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Effects of thermal boundary conditions and cavity tilt on hydrothermal waves:
Suppression of oscillations
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Hydrothermal waves are longitudinal modes responsible for the onset of oscillations of low-Prandtl number
flows inside end-heated cavities. We consider the flow induced by the hydrothermal wave in a rectangular
enclosure whose differentially-heated side is tiltedegrees from the vertical position. An analytical approxi-
mation to the neutral curve and dispersion relation obtained by the Galerkin procedure is shown to quantita-
tively agree with the exact numerical solution of the stability problem. The analytical expressions are then used
to dissect the effect of the Prandtl and Biot numbers and the inclination on the wave stability. In conducting
walls the critical RayleighR., and wave numbem,, tend to a constant value at low Pr, while the critical
frequencyf .~ Pr ¥*2 In adiabatic walls all these critical parameters increase lik& Fhe boundaries can be
considered to be poorly insulated if BPr, and in this case the critical parameters increase lik& Bin the
other handR;, and m,, reach a minimum value at intermediate inclinations, while the critical frequency
steadily increases with. A closed equation for the frequency is also derived. This equation correctly forecasts
the critical frequency in the unbounded domain and also the fundamental frequency measured in confined
flows, as revealed by comparison with previous experiments and hereby presented numerical calculations for
varying a. An important conclusion of the study is that for any arbitrarily small value of Pr the hydrothermal
wave can be suppressed by heating the cavity above a theoretically predictddpendentangle. This
prediction is of great relevance in the application dontain. the crystal growth from melts by the Bridgman
techniqué.
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[. INTRODUCTION tum and temperature perturbations with the mean shear and
the basic driving force. Both authors provided analytical
When a shallow cavity is filled with liquid metal and an trends for the oscillation frequency in terms of the external
externally imposed horizontal temperature difference isand internal flow parameters. A point to be noted is that
gradually increased, the thus created steady circulation cadthough the assumptions made in both theoretical works led
develop an oscillation generated by a longitudinal instability,to different frequency relationshipsee Refs[4] and[6]),
commonly known as hydrothermal wave. This phenomendhe validity limits of the two theoretical trends has been
has been the subject of research over the past three decad%%f?‘_rceW further investigated in the literature. This point is
From a chronological standpoint, the active interest arise&eVvised in the present work.

because of the relevance of this flow on the horizontal Bridg- C°Ming back to the problem addressed above, it should
man technique, which is one of the most efficient ways for?€ Mmentioned that a common way to avoid the onset of os-

growing relatively large, high quality, homogeneous pureciIIations is to apply a transversal magnetic field across the

semiconductor crystalsee, e.g1]). Since the early experi- cavity. This fact also motivated a series of papers, starting

o . from the pioneer experiments of Hurkt al. [2] to more
ments of Hurleet al.[2] it is known that the time-dependent recent numerical studies in Refd,8] and stability analyses

flow in(_juces thermal oscillations which in turr_w are some ofgee Ref[9] and references therairBy such a procedure it
the main reasons for the occurrence of undesirable striationg ssible to delay the onset of oscillations towards larger
i.e., layered variations of impurities in the crystal. The rela'temperature differences but pay the price of a severe reduc-
tion between flow oscillations and crystal structure is still a4iopy of the mean flow amplitude, and thus of the overall mass
subject of investigatiofsee, e.gl3]). This fact addresses the {ransport and crystal growth rates. Bestzal. [10] proposed
necessity of a deeper understanding of the flow induced bynother way for suppressing hydrothermal waves in
the oscillatory longitudinal instability in order to eventually thermocapillary-driven flows. Their method is based on heat-
find possible ways to avoid or completely suppress it. Théng troughs of low disturbance temperat(maced by a feed-
pioneer theoretical studies by Gil] and Hart[5,6] ex- forward control schemewith a sheet of infrared laser radia-
plained the basic physical origin of the oscillations showingtion.
that they occur in either gravitational and thermocapillary Since the late 1980s, convection of low-Pr fluid in end-
driven flows, taking energy by a coupling between momenheated cavities was also thought to be a simple way for in-
vestigating possible routes to chaos in fluid dynamics. The
linear stability analysis of the basic plane-parallel flow in the
*Present address: Center for Computational Science, Departmehorizontal configuration was first studied by H#85t6], and
of Chemistry, Queen Mary, University of London, London E1 4NS, then subsequently revised by Laweal. [11] and by Kuo
U.K. Email address: R.Delgado-Buscalioni@gmul.ack.uk; URL:and Korpeld 12] (insulated boundari¢end Wang and Kor-
www.fisfun.uned.estrafa pela[13] (conducting walls These studies showed that for
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the range Prandtl number characteristic of liquid metals Pr y L
~10"2, the oscillatory longitudinal instability is the most N A
dangerous one, although its threshold is quite close to the v = i
onset of stationary transversal shear r¢#lee[14] for a re- & !"
cent review. Several experiments were devoted to exploring -
the successive transitions towards aperiodic flds—17] E\ 90-a l

g

and to characterizing the secondary Hopf bifurcations
[18,19. Numerical calculations of the three-dimensional
flow are relatively more recent. These comprise the works in FIG. 1. Geometry of the problem and the basic mean stationary
Refs.[21,22, concerning the flow at the transition to the flow.
periodic regime for one of the cases considered in Re;
and the study in Ref.20], concerning the onset of the sec- (V-v=0) with thermal expansion coefficieft, kinematic
ondary Hopf-Hopf bifurcation. viscosity v, and thermal diffusivityx fills the cavity and its

In the case of upper free boundaries and Marangonimotion is governed by the Navier-Stokes and heat transport
driven flows, the analysis of Ref23] showed that the sta- equations with the Boussinesq approximation. The flow is
bility properties of the hydrothermal wave are rather sensibleletermined by the following set of nondimensional param-
to the thermal behavior of the wall. Nevertheless, although itters: the inclinatione, the aspect ratiosh,=H/L andA,
is not a simple task to achieve a perfectly insulating bound=H/D, the Rayleigh and Prandtl numbers, Ra
ary under experimental conditiofsee Ref[16]), in the case =gBATh*/Lvk and Pe=wv/k, and the Biot number Bi
of buoyancy-driven flows within rigid boundaries a similar which determines the thermal behavior of the lateral walls
investigation is not to be found in the literature. This inves-[see Eq(3) below]. The Navier-Stokes and energy equations
tigation is part of the present work. have been nondimensionalized by using «Ra

The inclination plays a crucial role on the mean flow Reh(AT/L), andh?/(v«)? as scales for velocity, tempera-
structure[24]. For instance, it is known that extremely small, ture, and time, ang,g8(AT/L)h2«Y% v¥2 for the pressure,
unavoidable inclinations 0.5°) can alter the crystal

growth dynamics in the vertical Bridgman technigi®5s]. ﬂJrR PF12,. Vy=— VP+ Pr2y2y— 2A RaPM2T
On the other hand, optimum tilting has been addressed as &t art v v 2 na %

X

feasible way to enhance the m&26] and heaf24] transport (1)
rates, with direct application to the crystal growth technique JT
[27]. Nevertheless, the effect of tilted boundaries on end- P2 { Rav-VT=V2T. )
heated-enclosures flow instabilities received much less atten- ot

