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Universal relationship between a quantum phase transition and instability points
of classical systems
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The direct and universal relationship between the accumulation of exceptional points in the quantum spec-
trum at a phase transition and the singularity of the classical action at a homoclinic point of the separatrix is
investigated. The particular common features are the analytic structure and, related to it, instability and high
sensitivity leading generically to the onset of chaos in both cases under perturbation.
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I. INTRODUCTION structure near a periodic orbit of a weakly perturbed inte-
grable system is to first order that of a pendulum. In fact, in
The similarities and connections between classical anén integrable system the orbits move on a torus, meaning that
quantum mechanics have intrigued physicists since the earijieé phase space is, under suitable parametrization in action-
days of quantum mechanics. The interest was revived abo@hngle variables, periodic in the angles. A perturbation is then
two decades ago when the question about periodic orbits wedSO periodic in the angles and can therefore be written as a
raised afresh with the progress made in classical chao§ourier series in the angles, where the individual Fourier
Many investigations have been devoted to the quantum an4€rms depend on the actions only; the dominant angle depen-
log of classical chaos: there are textbooks and monograptfience is thus periodic, as there is no angle dependence of the
where important insights have been laid down, for instancémperturbed system. For sufficiently small perturbations the

in [1-3]. In the present paper a further particular aspect isdependence on the action is dominated by the dependence.of
éﬂe unperturbed Hamiltonian. Near a resonance the motion is

parallels. It is the singular behavior of the spectrum associgssenhally characterized by one angle variable with low fre-

ated with level repulsion or tunneling, which occurs usua”yquency[s], while the other angle variables vary at a faster

L : . rate. They are eliminated by an averaging procedure. This
under parameter variation and is encountered especially 'ﬂechnique is known as the technique of “removal of reso-

situaf[ions where chaotic behavior prevails. The singularitie%ancesn[G]. Our starting point is the remaining Hamiltonian
considered here are called exceptional po[dts Whether  hoxr the periodic orbit, which is associated with low fre-

these singularities always have a classical analog is not okpency and which is that of a pendulum, viz.
vious. However, in specific cases there appears to be a defi-

nite relation between the singular behavior of the quantum H(AJ,©)~AJ?+bcos®+ - - - (1)
spectrum and the singular behavior of the classical action of
the associated Hamilton function. with b being the appropriate coefficient of the Fourier expan-

The very nature of a phase transition is always related tsion in the slowly varying angle of the perturbing Hamil-
a singularity of the energy under the variation of a relevantonian.
parameter such as pressure or temperature. A pertinent de- Here H represents the portion of the energy associated
scription, be it classical or qguantum mechanical, has to rewith the resonance. Only one periodic orbit remains generi-
produce such behavior. There are, however, so called phasally stable under perturbation in the resonance region. As
transitions—not in the strict thermodynamic sense—such amore energy is put intdd, the motion vibrates about the
in nuclear physics where we deal with finite systems. Oneeriodic orbit. Once sufficient energy is put inth the tra-
major characteristic of such phase transitions is, just as for ajectories leave the resonance, and are correctly described by
infinite system, the change of the mean field often associatetthe topology of the original integrable systdBl. The sep-
with a change of symmetrisymmetry breaking It is these eratrix separates these two modes, and our interest is focused
type of transitions upon which our interest is focused in theupon this characteristic unstable point in phase space.
present paper. We contend that the two seemingly different systems—the

We argue that the singular behavior of the quantum specjuantum mechanical phase transition and the homoclinic
trum is associated with a particular singular behavior of thepoint of a separatrix—have common features not only under
classical action in typical situations of instability. These clas-the regular regime, when the separatrix is still intact, but also
sical instabilities are of a universal nature in that the samén their high sensitivity where the onset of chaos manifests
pattern occurs generically in systems where the onset of chétself under a generic perturbation. For illustration a toy
otic behavior is discernible as soon as a perturbation isnodel is presented demonstrating how a quantum mechani-
switched on. The points of instability are the homocli@ad cal phase transition is closely related to the quantum me-
heteroclinig points of a separatrix associated with reso-chanicaland classical behavior of single particle motion at a
nances. We exploit the fact that generically the topologicapoint of instability.
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In the following section we concentrate upon the generic When treating the same problem quantum mechanically,
aspects of these specific classical instabilities and discuss tlome expects a high level density arouge 0. In fact, look-
consequences for the semiclassical spectrum by consideririgg at the semiclassical spectrum associated Wwithof Eq.
the classical action. Next the essentials of a toy model aré) it is for by positive energies given by
reinvestigated and reformulated as a single particle problem
with a potential having just the properties addressed in the
previous section. A discussion of the onset of chaos is dealt
with in Sec. IV and a summary concludes the paper.

