form in the inertial region forQ
5122.2 mW/cm, where (s0 /r)1/250.067vg50.16 cm/s,
b051.2,c050.97, andz050.025L. In Fig. 9~b!, we plot
vx* (z) andzDxz(z) on a logarithmic scale. We may conclud
that these quantities do not behave asz in the inertial region
of the boundary layers, although the present Ra is not la
enough to unambiguously demonstrate the logarithmic
locity profile. Here we point out that our results are not co
sistent with Shraiman and Siggia’s primary assumptions
,T,,v and the linear profile of the mean shear flow,vx}z,
in the regionz,,T @2,3#.

In contrast to the averages taken along thex direction,
those taken along thez direction are rapidly varying func
tions of time at large Ra due to the random plume motio
We consider the vertical velocity variance defined by

vz* ~x,t !5F E
0

Ldz

L
vz~x,z,t !2G1/2

. ~3.19!
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In Fig. 10 we display snapshots ofvz* (x,t), where the time
average is not taken and peaks arising from the plumes
come more apparent with increasingQ. For our Ra realized,
the space regions occupied by the plumes become m
sparse with increasing Ra in the interior. As the plumes m
through the cell, they remain distinguishable from the am
ent fluid because the thermal diffusion length (DL/vpl)

1/2

does not much exceeds,v . So we may define the volum
fraction of the plumesfpl . The convective heat current is o
orderfplvplCpDT;l NuDT/L, leading to

fpl;D/,Tvpl , ~3.20!

which is of order Pr21R̂e(l v)21!1 from Eq. ~3.13!. For
much larger Ra, the plumes will generate smaller scale

FIG. 10. Snapshots of the normalized velocity varian
vz* (x,t)/vg averaged in thez direction defined by Eq.~3.19! for the
three values ofQ in Table I. The system is periodic with period 4L
in thex direction. The peak heights increase with increasingQ. For
the largestQ this quantity changes in time as the plumes move
the cell, while for the otherQ it is weakly dependent on, or inde
pendent of, time.
2-10
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CONVECTIVE HEAT TRANSPORT IN COMPRESSIBLE FLUIDS PHYSICAL REVIEW E66, 016302 ~2002!
dies, ultimately leading to fully developed turbulence in t
interior, as will be discussed in Sec. IV.

C. Overall temperature fluctuations

When a plume with a volumeVpl reaches the boundary,
transfers a heat of orderCpDTVpl to the boundary wall. As
indicated by Eq.~2.13!, the piston effect then gives rise to
homogeneous change in^dT&(t) of order

~dT!pl;gs~Vpl /V!DT. ~3.21!

Of course, the real plumes are extended objects and are
tinuously arriving at the boundary in high Ra convectio
ThusVpl /V in the above formula should be regarded as
fluctuation amplitude of the plume volume fractionfpl in the
interior, although we do not know about its dependence
Ra, etc., at present. IfTtop andQ at the bottom are fixed as i
our simulation,DT(t) should also consist of fluctuations o
the same origin. Because of the strong critical divergenc
gs , we expect that the relative noise amplitude (dT)pl /DT
would increase ase is decreased with a fixed size ofDT.

Figure 11 displays time sequences of^dT&(t) andDT(t)
at fixed volume and pressure for periodic sidewalls w
L'54L, which demonstrates strong correlations betwe
these two deviations at fixed volume. Here we write the ti