tion in the literature. A rather complete panorama of the adia-
batic case can be found in Refl4], showing that the o
inclined setup makes feasible the study of several types o-Fhe thermal boundary co_ndmons at the=+H/2 andy =
instabilities and their interactions or, alternatively, tilt may be P72 walls are the following ones,
used to suppress flow disturbances. In particular, this paper VT-n+Bi(T—Tyan) =0, 3
shows that a relatively easy way to suppress the oscillations
induced by a hydrothermal wave is to tilt the cavity above awheren is the unit vector normal to the surface of the walls
certain predicted inclination. and T, is the external temperature of the wall, decreasing
The rest of the paper can be summarized as follows. Itinearly with thez coordinate. The Biot number appearing in
Sec. I, the mean flow profiles are derived and Sec. Il con£gq. (3) ranges from adiabatic, Bi0, to perfectly conducting
siders their stability with respect to oscillatory longitudinal walls, Bi=cc.
modes. An equation for frequency is deduced in Sec. IV and For any not vertical position the mechanical equilibrium
used to dissect the relevance of the several processes affesi-not possible and any externally imposed temperature dif-
ing the oscillation for different external parameters. Sectiorference leads to a clockwise unicellular steady circulation
V discusses the effect of inclination and the effect of con-illustrated in Fig. 1. The flow at the core region is nearly
finement is studied in Sec. VI by comparison with numericalplane parallel and turns around at the end regions placed at a
calculations of the flow for varying Ra and inclination. Sum- distance of orde©(A,) adjacent to the={0,2AZ_1} walls.
mary and concluding remarks are presented in Sec. VIl The |ateral walls ay=+A * impose an even modulation in
the flow amplitude which is only relevant at diffusive layers
Il. GOVERNING EQUATIONS AND THE BASIC of thicknessO(A,). In wide enough cavitiesA,<1) and
FLOW PROFILES away from these layers, one can neglect the flodepen-
dence and describe the basic circulation as a two dimensional
Let us consider the flow on the rectangular cavity of Fig.steady flow in thex—z p|ane_ At the core region it is as-
1, whose dimensions along y, and z directions (width,  sumed that the basic flow can be described by a plane-

depth, and lengthare respectivelji=2h, D, andL. Thez  parallel solution with the following structure,
axis is inclined an angle: with respect to the gravity vector,

g=gey, With g;=sin(a)i — cosf)k, and a temperature differ-
enceAT is imposed along theaxis. An incompressible fluid

The walls are rigid and the nonslip condition is assumed.

KA,
v=Kwy(x)k, TZT(er 0,(X) +b), (4)
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where K is the ratio between the streamwise temperatureR<R,/cosa. Hence, the limitR— R,/cosa corresponds to
gradient at the core and the externally imposed temperatuf@e limit of infinite Rayleigh number, Ra . Respectively

gradient. By inserting Eq4) into the curl of Eq(1) and into  for adiabatic and conducting wallR,=31.28 andRy= 7*.
Eq. (2) one obtains a set of ordinary differential equations for

the axial velocity and temperatuseprofiles. Their explicit IIl. EQUATIONS FOR THE PERTURBATIVE FLOW
analytical expressions depend on the local Rayleigh number
at the coreR=KRa, and are shown in Table I. In order to investigate the stability of the basic flow at the

The interested reader is referred to Ré¥4] for a com-  core region, it is convenient to choose the local temperature
prehensive study of the steady flow and heat transfer regimesgradient at the coré&KAT/L in the temperature scaling.
in the tilted configuration. Briefly, the profiles in Table | are Thus, the scale of velocity and temperature in the perturba-
valid in the conductive and transition regime, i.e., at low andtion equations are respectiveRkx/h and (RAT/L)h, and the
moderate Rayleigh number. At larger Ra the structure of thdasic velocity and temperature fields are noww,(x)k and
steady flow is transformed owing to the development of thel,= —z+ 6,(x). As usual, the linearized equations for the
boundary layer regiméBLR). Anyhow, the frontier of the perturbative flow are obtained by expressing each flow vari-
BLR is far above the range of values of Ra at which theable as the sum of the mean flow quantity and a small per-
hydrothermal wave appeafsee Ref[14]). To conclude with  turbation, inserting them into Eqgl) and(2) and neglecting
this section, an important point has to be mentioned aboytroducts of perturbative quantities. We are hereby interested
the dependence of the local Rayleigh number at the Bore in oscillatory longitudinal perturbations whose motion can be
with the external Rayleigh number, Ra. The basic profiles fodescribed by the perturbative temperaturg, the stream-
a<90° in Table | diverge at a discrete set of valueRpthe ~ wise component of the perturbative velocity,, and one
lowest one beindry/cosa. As shown in Ref[24], consid-  stream function¥, for the flow in the x—y plane:
eration of the closing walls a={0,L/h} leads to the fol- J¢¥,/dy=—u, and ¥ ,/dx=v,. In the unbounded limit
lowing conclusion: as Ra increases, the valueRadisymp- A,—0 andA,—0 the set of equations for the longitudinal
totically tends to the divergence value, in such a way thaperturbations is of the fornf®,=0, where

J J
R v 1274 0 _ 12 .
mv + Proy RPr“sm(a)&y
I o1 J 22 2
£=| ——RPr¥w, ——pty2 —RPr'coda) (5)
ay ot
J J
o 1 -1 2 _v2
RO, 3y Prt praall
|
with the following boundary conditions: large enough number of basis functions which typically var-
v ied fromN=15 for low Pr0.05 toN= 25 for larger Pr and
+ _ Wy " _ larger inclinations(see Ref.[28] for convergence details
q’p(— 11y1t) (—1ay!t) Ol (6) .
IX For «=90° (horizontal enclosurgghe values of the critical

Rayleigh number, critical wave number, and critical fre-
quency differed by less than 2% to those reported in previ-
JT ous works[11,12. The interested reader is rgfgrred tlo Ref.
Tp(t1,y,t)tBi(9—Xp(t1,y,t):O. (8) [14] for a c.omplefu'e're'port on the floyv stablll‘(yncludlng_
transversal instabilitigsn the case of tilted enclosures with
adiabatic walls and to Ref28] for the conducting counter-

wWy(=1y,1)=0, (7)

For a given set of parameter®,(m, Pr,«, Bi), the solution

of Eqs.(5)~(8) is a vector®,=(w,, ¥, T,), with the fol- P&
lowing functional form A. Analytical approach
D, (x,y,1) =Dy(x)em e, (9) The Galerkin method has been used to obtain an analyti-

cal approximation to the eigenvalue problem arising from
where &,(x) is the array of perturbative amplitudeom-  Egs. (5)—(8). The accuracy of this method greatly depends
plex) functions. Inserting Eq(9) into Egs.(5)—(8) one ob- on the choice of the trial functions. First, the trial functions
tains an eigenvalue problem for the complex growth ratehave to satisfy the boundary conditions of E(®~(8) and
Q=0Q,+iQ;. The resulting system was solved by a Tau-secondly they have to resemble as much as possible the per-
Chebyshev method. Accuracies of about 1% in both the eiturbative amplitudes of the neutral mode. The
genvalues and the eigenvectors were ensured by using aaplitude functions have been modeled aﬁp(x)
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TABLE I. Axial velocity and temperature basic profiles correspondiregpectively from top to bottom
to 0°<a=<90°, »=90° and 90%a<180°. The parameteris defined as =(Rcosa)** for 0°<a<90° and
r=(1/\/2)(— Rcosa)"* for 90°<a<180°.

sin(a)r ~2(1+Bi)[ sin(r)sinh(rx) —sin(rx)sinh(r)]
2Bisin(r)sinh(r)+r[coshr)sin(r)+cogr)sinh(r)]

sin(a) (1+Bi)[ sin(rx)sinh(r)+sin(r)sinh(rx)]
4 X7 2Bisin(sinh(r)+ r[cosHr)sin(r)+ cogr)sinh(r)]

Wi(X)=

Op(X) =

Wy(X) = (—X+X)
(15+7Bi)x x® x°

%= 3501+8N '36 120

sin(a) (1+Bi)[SCh(r)CSh(rx)—CSh(r)SCh(rx)]

Wy (X) =

r? D(r)
B sin(a) (1+Bi)[SCh(r)SCh(rx)+CSh(r)CSh(rx)]
0= T X D(1)

CCh(x)=cogx)coshx), SCh(x)=sin(x)coshx), etc
D(r)=r[cogr)sin(r)+cosHhr)sinh(r)]
+Bi[ cosHr)Zsin(r)2+cogr)?sinhr)?]

=(‘17qu/(X),WpFW(X),?pFT(X)) where Fo(X) Fig. 3@)]. Consequently, the rate of energy diffusion along
= (Fy(x),F,(X),F1(x)) is a set of normalized functions and tEeT dlrect|onds|hall be negle%te%m the f(l)lregomg analysis on
= the low-Prandtl range and adiabatic walls.
q)plt:(qu'wpt’-l(-jp). I:?[ha_ln array of Comi))lte)g nlémb?r:sthTf}ellre- Inserting the functions defined in Eq®)—(12) into the
SU'LS presented In this paper were obtained wi efto c’W'system (5), multiplying the resulting equations by

ing set of trial functions: Fee '™ and taking the scalar product leads to the fol-

2 lowing set of equations fo,= (¥, ,w,,T,
Fy(X)= \[g(lecosﬁx), (10) g a p= (Vo Wy To)
(FoIL-Fo)- ®,=0, (13)
Fu(X)=Fy(x), 11 ; - i

W) =F () ) whereL denotes the resulting operator in thecoordinate.