J_(E,)=2mnt.

The same holds fa¥_(E) and its left hand orbit analog. The
Il. SEMICLASSICAL TREATMENT OF CLASSICAL two functions have the.sa.m.e singularityEat 0. As a con-
INSTABILITIES sequence, due to the infinite slope&t+0 of J.(E) and
J_(E), there is a high level density around zero energy. This
We take the discussion of the Introduction as our point ofhigh level density is characteristic for a quantum phase tran-
departure and focus our attention upon the instability point o&ition, as it is encountered, for instance, at the transitional
Eq. (1). There the motion is appropriately described by thepoints of nuclei[7]. Moreover, forE<O0, the heap of the

reduced Hamiltonian potential separating the left from the right hand side invokes
5 tunneling between the quantum levels on the two sides. Tun-
h _b Exz b>0 @) neling, in turn, is always associated with the occurrence of

72 27 ' exceptional points. In short, the quantum spectrum of(Eg.

has arounce=0 all the characteristics of a quantum phase
around zero energy. Here we have naturally replaced the setransition, that is(i) a high level density associated wiin)
ond order term\J? by the kinetic energp?/2 and co® by  a high occurrence of exceptional poinéj.
x2/2. To ensure bounded motion undes; we consider the We stress the universal aspect of our findings. Resonant
interval —1=<x=a,a>0, with elastic reflection at the behavior of a softly chaotic system near the homoclinic point
boundary walls. The dramatic change of the motion of aof a separatrix is locally equivalent to the behavior around
pendulum from libration to rotation and vice versa is nicely zero energy of Eq(2); the specific singular behavior &
simulated in Eq(2) by the change from negative to positive =0 is independent of how the potential is modified for
energies where the phase space changes from two discon-0 or x<<0, our choice of elastic bounces is simply conve-
nected regions to a connected region. For the pendulum angdient. The same holds for the quantum behavior around zero
as we show below, for Eq2), the period of the periodic energy. Tunneling is always invoked by a finite barrier, in
orbits has a logarithmic divergence which is reflected in theother words, a finite barrier is always associated with a high
actions being the key to semiclassical quantization. density of exceptional points. It is therefore expected that the

Of interest for our purpose is the action high sensitivity of the classical system under perturbation—
recall that the onset of chaos manifests itself immediately at

IE)= 3§ pdx the homoclinic(heteroclinig points of a separatrix—carries
over to a high sensitivity in the transitional region of a quan-
tum phase transition. This sensitivity is due to the presence

and we obtain foE<<O (right hand periodic orbijs of the many exceptional points as was demonstratd@Jin
J(E)= i a’b\/1+ ot + 2Earctanhy/ 1+ E) ll. THE LIPKIN MODEL
= Jo a’b ab '
(3) For further demonstration of our general findings we
present a particular model. The Lipkin mod@] serves as a
and forE>0 prototype model for a phase transition in a quantum me-
chanical many body system and has been widely used as a
1 2E 2E paradigm for deformation and/or superconductivity in
J>(E)=T(b‘\/ 1+ F+a2b \/ 1+ 7 nuclear physic{7]. Being a soluble model it has all the
b important properties such as symmetry breaking when
TN sweeping over the transition point. The symmetry breaking
+2EIn aw)_ (4)  can be associated with an appropriate change of a suitable
V1+2E/b—1 mean field[10].

We briefly recapitulate the gist of the model and then
These two functions have a logarithmic singularitygat0.  rather concentrate upon the essentials for our specific pur-
(This is related to the logarithmic divergencekat 0 of the  pose.
period of the periodic orbits.In fact, the leading term & The model assumes twiN-fold degenerate levels sepa-
=0 of the derivative ofJ-(E) is —2(InE)/\b. It is this  rated by the energy 1/@n suitable units where theN par-
point of instability related to the metastable equilibrium of aticles interact by a specific two-body interaction. In terms of
classical particle ak=0 that brings about the singular be- the (N+1)-dimensional S(2) generatorsJ; ,i=X,y,z, the
havior. model is written as