FIG. 11. ^dT&(t) andDT(t) at fixed volume~solid line! and at
fixed pressure~broken line! for e50.05 ~upper figure! and 0.01
~lower figure!. The noises of these quantities at fixed volume
crease as the reduced temperaturee is decreased.
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average ofDT(t) as DT to avoid confusion. In Fig. 11~a!
~upper figure! we sete50.05 (gs522.8), DT50.17 mK,
Pr57.4, Ra57.383104, and Nu54.06, while in Fig. 11~b!
~lower figure! we sete50.01 (gs5119), DT50.19 mK,
Pr537.7, Ra54.143105, and Nu56.04. The time average
DT is chosen to be only slightly different in the two cases.
fixed volume, the fluctuations of̂dT&(t) and DT(t) are
strongly correlated, and are larger and slower for Fig. 11~b!
than for Fig. 11~a! in steady states (t*100). The normalized
variance ofDT(t), the square root of the time average
@DT(t)/DT21#2, is equal to 0.0069 for Fig. 11~a! and 0.012
for Fig. 11~b! at fixed volume. At fixed pressure, where th
piston effect is absent,DT(t) exhibits noises much smalle
than those at fixed volume and^dT&(t) smoothly changes in
time. It is worth noting that this noise increase at fixed v
ume accompanied by an increase of Ra is contrary to
usually measured noise behavior of the temperature.
noncritical fluids, if the temperature is measured at the ce
of a cell, its fluctuation amplitude divided byDT is known to
decrease with increasing Ra as Ra2bn. The exponentbn was
about 0.15 in a cell withA51 @5,18#.

D. Random reversal of macroscopic flow

For a convection cell withA;1, it is well known that
large-scale shear flow develops near the boundary of the
for large enough Ra@19,21,22#. Moreover, it has also bee
observed that the global circulation changes its orienta
over long time scales@21,19#. For the case ofA51, L
51.06 mm, e50.05, Q540.7mW/cm2, Ra51.683106

(>Racorr), Nu55.97, we plot a numerical time sequence o
circulationG(t) in Fig. 12. Here

G~ t !5E
d

L2d

dx@vx~x,L2d,t !2vx~x,d,t !#/L

1E
d

L2d

dz@vz~L2d,z,t !2vz~d,z,t !#/L,

~3.22!

where the integration is along a square contour with dista
d50.05L from the cell boundary. This quantity is positiv
for clockwise circulation and negative for counterclockwi
circulation. In Fig. 12,DT(t) is also plotted, which exhibits
particularly large fluctuations on the occasion of orientat
changes. This is a natural result because large-scale re
nization of the flow pattern is needed for an orientati
change.

Figure 13 illustrates the velocity patterns att5228, 269,
and 311 s in Fig. 12. They closely resemble a picture of
measured velocity pattern in Ref.@22#. Here the typical ve-
locities of the macroscopic flow and the plumes are both
order 0.2 cm/s in agreement with the estimation~4.2!. The
circulation time (;4L/vpl) is of order 2 s and is much
shorter than the average period of the global orientation
versal (;50 s). At any times a small number of plumes wi
irregular shapes are emerging from the bottom, top, and
boundaries. In most times a large primary eddy is domin

-

2-11
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in the middle region in coexistence with small counte
oriented eddies near the corners. However, when a pl
moving through the cell is strong enough, it can suppress
preexisting primary eddy and cause a global orientat
change.

IV. SCALING THEORY

Rayleigh numbers realized in the existing simulations
still moderate in the sense that the plumes do not h

FIG. 12. Time evolution of the circulationG(t) defined by Eq.
~3.22! ~upper figure! and DT(t) ~lower figure! for Q
5122.2 mW/cm2 in a cell with A51. The orientation of the mac
roscopic flow changes on a time scale of 50 s. The sign ofG(t)
represents the orientation of the macroscopic circulation, while
fluctuations ofDT(t) become large when the orientation change

FIG. 13. Velocity patterns att5228, 269, and 311 s for the ru
in Fig. 12. At t5228 s the orientation of the primary eddy is cou
terclockwise, while att5311 s it is clockwise. Att5269 s two
large eddies with different orientations can be seen. Here a wa
plume is going upward in the region where the two large edd
collide. It is suppressing the upper counterclockwise eddy.
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enough kinetic energies such that they do not generate f
developed turbulence in the interior. In thispreasymptotic
regime of steady states, we may understand the nume
and experimental data using a very simplezeroth-order
theory. First, we set,5,T5,v neglecting the possible sma
difference between,T and ,v mentioned following Eq.
~3.10!. The plume sizes in the horizontal direction are also
order ,. Second, in our simulation the plumes are ejec
into the interior with a velocityvpl , for which the viscous
drag and the buoyancy are balanced or

h l 22vpl;rgapDT. ~4.1!