1 5 - Upon averaging, the diffusion operators are transformed into
Fr(x)= 7 1+dcod mx) + ;(l—dT)Bico%Ex) ) the following scalar form
c _ _
(12 (FalV2®)=((Fol|Fg) ~m* D @y=—n{l®,,  (14)

The proposed trial functions have been normalized according/here the arramfﬁ):(n\(,vz) ,ngl?) ,n(TZ)) is composed of posi-
to the scalar producF?)=(1/2)f* ;F?(x)dx [in particular,  tive real numbers. Similarly, the* operator appearing in the
(F2)=1 determines the constantappearing in Eq(12)].  equation for the perturbative stream function on Eg).is
The proposed amplitude for the perturbative temperature igonverted to <FW|V4\II>:nSI§)\I_Ip with n{P=(Fy|FY)
Eqg. (12) deserves a separate comment. ForBi, it simply — 2m2(Fy|Fl,)+m*>0. Ford;=0 the scalars representing
becomesF1(x) =cos@x/2), while for low Bi (nearly insu-  he giffusion operators are

lating boundariesit depends on the parametdy, which

models the amount of heat diffused along the cross-stream 2

a
direction[e.g.,Ft= 1+ dcos@x) for Bi=0]. For any given nG)= ”51?):? +m?, (15
values of the external parameters it is possible to calculate
the critical value ofdy by requiring the minimization of the a4 22
marginal Rayleigh numbeR,, in the plane (,d;). Alterna- n{=—+——m?+m?, (16)
tively, as long asFj/Fr=—w2d2+0(d3), for any given 3 3
perturbative temperature fiel@,, the value ofd; can be 2 I’ .
estimated by means ofg?df=—(T,'9°T,/dx?), where G T _2Brt4Bl |, 17)
(-) denotes the average alomgand y-directions. It is ad- T 4| 2Bi2+8Bi+ 72 ’

vanced that the value af; for the critical perturbative tem-
perature field is vanishingly small for 8i0 and P« 0.1[see  while for dt>0 and B0, n(T2)=d$7-r2/2+ m?.
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The following real numbers shall also be needeg;y  which represents the rate of the basic restoring mechanism
=(Fy|Fry=cy 1=(Fy|F7). The value ofc,,r ranges from  (to the third powey, appearing in the first term on the LHS of
c,7=0.816 for Bi=0 (and dt=0) to c,r=0.980 for Bi  EQ.(19). The second term on the LHS of Ed.9) represents
—oo, The cross-stream gradient of the mean velocity andhe reduction of the restoring force due to heat advection
temperature appearing in E¢p) are transformed into the along x direction. This current carries cold fluid from the
following averaged quantitiesv’\;t’,=(Fw(x)w{)(x)Fq,(x» bottom surfaceX=1) to re’g\ions with excess of temperature
<0 and 6, = (F1(x) 6,(X) Fy(x))<0.

The characteristic equation arises from the solvabilit
condition of the homogeneous system in E(L3):
def(Fg|L - Fe)]=0. The present analysis is focused on lon- —
gitudinal oscillatory marginal perturbations, so the complex(19): Pr>(lwy|/| 65| —n@)(nE/n{)). It is advanced(see
growth rate can be set to a purely imaginary number Sec. \J that the hydrothermal wave can also be inhibited at
=i2=f, the oscillation frequency beinfj Combining the arbitrarily small Pr and large enough inclinations, as a con-
imaginary and real part of the characteristic equation yield$equence of the streamwise stratification.

(and vice verspat a rateR| 6p|(up,) and reduces the buoyant

force along thex direction. This mechanism is able to damp
Yout the oscillation if the diffusion of temperature is slow
enough. This corresponds to the vanishing of the LHS of Eq.

the neutral curveR,,=R,(m;Pr,a,Bi) and the dispersion For any value of the external parameters the critical wave
relation. For the sake of brevity, only the imaginary part ofnumber lies Wizthin the rangm=<O(1). Hence a fourth order
the characteristic equation is given: expansion oR:m? aroundm=0 [taken from Eq(19)] pro-
vides rather accurate values of the critical Rayleigh number
2_ (2 n§ @) ngn?  ciq > o . and wave number. Such expansion reads
(27f)e=n¥ ORI R r—WRmm Opsina
n n n
v v v RZm’=a_,+aym?+a,m*+h.ot., (20)
—c2Rpcosa. (18

where the coefficienta_,,a, anda, are independent on the

Let us now focus on the horizontal configuration to study theyayelength and are straightforward calculated from (&€).
role of thermal boundary conditions and of the Prandtl num-€quation(20) provides the following expressions:

ber (the effect of leaning is deferred to Sec.. Whe expres-

sion for the neutral curve for=90° is 14

ao
Me=|—] , (21)
R?m?c2 | — — [n{® az
wT "_|p v (2)
(2) |Wb| |0b| (2)Pr+ ny
ny Ny Rer=(ag+2Va_,a,) Y2 (22)
n® , n( (@) o .
- l2+n\(N2) n@ +n(T2)l2pr+ n\(NZ)lzp,z _ Some insight on the wave number selection can be ob-
n{ @ n® tained from Egs.(20) and (21). Large structures, withm

(19) <m,,, become unstable if the effective source of instability
(«R’m?) overpowers a certain cross-stream diffusion rate,

The right-hand sidéRHS) of Eq. (19) accounts for the over- determined bya_,. Hence, at the long-wave limitR,
all diffusion. Note that in nondimensional units, the momen-=+/a_,m"*. On the other hand, the diffusion of small struc-
tum and temperature diffusion are respectively}’?Pand  tures (n>m,) occurs along the direction and it is gov-
Pr Y2 The LHS of Eq.(19) reflects the “effective” driving  ered by the terma,m?; in particular R,=\a,m for m
mechanism of the oscillatory longitudinal modes, discussed>m.,. The critical wave number satisfi@e‘zmg‘,:a,z, in-
in Refs.[4,6,14). Owing to the imposed streamwise tempera-dicating that the selected wavelength establishes a balance
ture gradient, any wavy-velocity perturbation creates tem- between the overall diffusion rates alor@ndy directions.
perature fluctuations along thedirection, at a rate that can This conclusion shall be used in the foregoing order of mag-
be estimated by averaging in Eq(5), d(Tp)/dt nitude analyses to provide estimations of the critical wave
~Pr*1’2<wp>. The fluctuation of buoyancy accelerates thenumber in different scenarios.
fluid parcels along the direction. TheW, part of Eq.(5) Figure 2 compares the critical parameters obtained from
leads tod(up,)/dt~(R Pr1’2m2/n§v,2))(Tp). Owing to the mean the single-term Galerkin expansion with the exact ones aris-
shear, the cross-stream current activates a stress force aloig from the numerical solution Eq$5)—(8). Considering
the z direction, pulling against the initial velocity perturba- the simplicity of the analytical approach, the agreement is

. . _ T quite remarkable particularly in the case of conducting
tion, \.Nh'Ch decrea;es at a radew,)/dt~R Pr=wp|(up) boundaries, for which the analytical approach even provides
and finally reverts its motion around a quarter of the cycle.