016217-2



UNIVERSAL RELATIONSHIP BETWEEN A QUANTUM . .. PHYSICAL REVIEW E66, 016217 (2002

12

as parity. Note that the transition is the more pronounced the
larger the value ofN; in particular, at the transitional point
the spectrum becomes soft, the more so the larger the particle
numberN. The spectrum collapses completely fdroe. In
the vicinity of the transitional point there is a high sensitivity
to perturbation/8]. These features can be understood by the
high density of exceptional points at the transitional point
and their behavior under perturbatiphl]. The exceptional
points, being square root branch points for filiteaccumu-
late in the limitN— oo atA = 1/4 and the resulting singularity
is then a logarithmic branch point. This was demonstrated in
a similar context iM12].

We may view the eigenvalue equation

Energy

AN 2(k+1)\2
ka—T 1- 1_T Ck+1
&
£ AN 2k\?
—7 1- 1—W Ck,lZECk (7)

as the discretized version of a differential equation. Such
near-equivalence is the more precise the laiEt3]. Using

0 0.1 0.2 03 04 0.5

A the near-continuous variable
FIG. 1. Spectra of the excited states fdr=100 (top) and N 2k
=600 (bottom. The solid (dotted lines represent the positive X=——

(negative parity states, i.e., the states with an eyedd number of N

particle-hole excitations. The units are thoseHyf in Eq. (6) and

thus arbitrary. we obtain after division by.N/2 the differential equation

A 2 1=x L b | +[2(1=x2) = k(143 ]b
HZHO_)\Hl:\]Z_N(Ji_Js), (5) N2 dx (1-x )dx (X) | +[2(1=x%) = x(1+x)]b(X)
. . . . . 2E«k
which, after suitable rescaling, is expressed by the matrices = Tb(x) (8)
k
Ho=§ Ok kk'=0,...N, in the ranggx|<1, where the notatior=1/\ is used. With
the substitution
N 2k’\2 L
H]_:E{l_(l_w) }5k,k'—l X=sInz,
N 2k\ 2 B 1z 'dz' |b(s
+5 l_<l_ﬁ) }5k,k’+1- (6) Y(z)=ex —EJ tanz'dz’ |b(sinz),

The model has an internal symmetry, since unperturbe&d- (8) is transformed into
states with an even number of particle-hole excitations do

not mix with states of an odd number; the matrices given in —3¢/'+3V(2)¢=—2kENy ©)
Egs.(6) have been reduced to the even numbers. )
In Fig. 1 the excitation spectrum is displayed, setting theVith
ground state level equal to zero for all The figure illus-
tarf(z) N?

trates the essential aspects of the model, thdi)ighe phase V()= —

transitiort at A ~1/4 and(ii) the type of symmetry breaking

for A>1/4, in which systematic near-degeneracies o¢eat

resolvable in the drawingwhich can be interpreted as “par- in the ranggz|<=/2. In deriving Eq.(9) nonsingular terms

ity symmetry” breaking when the even and odd numbers ofand terms of lower order thad? have been omitted.

unperturbed X =0) single particle excitations are considered The Schrdinger equation Eq(9) gives, for large values
of N, a reliable spectrum of the original problem. The prop-
erties of the potentiall0) are depicted in Fig. 2. There is a

Yt is traditionally called a phase transition also for finile minimum at

§ K .
1~ 5 |cosz— o(l+sinz)| (10
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_r T fixed small window ofx values around is larger for larger
N2 2 0 2 N. For k< k. the lowest state occurs essentiallyEyN «/2
~Vmin=—NX1—«/4)?/2, i.e., in this range we findEy|/N
3N 3N ~N\. For k> k.= 4 the state of lowest energy |ig,) with an
2 4 2 energy that is weakly dependent grandN. Remember that
N2 N2 k>k.=4 corresponds to the range of interaction strength
§ N2 N beforethe phase transition has taken place, while the range
—_— 2 —-— 0<k<k.=4 corresponds to the regiaiter the phase tran-
2 2 sition has taken place. We recall that in Fig. 1 the ground
0 0 state energy is set equal to zero before and after the transition
( f e | boint
- o X~ In summary, we have demonstrated in the particular case
-3 3 of the Lipkin model how a quantum phase transition is re-
z lated locally to the behavior of a potential of the type given

in Eq. (2) representing generically a classical instability
point. For energies around zero Eg&) mimics the potential
of Fig. 2 for energies around}, . Large values oN? in Eq.
(10) translate into large values bfin Eq. (2). Variation of x

is emulated by a variation .