Thus vpl is of the order of the terminal velocityv`
;RaDl 2/L3 in Eq. ~3.6! with R;,. In the interior we find
that ~i! gravity-induced acceleration of the plumes is su
pressed by the viscous drag,~ii ! (vx* )21(vz* )2 is nearly in-
dependent ofz as stated below Eq.~3.10!, and ~iii ! the last
two terms on the left-hand side of Eq.~2.17! are numerically
of the same order. For example, the ratio of the average
(apgdT)2 in the x direction to that ofu(h/r)“2vu2 is about
4 at z; l and is fluctuating around 1 in the interior for th
largestQ in Table I. These supportvpl;v` in the interior.
Third, to the sum rule~2.36! for the velocity gradients, the
contribution from the boundary layers is of ordervpl

2 /,L,
while that from the interior is of orderfplvpl

2 /,2;Dvpl /,
3

from Eq.~3.20!. If use is made of Eq.~4.1! and the sum rule
~2.36!, these boundary-layer and bulk contributions both b
come of order Ra Nu(D/L2)2, which has also been con
firmed numerically. Thus,

vpl;Ra1/2D/L, ~4.2!

Nu;L/,;1/fpl;Ra1/4. ~4.3!

These quantities are independent of Pr. In particular, the
dependence of Nu on Pr is consistent with the experime
@13,15,17#. In accord with Eqs.~3.4! and ~4.2!, our data of
the velocity ratiovpl /vg can well be fitted to 0.26 Pr21/2 for
Pr57.4, 37.7, and 74.8 or fore50.05, 0.01, and 0.005,
respectively, at high Ra. In his 3D simulation@42# Kerr cal-
culated the typical horizontal velocityvpl at z5,v (uw in his
notation! and obtainedvpl /vg50.24 for Pr50.7.

Our height-dependent Reynolds number atz5, in Eq.
~3.13! becomes

R̂e~ l !;Ra1/4/Pr. ~4.4!

The usual large-scale Reynolds number is given by
;vplLr/h;Ra1/2/Pr. As R̂e(l ) exceeds a crossover valu
Re* , plumes will induce turbulence in the interior. Ou
simple scaling theory is valid for Ra&(Re* Pr)4. In our
simulation we have Rˆ e(l )>0.38 Ra1/4, for Pr57.4 or for e
50.05 sothat if we set Re* ;103 ~regarding plumes as jet
@34#!, the upper bound is crudely estimated as 531013. The
transition from the scaling@Eq. ~4.3!# to the asymptotic scal-
ing occurs over a very wide range of Ra. the sparsenes
the plumes indicated by Eqs.~3.20! and ~4.3! should also
serve to decelerate the changeover into the asymptotic tu
lent regime. Similarly, Grossmann and Lohse@6# considered
a transition of a laminar boundary-layer flow to a turbule
boundary layer when the local Reynolds number on the s
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of ,v at z;,v exceeds a value of order 420. Then Nu w
claimed to be better expressed by

Nu;Ra1/4~11C1 Rab! ~4.5!

than by the single power-law form~1.5!, whereC1 andb are
small coefficient and exponent, respectively, both being
order 0.1. This proposed form of Nu was later claimed to
in good agreement with data@14#.

Here it would be informative to add more supplementa
explanations of the previous scaling theories.~i! Shraiman
and Siggia@2,3# assumed fully developed turbulence in t
interior. Then the maximum of the turbulent velocity grad
ent is of orderSd5hkd

2/r5(vpl
3 r/Lh)1/2 at the smallest eddy

size kd
21 @;(h/rvpl)

3/4L1/4# if the Kolmogorov cascade is
assumed with the energy dissipation ratevpl

3 /L @34# ~the
sparseness of ejected plumes being neglected!. If the left-
hand side of the sum rule~2.36! is estimated asSd

2 , it follows
the relation

vpl;~Pr Nu Ra!1/3D/L. ~4.6!