X : . a rather accurate prediction of the stabilizing value of the
The sign of the perturbative temperature figddd the buoy- Prandtl number (R£0.5). In the case of adiabatic walls the
ant force along thex direction are thus inverted by the

- . . . nalytical model work rfectly for .1, while the dis-
streamwise advection and the same reasoning applies for t@?ayt cal model works perfectly for Ri0.1, e the dis

S o epancy at larger Pfsee Fig. 2 is a consequence of the
rest of the cycle. Successive time derivation on the above . '\ thed;=0 assumption. To show this fact the value

rates leads to(w,) *d¥(w,)/dt*~R*m?Pr Yqw(|/n{?’,  of dr has been plotted in Fig.(& versus Pr. The sudden
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(a)

conducting walls (b)

adiabatic walls

10° L—s - o 107 L= v} o
10 10 10 107 p10 10

FIG. 2. (a) The critical Rayleigh number(p) the critical wave

number versus the Prandtl number. Points corresponds to the n

PHYSICAL REVIEW E66, 016301 (2002

obtained using the proposed perturbative field on Egs-
(12: Q,=(7?3)P*? and Q,=m?Pr Y2, This provides
me,= 1.8 PH2 very close to the trend extracted from the ex-
act numerical solution of Eq$5): m.,=2.2 PF2 The solu-
tion of Eq.(20) deviates by less than 8% to the former trend,

me,= 2.38 P2+ O(Pr?), (23
Re =112 P2+ O(PrR), (24)

The critical frequency can be obtained from E9),
27f,=10.3PM+0O(Pr?). (25)

As shown in Eq.(25), the critical frequency is of the same

merical solution of the linear stability problem and lines to the Order (although slightly gféatéf(tgan t(hf effezctive 5ate of
analytical approximation. Dashed lines are the asymptotic trends foi€at and momentum diffusidi; =)= (m?13)Pr* 2. 1t

Pr—0 in Eqg.(23)—(29).

jump of the heat diffusion at Pr0.1 clearly delimits the
frontier for the low-diffusion assumption.

is noted that in adiabatic walls the rate of perturbative heat

advection along the direction [u,R| 8| ~O(Pr)] can be
neglected, as it is smaller than the dominant diffusion rate,
QW~pPr2 This fact can also be seen from EQ9). As

14

The effect of the thermal behavior of the walls on theghown afterwards this fact does not hold in the case of con-
stability properties is now discussed by means of order ofjycting boundaries.

magnitude analyses and of the asymptotic limits of the criti-

cal parameters extracted from the analytical expressions.

B. Adiabatic walls

C. Perfectly conducting boundaries

The previously described situation is completely changed
if a certain amount of energy flux is imposed through xhe

For Pr<1 the rate of cross-stream heat diffusion is very=+1 walls. In this case a part of the energy supplied by
fast O(Pr ¥ and the isothermals reach almost instanta-streamwise advection at the central part of the layer has nec-
neously the equilibrium profile. If a vanishing heat flux along essarily to be diffused along thedirection in order to main-

thex= %1 boundaries is imposed alomg =1, the thermal
equilibrium profile is the conduction solution aloxg]i.e.,

tain the wall’'s temperature constraints. As long as at low Pr
energy it is much more rapidly diffused than momentum, the

d+=0 in Eq.(12)]. As a consequence, the input of energy byfastest diffusion rates along thxeandy direction are respec-

perturbative advection is uniquely diffused along yhairec-
tion at a rate)) ~m?Pr %2 Under this situation momen-
tum is the fastest diffused quantity along tRedirection,

tively QW= (7%4)Pr 2 and QY=m?Pr Y2 As previ-
ously concluded the critical disturbance enables the balance
of the diffusion rates along these two directions; therefore

Q(VX)~Pr1’2, and the critical wave number can be estimatedm.,= /2. In the case of conducting walls, the above reason-
by considering that the temperature spreading alongythe ing is equivalent to considering that the critical perturbation

direction is slaved to the momentum diffusion. Hen6&?)
~0% andm,~Pr2. An estimation of the prefactor can be

(a) (b)
0.2
dr
g
0.1 x®
£
0.9 5o oo & -10 05 00 05 10
Pr X

FIG. 3. (a) The value of the parameter measured atr=90°
according tom?df=—(T,*9?T,/9x?), T, being the critical tem-
perature perturbation in adiabatic wal(®) Perturbative tempera-
ture x profiles in the case of conducting boundaries and90°.

minimizes the amount of heat diffused out of each perturba-
tive cell, which is proportional tg'* ;f ™2 V2T dxdy. In
fact, for the perturbative temperature proposed in Egp.
and (12), this integral minimizes fom= 7r/2. This estima-
tion can now be compared to the asymptotics obtained from
Eq. (20) (which agree within~3% with the exact ones for
Pr<0.05; see Fig. R

Me,= 1.08+0.48 Pr+ O(PP), (26)
Rer=99.27+ +317.07 P O(PP), (27)
27f.,=9.40+ 28.16 Pr- O(PP). (29

Note that the critical wave number is somewhat smaller
(mg,=1) than predicted by the minimization of heat diffu-
sion. The reason is that the critical perturbation tends to fur-
ther reduce the wave number to lessen the stabilizing effect
of the cross-stream heat advection. This fact can be seen by
solving Eq.(19) with an artificially imposed vanishing value

Dashed line corresponds to the perturbation assumed by the analy@f ]"973|, resulting inmg,=1.5 andR;,=79. In conducting

cal model[see Eq(12)].

walls it turns out thah{®)~O(1), so thecross-stream advec-
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tion has a sizeable stabilizing contribution in the neutral (a)
curve of Eq.(19) even at Pr0. This result counterpoints m

with the adiabatic case. “

1

D. The effect of Biot number

Let us first consider the case of nearly adiabatic walls
(Bi<1). As stated earlier, irrespective of the wall thermal
behavior, the rate of heat diffusion along thelirection is

Pr-Y2m?T,,. On the other hand, for a small Biot number a
certain drop of perturbative temperature sets up along the
cross-stream direction. The heat diffusion rate can be
estimated from Egs. (9) and (12): (3°T,/dx%)

= (m/2)Pr Y2BiT,. Now, if heat is the fastest diffused quan-
tity along thex direction the wave number selection is deter-
mined from the balance of heat diffusion rates, as in the
conducting case, leading to,,~ Bi'2. Nevertheless, for Bi
<O(Pr), the rate of momentum diffusidB(Pr’?) overpow-

ers that of heat diffusio®(Pr*2Bi), and the trend for per-
fectly insulating boundaries is recovered. According to the
asymptotic solution of Eq19), shown in Eqs(29)—(31), the
nearly adiabatic limit is recovered for Bi5 Pr(see also Fig.

4). Up to O(Bi~%?) andO(Pr?), one obtains

0.4

FIG. 4. () The dependence of the critical wave numb),
critical Rayleigh number, an¢c) critical frequency with the Biot

Mo, =Bi**+2.38 PI™ (29 number for Pr0.025 and horizontal cavitiesg=90° and Pr
i =10"3. (d) corresponds to the critical Rayleigh number. Dashed
- 1/2 /
Rer=4529BI7"+ 2.47 P 2} (30 lines in(d) correspond to Eq30) (Bi=10"2 and 0.1) and Eq(33)
Q. =5.13Bi*?+2.02 PH3. 31 (Bi=10).

Let us now consider the case of quasiperfectly conductin
boundaries, i.e., Bi'~0. The expansion of the analytical
trends around Bit=0 leads to the following relatiorfsalid
up to O(Bi~%?) andO(Pr?)]:

SBositive disturbance of velocity along tk@xis is made at an
instantt, and around/=0. The subsequent evolution of the

of Egs.(9),
m2,(Bi)=m2 () —(0.66—6.60 PyBi %, (32) Wo(x,y:t) = Fu(X)COS MY) (1),
RZ (Bi)=RZ (»)—(4.310-2.610PnBi~%, (33 . ~
er (B =Rer(22) = B 89 W (x,y;H)=Fy (X)simy) (), (39)
Q2,(Bi)=0%(~)—(328.5-1408 PiBi 1. (34

To(x,y;t)=Fr(x)cogmy)Ty(t).
As seen in Fig. 4, the trend82)—(34) deviate by less than
about 8% to the exact analytical solutions for>Ri0 and

Pr<0.1. troduced in functions Iiké?vp(t) and the initial condition of

the perturbation is'/“vp(to)>0. The perturbative flow at a
time t= 6t shall be described expanding to first order in time
the equations for the longitudinal disturban¢Ess. (5)] av-
eraged according to EQL3). This leads to

IV. RELATION FOR THE FREQUENCY

Owing to the applications mentioned in Sec. |, the deri-
vation of theoretical trends for the hydrothermal wave fre-

guency has been an important part of the endeavor of the PR +n2T, st=w,(t,) ot (36)
previous theoretical analyses, as those by @illand Hart PR P '