FIG. 2. The single particle potential for various values xof
Note that the ordinate scales wiM?. As in Fig. 1 the units are
arbitrary.

K
Zi~ —arcsiny
IV. ONSET OF CHAOS UNDER PERTURBATION
2 2
V in=~ — N_< 1— f) _ (12) So far we have considered the parallel behavior between
2 4 the classical instability and the quantum mechanical phase

transition under the regular reginfeote thath,, is integrable

The minimum becomes flatter whenincreases from zero to d so is the Lipkin modg! Yet the analogy between a tran-

4, where the minimum dlsappears. There age WO Pronounceglinn | point in quantum mechanics and a point of instability
maxima atz values for which cdz~1/(2N%), where the of a classical system is upheld also in their respective behav-
potential assumes the values iors under perturbation. It is knowf6] that the points of
Vi ~LN2 instability—the homoclinic points of a separatrix in phase
max™ 2 Nk, (12 . .
space—are the points where the onset of chaos manifests
N itself immediately when a generic perturbation is switched
— (13)  on. Itis at these points that the tori associated with the reso-
V2 nances begin to decay first. We understand this from the
singularity encountered in the discussion above.
at the right and left hand maxima, respectively. We use the The same holds for the quantum mechanical system at the
approximate sign for the relationships as the relations argansitional point. The model considered as an example in the
valid only up to order M. In addition there are second present paper is regular for all values of the interaction
order poles ag= = /2. strength, i.e., no fluctuations ascribed to quantum chaos oc-
Our attention is focused upon the dependence of the quagur, including in the transitional region. However, it has been
tum levels on variation of the relative positions, values, andjemonstrate@&l]_] that even a minute generic perturbaﬁon
interplay between the minimum and the left hand maximumyives rise to the typical fluctuations of the spectrum associ-
when k=1/\ is varied between zero and infinity. First we ated with quantum chadsl4—16. For largeN any small
note that there is one state denoted |py) whose wave generic perturbation generates a Gaussian orthogonal en-
function is localized between the left hand singularity of thesemble(GOE)-type level distribution within the transitional
potential atz=—=/2 and the left hand maximum &= region but leaves the regions outside unaffected. We under-
—arccos(14/2N?). This state has an energy just belofy,,  stand this high sensitivity from the high density of excep-
and its energy is virtually independent of eitheor N. Next  tional points at the transition; in particular, it comes as a
we note that, considering very large valuesNyfthe mini-  natural consequence that the sensitivity increases with in-
mum of the potential is, fok<k.=4, appreciably lower creasingN.
than its maximum. This implies many states being accom-
modated within the potential mold. These states are pushed
out of the mold whenk approaches<.. They undergo a
level repulsion when they pass the energy associated with The close relationship between points of instability—
|o). The level repulsions are associated with exceptionahomoclinic points of a separatrix—and the transition point of
points which are square root singularities in the comptex
plane. It is clear from the discussion that a particularly high—————
density of level repulsions and hence exceptional points ?The largerN, the smaller the perturbation needed for chaos to
arises in the vicinity ofx.; the density of levels within a occur.

P
v 1

max 8

V. SUMMARY
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a quantum mechanical phase transition has been shown to ben, leading generically to the typical signature of quantum
a universal feature and has been demonstrated using a simgleaos.

model. For the separatrix, there is a typical singular behavior We mention that a semiclassical treatment of tunneling
of certain classical quantiti€action variable, frequengynd  through a potential barrier has been addressgd 7 The

a dramatic change of the type of the motion when switchingnterest was focused in the quoted paper on transition rates
from inside to outside the separatrix. Under perturbation th@nd not on the exceptional point connecting two levels, yet
onset of chaos manifests itself at these points first. The pathe presence of these singularities is quite obvious from the
allels with the quantum mechanical transition are striking.approach. While local aspects of exceptional points are of
There is a high density of exceptional points which, in theinterest on their owr{18], our major point in the present
case of the Lipkin model, becomes a logarithmic branchpaper is the occurrence of a high density of exceptional
point in the largeN limit. There is likewise a dramatic points associated with tunneling on a large scale, and the
change of the ground state, i.e., a phase transition, and théentification of the common origin of these singularities in
transitional region is the most sensitive region to perturbathe classical and quantum mechanical cases.
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