Furthermore, they assumed the linear horizontal velo
profile vx;(s0 /h)z in the regionz&,T;L/Nu, wheres0
is given by Eq.~3.17!. From the thermal diffusion equatio
vx]dT/]x5D“

2dT ~the time-dependent fluctuations bein
neglected!, they obtained the scaling,

,T
23;rvpl

2 /hDL, ~4.7!

by setting]/]x;L21 and“2;(]/]z)2;,T
22 for a cell with

A;1. From Eqs.~4.6! and ~4.7! they found

Nu;Pr21/7 Ra2/7. ~4.8!

However, as discussed below Eq.~3.14!, our simulation sug-
gests that the velocity deviates significantly from the line
profile in the boundary layers.~ii ! Castainget al. @5# as-
sumed the balance~4.1! at the length,T ,

vpl;,T
2gapDT/h;RaNu22D/L. ~4.9!

They further assumed that the typical temperature scal
the interior is (dT)c;vpl

2 /apgL and that the average he
current (>NulDT/L) is of orderCp(dT)cvpl . From these
relations (dT)c may be eliminated to give Eq.~4.6!. If we
combine Eqs.~4.6! and ~4.9!, we are again led to Eq.~4.8!.
Therefore, to justify their arguments, the presence of fu
developed turbulence in the interior seems to be requi
~iii ! Grossmann and Lohse@6,7# estimated the bulk and
boundary-layer contributions to the sum rules for the te
y

A
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perature gradient and the velocity gradients, the incompr
ible version of Eqs.~2.35! and~2.36!. Their primary assump-
tion is that the boundary layer thickness for the velocity
given by ,v;L/Re1/2 in terms of the large-scale Reynold
number Re@34#. Note that this assumption is not consiste
with our zeroth-order scaling theory with respect to the
dependence. In particular, in the case where Pr.1 and the
boundary-layer contributions are dominant both for the te
perature and the velocity, they obtained Nu;Pr21/12Ra1/4. In
this case we also find,v /,T;Pr1/3 from their theory. They
predicted that this preturbulent scaling crossovers to
asymptotic turbulent scaling very slowly as in Eq.~4.5!.

V. CONCLUDING REMARKS

We have presented a hydrodynamic model of compre
ible fluids properly taking into account the piston effect a
the adiabatic temperature gradient effect. Though perform
in two dimensions, our simulation has revealed some imp
tant effects in near-critical fluids, such as the overshoot
havior and the amplification of the overall temperature flu
tuations asT→Tc . It generally explains the experimenta
findings @16,17#, but a discrepancy remains in the oversho
behavior at high heat fluxQ as discussed in Sec. III. It is
desirable to extend simulation to smallere and higher Ra.
Also, more experiments on the overshoot and the temp
ture noises, etc., are needed to resolve the discrepancy a
confirm the new predictions. As by-products, we have n
merically examined steady state properties not treated in
previous simulations, such as the logarithmic velocity pro
and the random reversal of macroscopic shear flow. They
universal aspects present in both compressible and inc
pressible fluids.

We have assumed that the fluid is in the supercritical
gion not very close to the critical point such that the con
tions ~2.1! and ~2.2! are satisfied. However, ifDT exceeds
T2Tc or if Ttop is belowTc , we encounter a variety of new
effects such as boiling and wetting under heat flow and gr
ity @23,52#. We believe that such problems should provide
a new challenging field in which nonlinear dynamics a
phase transition dynamics are coupled. These problems
beyond the scope of this paper.

ACKNOWLEDGMENTS

We thank H. Meyer for valuable suggestions and co
ments. Thanks are also due to P. Tong for informative co
spondence. This work is supported by Japan Space Fo
Grant No. H13-264.
G.

ids
@1# S. Chandrasekhar,Hydrodynamic and Hydromagnetic Stabilit
~Clarendon Press, Oxford, 1961!.