[6]. Surprisingly, although both authors proposed different m2R Pr%sin a

theoretical descriptions and frequency trends for the:@r (Pr2n{@ st+1)u,=— Tﬂ&t, (37)
limit, any study concerning the validity range of both ap- Ny

proaches is found among the relative abundant literature on .

this topic. In this section an equation is derived for the fre- (Prl’zn&?)ﬁtJr1)\7vp=va(to)+f|p|Wt’,|R PrY2st
guency which recovers Hart's and Gill's trends at the limit of

slow and fast energy diffusion. The equation extends the pre- +RPr2cosast. (39)

vious analysis depicted in Ref14] by taking into account S _ )
the effect of heat and momentum diffusion and of the crossFor the sake of simplicity we have introduced,=n{

perturbative flow can be represented by taking the real part

The time-dependent part of the perturbation has been in-

stream advection.
To begin with, we proceed as in R¢L4]. Consider that a

=n{? and we have chosemy,=n{} in Eq. (37). Although
this choice is incoherent with the shapeFaf in Eq. (10), it
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TABLE Il. Order of magnitude of the several frequencies appearing iN33). Frequencies are in units
of (v«)Y?h?. The contribution offz, is discussed in Sec. V

B.C. fcr fK fu fadu fGiII fHart
Bi=0 1.6 PI? 1.2 P12 0.8 P2 O(Pr) O(Pr*? O(P*?)
Bi— 1.6 0.8 Pr?2 Pri/2 0(1) 0o(1) O(Pr 1

introduces almost no variation on the results. Inserting Eqdiffusion has necessarily to be included in the frequency
(36) into Eq. (38) and the resulting equation into E(B7) analysis because it turns out tHat~ f ,~O(Pr?) for any

one obtains a closed expression fop(t) up to 6t°. The  small value of Pr. _
resulting expression can then be used to obtain an estimation Depending on how the frequendycompares with the

of the frequency. The value @, changes sign at a quarter effective thermal diffusion raté, two different possible situ-

) ~ P . . ations arise, as revealed by inspection of E2f). As ex-
of a cycle; hencav,=0 arogndlﬁt—f /4. This reasoning plained in Ref[14], if f>f,, the amount of energy diffused
leads to the following equation: along each period of oscillation can be neglected and the
transient variation of heat equals the rate of energy supplied

(f+f,)? 1+fi =fc23i||+fi(0fév—f§dv), (390 by advection[dT,/dt=w,]. In the opposite case,<f,,
K K thermal diffusion distributes the advected heat much faster
than the dynamic change of any flow quantity, so the tem-
where perature is in phase with the perturbative axial velocity
20 2l i\ 12 [V2T,=—w,]. It should be also remarked that the thermal
~_ Cur[R'm |[Wplsina (40 effects at the RHS of Eq39) (fgy andf,g,) are negligible
Gill™ 4 nz,n® : only if the time needed to diffuse the temperature fluctua-

tions is much shorter than the period of oscillation; i.e., if
2m2l a! 172 fIf, <1.
 cur[ RG] )

With these facts in mind, let us now revise the two theo-
adv = 4 n2 SN« (41)
M

retical approaches derived by H46] and Gill [4] for the
horizontal case and low Pr . It is recalled that in both theo-
retical works the contribution of the momentum diffusion
, (42)  Was assumed negligible, and herfgeshall not be included

4 P12 in the following revision. The implication of this assumption
on the adiabatic case is analyzed afterwards.

(43 1. The case &f,.: Gill's assumption

The above inequality implies that one can neglect the
co\2 terms accompanying the ratidf, in the RHS of Eq.(39),
_(ﬂ) Rcosa for a<90° leading tof=fg;,, wherefg;,, defined in Eq.(40), coin-

2 — 4 (44) cides (unless constant factowith the solution obtained by
TIBVT ) ) i Gill [4] for the formal P+~0 (R finite) limit of Egs. (5)—(8).
2 Rjcosa| for a>90°. It is noted thatfg;, stands for the rate of variation of the

driving oscillatory force in a highly conducting (>f) but

The newly introduced frequencies correspond to the foI-mViSCid (f,<f) media.

lowing mechanismsfg;, represents the main oscillatory
driving (see below; f,g4, is the(stabilizing contribution of _ _
the cross-stream advection which tends to diminish the fre- From Eq.(39), the above inequality leads to

2. The case #f,: Hart's assumption

guency of oscillationsf gz, comes from the streamwise buoy- F[f e F(F2 — ay) ] (45)

ancy and its effect shall be discussed in Sec. V. Finglly Hart ady TBV/] o

and f, are proportional to the inverse of the characteristic o 5 . g\ 13

heat and momentum diffusion times. _ Cwr REm’sinaPr 4w (46)
In previous theoretical analyses of the low-Prandtl-limit, Hart 4 nf,,

the momentum diffusion has usually been neglected without

justification (see e.g.[4,6,12). It is remarked that such a In the case of horizontal cavities with adiabatic walls and at
simplification is only possible if the transient rate of momen-low values of Prandtl number, the terfgg, is vanishingly
tum change is much larger than that associated with momersmall and Eq(46) coincides(unless constant factowith the
tum dissipation,f>f,. Although at low Pr this inequality trend proposed by Hart in Ref6]. It is stressed that the
holds for critical perturbations in conducting boundafiese assumptiond ,<f andf,<f mean that the wave dynamics
Table Il), in adiabatic walls the contribution of momentum are not influenced by either momentum or energy diffusion.
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10 @ o B shown that the same ratio is obtained when compafipg
— o, Be.09) \, Conducting walls | with the frequency measured in numerical calculations and
-, Bo.ue) s { previous experiments in confined flows. These facts ensure

o B2 @O S, that Eq.(39) can be used in the subsequent analysis.

B. Conducting boundaries

f [(VK)IIZ 2]

Using the critical parameters for the horizontal ceRg,
=10 and m,,~1, one obtains the estimations shown in
Table Il. In the conducting cade>f.>f,, soitis possible
to neglect the contribution of the momentum diffusion in Eq.
(39). Also as a first approximation one should use the infi-
nitely fast heat diffusion assumption of E@Q0), leading to

FIG. 5. The analytical frequency trends extracted from Egs. ~ . o
(40), (46) (dashed linesand Eq.(39) (solid line) compared with the ~|cill ~O(1). Indeed]see Fig. $)], the infinitely slow heat
clearly fails for the conducting

critical frequency obtained from the numerical solution of the IineardiffUSion limit f14ar~ E’r
stability problem(circles. Data correspond to horizontal cavities Case, whereas 0L¢;, fits better tof ., at low Prandtl numl?gr.
(«=90°) in cavities with(a) adiabatic andb) conducting walls. Nevertheless, for & Pr<0.02, the exact values of the critical

frequency scales liké;,~ Pr 12 [see Fig. )]. This slight
In other words,f, ., represents the rate of variation of the variation means that the finite thermal diffusion rate still con-
restoring force arising purely from the basic hydrothermaltributes at very low Pr, with a weak but appreciable delay. It
coupling and regardless of the delay induced by diffusiveis remarked that this effect was not reported in previous sta-
effects. bility analysis [6,11,13 because the lowest values of Pr
thereby considered were around £0As seen in Fig. &),
A. Adiabatic walls the outcome of Eq(39) correctly reproduces this decreasing
slope and fits tof;,=0.73,,, in good agreement with the

: As ShOV_V.” in Sec. lll B, if the walls are perfectly msula_t- previous comparison for the adiabatic case. For®d, the
ing the critical parameters for the horizontal case go like

ratio f.,/fy, increases as a consequence of a greater mis-
me,=2.2PH2, R, =10°Pr*”2, and f.,=1.6P*2 The orders o - -
of magnitude and estimations exposed in Table II are ob[natCh between the temperature profile assumed in(&2).

. . . . and the critical one. As seen in Fig(b3, just above Pr
tained by introducing these trends into E¢40)—(43) (the .
prefactors are valid forr=90°). >0.1, the ansatZ ,xcos@@x/2) largely underestimates the

; - . heat diffusion, which becomes more concentrated around
Figure 5 compares the critical frequency obtained from:0 This mismatch leads to deviations with respedt e
the numerical solution of Eq$5)—(8) with the outcome of ) pedijoby

: a certain factor which is essentially Pr dependent and does
Eq' (3:216::(1'(feégr?geﬁﬂﬁg?};érgjgiii;geégabglgéafgg)j not greatly vary with the inclinatiorisee Fig. 70)]. It is
Hart Gill /- S . : . .
the first point to be noted is that at low Pr, bdih,; and finally remarked that Pr0.1 determines the frontier of low

foi correctly line up with the slopé.,~Pr*2. As stated, in diffusion for both Bi—- and Bi=0 [see Fig. &)].

the adiabatic casé, ~f,, so the critical perturbations lie
just between the range of applicability of both E¢#6) and
(40). Nevertheless none of these two trends properly take The amplitude of the effective restoring force that drives
into account the finite diffusion rates and as a consequencgge |nstab|||ty is proportiona] to the component of buoy_
both overvalue the critical frequency by a certain factor,ancy, i.e., to sim. Hence any tilt with respect to the horizon-
which depends on the particular setup. For the critical pertg| position tends to increase the critical Rayleigh number
turbations these factors could be forecasted by using the egnd thus the critical frequency. Anyhow the effect of inclina-
timations forf,, f,, andf;, given in Table Il. Note that tjon is also strongly dependent on the other component of
for+f,~1.51f; andf+f, ~1.75; operating at the LHS pyoyancy which acts along the streamwise direction. Its role

Adiabatic walls £

V. THE EFFECT OF INCLINATION

of Eq. (39 leads to f,,=0.4fgy . Similarly, as f2,, is now analyzed.
=f,<féiII , the LHS of Eq.(39) yields f.,=0.45,,¢; both For «<90° the unstable stratification along the stream-
corrections being very close g, . wise direction favors perturbations with larger wavelengths.

As seen in Fig. 5, Eq(39) provides better concordance Concerning the critical Rayleigh number, it decreases for in-
with the absolute values df,,, as long as it takes into ac- clinations slightly smaller than 90° as a consequence of the
count heat and momentum diffusion. The critical frequencylarger mean flow velocitiegsee[24]). Anyhow, as seen in
is anyhow slightly overestimatedhe best fit corresponding Fig. 6, below a certain tilt this trend is reverted and at low
to f.,=0.77,). Although this discrepancy could be surely inclinationsR;;— Ry/cos«a, meaning that Ra increases be-
reduced by further melioration of the constructed perturbayond boundgsee Sec. )l This is a consequence of the fol-
tive flow, it shall be shown that the ratié. /f;,=0.75 lowing mechanism: as far ag,T,>0 along almost the en-
+0.05 remains unaltered for R0.1, irrespectively of the tire cycle, the streamwise component of buoyancy always
thermal boundary condition and inclination. Another proof oftends to maintain unaltered the sensengf. Therefore the
the consistency of Eq.39) is given in Sec. VI, where it is effective restoring forcéproportional to the mean shedras
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@ (b)

10 H
/] 10°
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g"'n _____
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Z
= g i
~ Eq.(39) 7 -
. _ ¢ -7 Eq.(39;
1 ‘,,' with f3,=0 ”_,/ qw(ith)fsvzo
fou i,
! 107 o H
60 80 100 120 80 S0 100 110 120
15
(d)
°
10 7
Eq. (39
clvslith)fm,a)

0.5

T Sopducting walls o.025 FIG. 7. The critical frequency in the unbounded domain versus
a. (a) and(b) correspond to Pr0.025 and respectively Bic and
Bi=0, (c) to Pr=0.2 and Bi~«, and(d) to Pr=0.1 and Bi=0.
Circles correspond to the critical frequenigy obtained by numeri-
. cal solution of the stability problem. Dashed lines correspond to the
o= T ©) ‘\;:f’ 7 i trends signaled at the above legends, and the solid lines correspond
=" Pr_c.02s to the solution of Eq(39), fr,. In (a), (b) and (d) f1,, has been
multiplied by 0.77.

force whose associated time is the inverse of the Brunt-

FIG. 6. The critical Rayleigh number for adiabat® and con-  Vaisala frequency. At moderate inclinations this restoring
ducting walls(b), and(c) the critical wave number versus the incli- force is coupled to the basic hydrothermal mechanism in-
nation angle. The dashed line i@ and (b) corresponds tdR volving a reduction of the oscillation period.
=R, /cose, which stands at the limit Rac. The value ofR; is In conclusion, the steady increase of the critical frequency
31.28 and=* respectively for adiabatic and conducting walls. with « (see Fig. 7is not due to a unique reason and has to

be analyzed by quantitatively establishing the relevance of
to overpower the buoyant force in a part of the oscillationthe above introduced mechanisms. Equatid8) has been
cycle. Two immediate consequences are Ratand the os- used for this task. The low-Prandtl-number range is illus-
cillation period increase forr<<90° In Eq.(39) this is re- trated in Figs. 7@ and 7b). In the case of conducting walls
flected in the negative contribution ¢f, to the frequency [Fig. 7(@], the inequalityf. <<f, holds at least fora
for «<90°. At low enough inclinations the streamwise per-<115°; the critical frequency fits well to 0ig;, and the
turbative flow can no longer be reverted and, as shown ifhermal effects {,4, andfg,) are very small. This situation
Ref. [14], the oscillatory mode is damped in favor of a changes gradually above 115° fag/f, becomes larger than
(Rayleigh-Bmard-like stationary longitudinal roll, driven by 1 and thermal effects become relevant. The Brunt-Vaisala
the streamwise buoyant force. The points marked with staterm, fg,,, tends to increase the critical frequency while the
symbols in Fig. 6c) are placed on the smallest wave numbercross-stream advectioffi{y,) tends to decrease it. This latter
for which the oscillatory longitudinal modes can become un-contribution has been highlighted in Fig. 7, by comparing the
stable. outcome of Eq(39) with an imposedfzy=0. In Fig. 7a),

If the cavity is heated from abovex(>90°) the stream- such comparison reveals that at the largest inclinations
wise buoyancy acts within a completely stable stratification(100°< «=<125°) both thermal contributions are nearly
whose effect is to further increa$®,,. On the other hand, counterbalanced.
the restoring torque along thedirection generated by the A different scenario is found in the case of adiabatic
streamwise buoyant force is proportional to the wavelengtiwalls. The ratiof/f . is greater or roughly equal to 1 for any
277m~ 1, whereas the torque associated with the instabilityinclination [see Fig. Tb)] meaning that the thermal effects
restoring force is proportional tm. Hence, to overpower the need to be considered. Far<90° the (negative contribu-
buoyancy dampingn,, increases withv. Also, according to tion of fgy in Eq. (39) becomes rapidly significant inducing
Eq. (39), for «>90° the termf gy, contributes to increase the a rather steep decreasefgf. On the other hand, the effect
frequency. It is noted that within a completely stable strati-of cross-stream advection is rather small, so when heating
fied media, the streamwise buoyancy acts also as a restorifigom above, the ternfigy is not counterbalanced Hy,q, (as
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150 5.0 -
a ® Pr=0.1
120 conducting ] 40 o 2 Pr=0.05 (a)
© Pr=0.025
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{ ° . . : a T
60 \ 1.0 o of
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FIG. 8. The region in the Pa&- space where hydrothermal waves > ° o102
are observablésolid lines. Inside the region delimited by dashed w157 10° Lor .
lines the critical Rayleigh number of the oscillatory longitudinal Frol oo o . 110
disturbance is smaller than that corresponding to transversal shear 128 s g
rolls. 05 ¢
00 10" 10°
occurs for Bi» ). This implies a further increment df;, 10' | Pr .
with «. According to Eq.(39) the contribution off gy, is not ®----@ conducting walls /
so large between 390a<<100° (about 10% off,,), but it ©----0 adiabatic walls ; (c)
th &
reaches 30% forw=115°.
The dependence df,, with o for moderate values of the e, o
- . . . B 10 peemmmemmemeeeeen W -
Prandtl numper RPr0.1 is displayed in Fig. (¢) and 7d). ~<§ ) S— J— P,
The conclusions extracted above for the low-Prandtl range o
concerning the dependence on the inclination remain essen- ’,.——‘°
tially applicable. o®
10" ,
] ] o 10° 107 10°
Mechanisms for suppression of oscillations Pr