@2# E. D. Siggia, Annu. Rev. Fluid Mech.26, 137 ~1994!.
@3# B. I. Shraiman and E. D. Siggia, Phys. Rev. A42, 3650~1990!.
@4# L. P. Kadanoff, Phys. Today54, 34 ~2001!.
@5# B. Castaing, G. Gunaratne, F. Heslot, L. P. Kadanoff,
 .

Libchaber, S. Thomae, Xiao-Zhong Wu, S. Zaleski, and
Zanetti, J. Fluid Mech.204, 1 ~1989!.

@6# S. Grossmann and D. Lohse, J. Fluid Mech.407, 27 ~2000!.
@7# S. Grossmann and D. Lohse, Phys. Rev. Lett.86, 3316~2001!.
@8# The usual hydrodynamic equations for one-component flu

in the Boussinesq approximation are valid only when~i! the
2-13



q

R
e

on

on

A

m

n

in

p-

Rev.
d

,
n

-
and
e

D.

re-

is
t in

, J.

-

-

AKIRA FURUKAWA AND AKIRA ONUKI PHYSICAL REVIEW E 66, 016302 ~2002!
fluid is in one-phase states,~ii ! the specific heat ratioCp /CV is
close to 1,~iii ! DT is much larger thanagL in Eq. ~1.2!, and
~iv! the gravity-induced stratification is weak such that E
~2.2! holds.

@9# M. Sano, Xiao-Zhong Wu, and A. Libchaber, Phys. Rev. A40,
6421 ~1989!.

@10# Xiao-Zhong Wu and A. Libchaber, Phys. Rev. A45, 842
~1992!.

@11# S. Ashkenazi, Ph.D. thesis, Weizmann Institute of Science,
hovot, Israel, 1997; S. Ashkenazi and V. Steinberg, Phys. R
Lett. 83, 3641~1999!.

@12# X. Chavanne, Ph.D. thesis, Universitee´ Joseph Fourier,
Grenoble, 1997.

@13# X. Chavanne, F. Chilla`, B. Castaing, B. He´bral, B. Chabaud,
and J. Chaussy, Phys. Rev. Lett.79, 3648 ~1997!; X. Cha-
vanne, F. Chilla`, B. Chabaud, B. Castaing, and B. He´bral,
Phys. Fluids13, 1300~2001!.

@14# X. Xu, K. M. S. Bajaj, and G. Ahlers, Phys. Rev. Lett.84,
4357 ~2000!.

@15# G. Ahlers and X. Xu, Phys. Rev. Lett.86, 3320~2001!.
@16# A. B. Kogan, D. Murphy, and H. Meyer, Phys. Rev. Lett.82,

4635 ~1999!.
@17# A. B. Kogan and H. Meyer, Phys. Rev. E63, 056310~2001!.
@18# J. J. Niemela, L. Skrbek, K. R. Sreenivasan, and R. J. D

nelly, Nature~London! 404, 837 ~2000!.
@19# J. J. Niemela, L. Skrbek, K. R. Sreenivasan, and R. J. D

nelly, J. Fluid Mech.449, 169 ~2001!.
@20# B. J. Gluckman, H. Willaime, and J. P. Gollub, Phys. Fluids

5, 647 ~1993!.
@21# S. Cioni, S. Ciliberto, and J. Sommeria, J. Fluid Mech.335,

111 ~1997!.
@22# X.-L. Qiu and P. Tong, Phys. Rev. E64, 036304~2001!.
@23# A. Onuki, Phase Transition Dynamics~Cambridge University

Press, Cambridge, 2002!.
@24# A. Onuki and R. A. Ferrell, Physica A164, 245 ~1990!; A.

Onuki, H. Hao, and R. A. Ferrell, Phys. Rev. A41, 2256
~1990!.

@25# J. Straub and K. Nitsche, Fluid Phase Equilib.88, 183 ~1993!;
J. Straub, L. Eicher, and A. Haupt, Phys. Rev. E51, 5556
~1995!.

@26# H. Boukari, J. N. Shaumeyer, M. E. Briggs, and R. W. Ga
mon, Phys. Rev. A41, 2260~1990!.