As shown _in Fig. 8 the OSCi"atO_ry i_nSt"?‘bi”ty is damped FIG. 9. (8 The value off,,/fgy versus the inclination for
above a certaifPr-dependentcut off inclination. Apart from  5giapatic walls. Crosses correspond to numerical calculations for
the Stabl|lzatI0n meChan'Sm aSSOCIated W|th the CI’OSS-Stream—: 0025 in a ]><6><4 Cavity; the rest of the data arise from the

adVeCtion described at the end of Sec. Il A, for arb|trar|lystab|||ty ana|ysis in the unbounded doma“ﬂb) The value of
small Pr, the oscillations can be suppressed owing to anothey,, . /fy, at an angle one degree smaller than the stabilization
process which dominates at large enough inclinatian, angle (indicated for some configurationsb) The ratiof g, /fgy
>95°, If the cavity is heated from above, the system poswersus Pr at the same angles tharidh

sesses two different restoring mechanisms acting at different

rates:f 4.t » Which stands for the hydrothermal coupling, and thus making impossible the development of the instability. In
fgv Which represents the Brunt-Vaisala frequency associatesummary, while fore<95° the oscillations can be only sup-
with the streamwise buoyant force. It has been reckoned thgtressed for P# O(0.1) via the cross-stream perturbative ad-
the wave stability is rather sensible to the relation of bothvection (see Sec. Il A, when using larger inclinations the
frequenciesf.i/fgy. As illustrated in Fig. €a) the ratio  wave can be damped at arbitrarily small Pr provided that
fhart/fgy rapidly decreases fow>90° and it tends to —
roughly 1 for the largest inclinations, just before the instabil- fuare  (RZM?sinaPr Y3w;|)1?
ity is damped. Figure ®) shows the value of,,./fgy very = 2

near to the stabilization angle (1° aparersus Pr. An inter- m2+ ?> (Rcosa)?
esting result arising from the range<P0.1 is that at the

stabilization angle the ratidf,./fgy becomes slightly |y the following section it shall be shown that the above
ditions. On the other hand, as shown in Figc)9 precisely

for Pr<0.1, the stabilizing ternf,4, becomes smaller than
fgy, meaning that at low Pr the stabilization is a conse-
guence of the streamwise buoyant force. In order to under-
stand the damping mechanism it is remarked that dige
becomes larger thafy,,,;, the restoring buoyant force in- In what follows it shall be examined to what extent the
verts the sense of the streamwise perturbative flow before thdeoretical relationships for the frequency are robust with
basic cycle of the hydrothermal coupling can be completedrespect to deviations from the plane-parallel assumption in

=<1. (47)

fov

VI. EFFECT OF CONFINEMENT: COMPARISON WITH
EXPERIMENTAL DATA AND NUMERICAL
CALCULATIONS
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finite enclosures. These deviations are a consequence of the
confinement but also arise owing to the presence of transver- — 0731,
sal shear rolls, which can coexist with the hydrothermal 1.0} — 04215, ‘40
wave[20]. It should be mentioned that although these effects [ — 0481,
have been put forward in the previous works to justify the = L
departures of the experimentally measured frequencies from d-ﬂ 0.6
the theoretical trendsee e.g., Ref$4,6,16) no quantitative "@ I
comparison was presented in the case of moderate strongly 2 04 | .
confined flows. =

The validity of Eq.(39) has first been checked by com- ] ~
parison with experiments and numerical calculations done d
for large aspect ratios. In the case of conducting boundaries, 0.2 ,
Wang and Korpel&13] reported numerical calculations for a 10 100
Pr=0.2 fluid in a horizontal unbounded configuration. The Ra
measured wave number was=1.0 and respectively foR
=R;=166 and R=250, they reportedf,,=1.87 and f FIG. 10. Comparison of the theoretical trends with the funda-
=2.44. The ratio between each of these frequencies and thfental frequency obtained in the numerical calculations for Pr
outcome of Eq(39) is 1.1, in agreement with the previous =0.025,D/HXL/H=6x4 anda=80°. All theoretical trends are
comparison with our calculations at+0.2[see Fig. Tc)]. calculated with core-averaged quantities.

Almost all previous experiments and numerical calcula-
tions considered adiabatic lateral walls. Pratte and Hait  obtained (see [24] for a theoretical derivation R

made a series of experiments with a=f.025 fluid in cavi- 7 _ /7
ties with different aspect ratios. For the shallowest cavity~ -2/ R4", |wp|=1.2Wp a4 (Where Wp,,=0.31 R&") and

(D/HXL/H=8x8) they reported ~Gr®®, which agrees |6,|=0.013. The evolution of the frequency with Ra was
with Hart's trendf ...~ Gr?®[see Eq(46)]. Also, Hung and  studied fora=80°. The outcome of E¢39) is compared in
Andereck[15] made experiments in a £10.027 fluid in a  Fig. 10 with the fundamental frequency obtained from the
very shallow cavity X 17.7X17.8, obtaining a wave num- numerical calculation of the flow. The agreement is excel-
berm=0.46 close to the critical one,,=0.38, and report- lent. Quite remarkably, the absolute values of the frequency
ing f=2.15 at the onset of oscillations (R&0.89). The f,,, are recovered by 0.73,, in consistency with the pre-
experimentall measured frequencies increased fag,  viously reported results in the unbounded configuration.
=0.035R4&"°. Comparison of the experimentally measured It should be stressed that for all values of the Rayleigh
frequency with Eq.(46) provides fq,,/f141=0.49, while  number in Fig. 10, the mean flow is already far from being
Eq. (39) yields fq,,/fi,=0.68. It is noted that for this par- plane-parallel at the core. The flow grows in complexity
ticular configuration, the inverse of the characteristic heathrough a number of successive transitions reported in Ref.
diffusion time along one wavelengtm?Pr Y%/(27)=0.2, [20]. First, a centered transversal shear roll begins to be
is more than two times smaller than the oscillation frequencyormed at Ra15 and it is already well developed at the
for any value of Ra, hence Hart's assumption remains validonset of the oscillations, Ra31. Then, at R& 195 and 218,
On the contrary, Gill's trendEq. (40)] is clearly inappli- the flow becomes quasiperiodic and frequency locked to a
cable:f g ~Ra’" lower frequency transversal wave formed by a pair of shear
rolls. That Eq.(39) (deducted from a linear stability analysis

A. Confined flow correctly recovers the trend of the fundamental frequency at

the nonlinear-dynamic regime indicates that the basic oscil-

In order to 'U"es“ga?t_e the_effect of co_nfmement It is neC'Iatory mechanism is not so sensitive, either to the local de-
essary to consider cavities with shorter dimension along the . ...« "¢ the flow or to the low frequency interaction with the

and z axes. We have performed numerical calculations for, ;
. . . ) } secondary transversal wave. Instead the basic hydrothermal
Pr=0.025 in aD/HXL/H=6X4 cavity with adiabatic lat- y y

AT coupling behaves as if it were in aindependent environ-
eral walls, for a range of inclinations, 7€°«<115°. The ping P