@27# B. Zappoli, D. Bailly, Y. Garrabos, B. Le Neindre, P. Guenou
and D. Beysens, Phys. Rev. A41, 2264~1990!.

@28# P. Guenoun, B. Khalil, D. Beysens, F. Kammoun, B. le Ne
dre, Y. Garrabos, and B. Zappoli, Phys. Rev. E47, 1531
~1993!.

@29# F. Zhong and H. Meyer, Phys. Rev. E51, 3223~1995!.
@30# S. Amiroudine, P. Bontoux, P. Larroud, B. Gilly, and B. Za

poli, J. Fluid Mech.442, 119 ~2001!.
@31# Y. Chiwata and A. Onuki, Phys. Rev. Lett.87, 144301~2001!.
@32# M. Gitterman and V. Steinberg, J. Appl. Math. Mech.34, 305
01630
.

e-
v.

-

-

-

,

-

~1971!; M. Gitterman, Rev. Mod. Phys.50, 85 ~1978!.
@33# P. Carlès and B. Ugurtas, Physica D126, 69 ~1999!.
@34# L. D. Landau and E. M. Lifshitz,Fluid Mechanics~Pergamon,

1959!.
@35# E. E. DeLuca, J. Werne, R. Rosner, and F. Cattaneo, Phys.

Lett. 64, 2370~1990!; J. Werne, E. E. DeLuca, R. Rosner, an
F. Cattaneo,ibid. 67, 3519~1991!.

@36# U. Hansen, D. A. Yuen, and S. E. Kroening, Phys. Fluids A2,
2157 ~1990!; U. Hansen, D. A. Yuen, and A. V. Malevsky
Phys. Rev. A46, 4742~1992!. Here the Stokes approximatio
was used in the range 106,Ra,109 in 2D. Nevertheless, they
could obtain the scaling~1.5! in agreement with the experi
ments, which suggests that the balance of the viscous drag
the buoyancy in Eq.~4.1! should have also been realized in th
experiments.

@37# S. Balachandar and L. Sirovich, Phys. Fluids A3, 919 ~1991!.
@38# S. Toh and E. Suzuki,Unstable and Turbulent Motion of Fluid

~World Scientific, Singapore, 1993!, p. 272.
@39# C. Bizon, J. Werne, A. A. Predtechensky, K. Julien, W.

McCormick, J. B. Swift, and H. L. Swinney, Chaos7, 107
~1997!.

@40# S. L. Christie and J. A. Domaradzki, Phys. Fluids A5, 412
~1993!.

@41# R. Verzicco and R. Camussi, J. Fluid Mech.383, 55 ~1999!.
@42# R. M. Kerr, J. Fluid Mech.310, 139 ~1996!.
@43# R. M. Kerr and J. R. Herring, J. Fluid Mech.419, 325 ~2000!.
@44# For 0,e!1 the scaling formap5e2gG(u) holds with u

5(r/rc21)/eb. For uuu!1 or under Eq.~2.2! in gravity, we
haveG(u)>G(0) andap>G(0)e2g.

@45# G. P. Metcalfe and R. P. Behringer, J. Low Temp. Phys.78,
231 ~1990!.

@46# To be precise, the time constant of the pressu
homogenization is given bythom5(tact1)1/2 under the condition
tac!t1 in terms of the acoustic timetac5L/c and the piston
time t1 @23#. Here the damping of the pressure oscillation
mainly caused by the damping of the oscillatory heat curren
the thermal diffusion layers.

@47# G. Ahlers, M. C. Cross, P. C. Hohenberg, and S. Safran
Fluid Mech.110, 297 ~1981!.

@48# L. D. Landau and E. M. Lifshitz,Statistical Physics~Perga-
mon, New York, 1964!, Chap. 12. It is well known that the
thermal fluctuations ofdT anddr obey the Gaussian distribu
tion proportional to exp(2dF/kBT), wheredF is given by Eq.
~2.23!. See Ref.@23# for more discussions on this aspect.
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