L A : ment whose properties were those of the averaged mean
same system with fixed=80° was studied in a previous g4\ prop ¢
work concerning the interaction of the hydrothermal wave 5, interesting conclusion arising from the confined con-

and transversal shear rofl20]. The interested reader is re- figuration is comprised of the fact that, as Ra is increased,

ferred to that paper for numerical details. the wave can cross over the two dynamical regimes de-
In a confined enclosure the hydrothermal wave deve|°p§cribed by Eqs(40) and (46). As seen in Fig. 10, the funda-

at the core region, away from end regions where the flo ental fre : : :
. guency does not line up with a unique power law.
turns around20,22. Thus it shall be assumed that the fun- Instead for R& 60 the frequency fits to Eq(0), fa

damental frequency can be estimated by inserting into Eq._ R&14 \whereas for lar Pt ;
) s ger Ra it lines up with E(6),
(39 the core-averaged Rayleigh numiférand the averaged fuarnn~Ra&". Equation(39) correctly predicts the observed

values of the mean flow profilelw;|, | 6;|. We refer to Ref.  change of slope although it slightly overestimafeg,, at
[20] for details on how these averaged values were calcularge Ra. It is finally remarked that, quite in consistency with
lated from the numerical solution. The following trends arethe comments made in Sec. 1V, the change of slope occurs

o Numerical simulation
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TABLE lll. Averaged flow quantities at the core: the local Ray- frequency becomes about 0.6 times the Brunt-Vaisala fre-
leigh numberR, the maximum streamwise ve@i:itwmax (in x/h quency[NBV=(RCOSa)l/zl(ZTr)] and it excites an internal
unity, the cross-stream temperature gradid@| [in units of  gravity wave with a much lower frequency and larger ampli-
102X (AT/L)hR] and the temperature drop between #e+1 tude. After the onset of the internal wave, the amplitude of
(A4T) (in units of AT). Data correspond to the numerical calcula- the hydrothermal wave drastically diminishes in such a way
tions made for P+0.025 and R& 100 in a 1X4x6 cavity. The  that for «=105° it is no longer trivial to recognize its peak
leftmost columns compare the numerically obtained fundamentadmong the multiple harmonics and frequency combinations
frequencyfpum [in units of (vx)*h?] with the TRenos derived ¢4 in the power spectra. The frequency reported in Table
from Egs.(40), (46), and(39). 1l for 105° corresponds to a relatively larger high-frequency
peak, but it is not clear that it matches to the hydrothermal-
T wave fundamental frequency. Anyhow, @t 115° the high
foir fran  fin frequency oscillations associated with the hydrothermal
76 67.94 460 108 0133 0.703 037 0.46 0.71 wave vanish, and the internal wave also fades out in absence

80 6649 439 1.26 0146 0732 039 049 073 ©Of the forcing mechanism.
90  71.00 3.76 1.27 0151 0.754 0.42 051 0.74
95  69.98 374 1.08 0.131 0.756 0.43 052 0.71

fnum fnum fnum

a(deg R Whpax |70‘t’)| (AT)  foum

VIl. CONCLUDING REMARKS

100 7172 3.61 1.10 0.130 0.78 0.44 0.54 0.72 According to previous analys¢$4], hydrothermal waves
105 7456 332 1.05 0126 0.9 0.52 0.63 0.80 are responsible for the onset of oscillations in flows of liquid
115 80.55 2.65 0.93 0.117 O metals Pr-10 2. The present study is concerned with the

effect of the thermal behavior of the walls and of the cavity

when the oscillation frequency becomes larger than the jpinclination on the hydrothermal wave instability ~of

verse of the characteristic heat diffusion time along Onepuoyancy_—drlven convection in end-h_eated enclo_sures.
wavelengthm2Pr Y2272~ 0.6. In the first part of the paper, analytical expressions for the

neutral curve and dispersion relation were derived by means
of a Galerkin procedure. The critical parameters extracted
from the analytical approach were shown to quantitatively
Calculations were also carried out for varying inclination agree with the exact numerical solution of the perturbative
at a fixed Ra=100. The obtained values of the fundamentalequations. A quite general conclusion arising from the neu-
frequency,f,,m. are shown in Table Ill along with the rela- tral curve is that at the critical Rayleigh number the domi-
tion of f,,, and the theoretical trends;i; , fyare, andfyy, . nant diffusion rates along the cross-stre@gnand longitudi-
First it is noted that botHg;, andf,,; decrease above  nal (y) directions become comparable. This furnishes a way
>90° as a consequence of the decrease of the mean floig estimate the critical parameters, starting from the critical
velocity with the inclination(see Table Ill. On the contrary, wave number. For RrO(1), heat is the fastest diffused
due to the effect of the streamwise buoyancy fofgg,,  quantity along the longitudinal direction at a ratéPr 12,
slightly increases witha. This discrepancy is reflected in independently on the thermal boundary conditions. On the
frum/ fain andf,um/fuart (See Table 1l). On the other hand, contrary, the thermal behavior of the walls determines the
Eg. (39) leads to a ratiof,,,,/f;, which remains roughly rate of heat diffusion along the depth of the lay&rdirec-
constant around 0.75 for increasing inclination. The goodion). In conducting walls energy is rapidly diffused along
concordance found with the previous comparisons indicatete x direction, at a rate P2 and the critical modemy,
that Eq.(39) correctly takes into account the effect of the =1, enables a balance of the heat fluxes algrandy di-
streamwise buoyancy on the wave’s frequency. rections. This yieldsR.,=10° and f.~1.6. In adiabatic
According to the numerical calculations, the oscillationswalls, the disturbances attain instantaneously a diffusionless
completely disappeared at=115°. This result is in good temperature profiledT,/dx=0), so momentum is the fast-
agreement with the stabilization angle predicted by the lineaest diffused quantity along the direction provided that Pr
stability analysis (116°). More interestingly, as shown in<<0.1. Momentum spreads at a rate {Brwhich equals the
Fig. 9@, at the transition to the steady flow, the ratio rate of energy diffusion along thg direction; hencemc,
fuart/fay has decreased to a value quite close to 1, thus=2.2P*2 R, =10°Pr?, andf,~ P2 Anyhow, if a small
supporting the validity of Eq(47) for predicting the stabili- amount of heat flows across the walls £8?r) energy be-
zation. comes the fastest diffused quantity across the depth of the
The evolution of the dynamics and the structure of thelayer, resulting in an increase @f(Bi*? in R;,, m,,, and
flow as the inclination is varied is relatively rich and a moref, .
detailed analysis is left for a forthcoming paper. Anyhow, for  The proposed relation for the frequency, derived from the
the sake of consistency, some facts need to be mentionelihearized perturbative equations, was shown to correctly
When leaning from 80° to 76°, the value of R400 be- forecast the critical frequency in the unbounded geometry
comes largely supercritical and the flow becomes aperiodiand the fundamental frequency measured in previous experi-
(with a dominant frequency peak &t=0.7). Leaning to- ments and hereby presented numerical calculations. On the
wards heating-from-above configurations leads to a more inether hand, the equation recovers the well known theoretical
teresting dynamic. Abover=100° the hydrothermal wave trends for P<1 derived by Hart[6] and Gill [4], which

B. Varying inclination
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respectively arise for frequencies much larger or smaller thanonsequence the oscillation can be damped out at arbitrarily
the characteristic rate of heat diffusion along one wavelow Pr (<10 2) providing inclinations around 115°. The
length, m?Pr Y%/ (24). These two limits therefore corre- condition for stabilization, reflected in E¢47), is rather ro-
spond to the instantaneous heat diffusion regime and the diPust in the sense that it holds independently on the thermal
fusionless regime. boundary conditions, and has been found to be valid under
It has been found that the instantaneous diffugi@it’s) ~ confinement, as revealed by the numerical calculations.
and diffusionless(Hart's) limits are better suited to make Aflna_l point to be str.essed is _that at the stabilization angle
estimations of the frequency in respectively conducting andn® maximum streamwise velocity remains of the same order
adiabatic walls. Nevertheless, a relevant conclusion of thifhan in the oscillatory regime. This fact counterpoints with

work is that in general it is necessary to take into account an/vhat happens if the stabilization is achieved via the insertion

the contributions of the frequency equation to correctly foreOf @ transversal magnetic fieldee Refs[2,7-9). In this

cast frequency behavior. For instance, numerical caIcuIationté)rmer case the increase of the stability thres_hold IS d_|rectly
of the oscillatory (P#0.025) flow inside a X 6x 4 cavity related to the decrease of the mean streamwise velocity. The

with adiabatic walls have shown that the behavior of the'€&son for the different behaviors is that in the inclined setup

hydrothermal wave may shift from the fast- to the slow- the damping mechanism acts directly against the perturbative

diffusion trend as Ra is increased. The crossover arises whetww' A conclusion to be therefore addressed to the crystal

the fundamental frequency surpasses the heat diffusion ratgro‘.Nth community is tilting the convection ampoule may pe
a simple and suitable way to suppress the thermal oscilla-

This fact is rather probable to occur under moderate or se- . ; . . o X
vere confinement because the selected wave number is thgf"s N the Bridgman setup, while still obtaining relatively
arge transport rates.

larger than the critical one.
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