
Africa

PHYSICAL REVIEW E 66, 016217 ~2002!
Universal relationship between a quantum phase transition and instability points
of classical systems
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The direct and universal relationship between the accumulation of exceptional points in the quantum spec-
trum at a phase transition and the singularity of the classical action at a homoclinic point of the separatrix is
investigated. The particular common features are the analytic structure and, related to it, instability and high
sensitivity leading generically to the onset of chaos in both cases under perturbation.
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I. INTRODUCTION

The similarities and connections between classical
quantum mechanics have intrigued physicists since the e
days of quantum mechanics. The interest was revived a
two decades ago when the question about periodic orbits
raised afresh with the progress made in classical ch
Many investigations have been devoted to the quantum
log of classical chaos; there are textbooks and monogra
where important insights have been laid down, for insta
in @1–3#. In the present paper a further particular aspec
addressed where quantum and classical behavior have
parallels. It is the singular behavior of the spectrum ass
ated with level repulsion or tunneling, which occurs usua
under parameter variation and is encountered especiall
situations where chaotic behavior prevails. The singulari
considered here are called exceptional points@4#. Whether
these singularities always have a classical analog is not
vious. However, in specific cases there appears to be a
nite relation between the singular behavior of the quant
spectrum and the singular behavior of the classical actio
the associated Hamilton function.

The very nature of a phase transition is always related
a singularity of the energy under the variation of a relev
parameter such as pressure or temperature. A pertinen
scription, be it classical or quantum mechanical, has to
produce such behavior. There are, however, so called p
transitions—not in the strict thermodynamic sense—such
in nuclear physics where we deal with finite systems. O
major characteristic of such phase transitions is, just as fo
infinite system, the change of the mean field often associ
with a change of symmetry~symmetry breaking!. It is these
type of transitions upon which our interest is focused in
present paper.

We argue that the singular behavior of the quantum sp
trum is associated with a particular singular behavior of
classical action in typical situations of instability. These cla
sical instabilities are of a universal nature in that the sa
pattern occurs generically in systems where the onset of
otic behavior is discernible as soon as a perturbation
switched on. The points of instability are the homoclinic~and
heteroclinic! points of a separatrix associated with res
nances. We exploit the fact that generically the topologi
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structure near a periodic orbit of a weakly perturbed in
grable system is to first order that of a pendulum. In fact,
an integrable system the orbits move on a torus, meaning
the phase space is, under suitable parametrization in ac
angle variables, periodic in the angles. A perturbation is th
also periodic in the angles and can therefore be written a
Fourier series in the angles, where the individual Four
terms depend on the actions only; the dominant angle de
dence is thus periodic, as there is no angle dependence o
unperturbed system. For sufficiently small perturbations
dependence on the action is dominated by the dependen
the unperturbed Hamiltonian. Near a resonance the motio
essentially characterized by one angle variable with low f
quency@5#, while the other angle variables vary at a fas
rate. They are eliminated by an averaging procedure. T
technique is known as the technique of ‘‘removal of res
nances’’@6#. Our starting point is the remaining Hamiltonia
near the periodic orbit, which is associated with low fr
quency and which is that of a pendulum, viz.,

H~DJ,Q!'DJ21b cosQ1••• ~1!

with b being the appropriate coefficient of the Fourier expa
sion in the slowly varying angle of the perturbing Ham
tonian.

Here H represents the portion of the energy associa
with the resonance. Only one periodic orbit remains gen
cally stable under perturbation in the resonance region.
more energy is put intoH, the motion vibrates about th
periodic orbit. Once sufficient energy is put intoH, the tra-
jectories leave the resonance, and are correctly describe
the topology of the original integrable system@5#. The sep-
eratrix separates these two modes, and our interest is foc
upon this characteristic unstable point in phase space.

We contend that the two seemingly different systems—
quantum mechanical phase transition and the homocl
point of a separatrix—have common features not only un
the regular regime, when the separatrix is still intact, but a
in their high sensitivity where the onset of chaos manife
itself under a generic perturbation. For illustration a t
model is presented demonstrating how a quantum mech
cal phase transition is closely related to the quantum m
chanicalandclassical behavior of single particle motion at
point of instability.
©2002 The American Physical Society17-1
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In the following section we concentrate upon the gene
aspects of these specific classical instabilities and discus
consequences for the semiclassical spectrum by conside
the classical action. Next the essentials of a toy model
reinvestigated and reformulated as a single particle prob
with a potential having just the properties addressed in
previous section. A discussion of the onset of chaos is d
with in Sec. IV and a summary concludes the paper.

II. SEMICLASSICAL TREATMENT OF CLASSICAL
INSTABILITIES

We take the discussion of the Introduction as our point
departure and focus our attention upon the instability poin
Eq. ~1!. There the motion is appropriately described by t
reduced Hamiltonian

hcl5
p2

2
2

b

2
x2, b.0, ~2!

around zero energy. Here we have naturally replaced the
ond order termDJ2 by the kinetic energyp2/2 and cosQ by
x2/2. To ensure bounded motion underhcl we consider the
interval 21<x<a,a.0, with elastic reflection at the
boundary walls. The dramatic change of the motion o
pendulum from libration to rotation and vice versa is nice
simulated in Eq.~2! by the change from negative to positiv
energies where the phase space changes from two dis
nected regions to a connected region. For the pendulum
as we show below, for Eq.~2!, the period of the periodic
orbits has a logarithmic divergence which is reflected in
actions being the key to semiclassical quantization.

Of interest for our purpose is the action

J~E!5 R pdx

and we obtain forE,0 ~right hand periodic orbits!

J,~E!5
1

Ab
S a2bA11

2E

a2b
12EarctanhA11

2E

a2bD
~3!

and forE.0

J.~E!5
1

Ab
S bA11

2E

b
1a2bA11

2E

a2b

12E ln a
A112E/a2b11

A112E/b21
D . ~4!

These two functions have a logarithmic singularity atE50.
~This is related to the logarithmic divergence atE50 of the
period of the periodic orbits.! In fact, the leading term atE
50 of the derivative ofJ.(E) is 22(lnE)/Ab. It is this
point of instability related to the metastable equilibrium o
classical particle atx50 that brings about the singular be
havior.
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When treating the same problem quantum mechanica
one expects a high level density aroundE50. In fact, look-
ing at the semiclassical spectrum associated withhcl of Eq.
~2! it is for by positive energies given by

J.~En!52pn\.

The same holds forJ,(E) and its left hand orbit analog. Th
two functions have the same singularity atE50. As a con-
sequence, due to the infinite slope atE50 of J.(E) and
J,(E), there is a high level density around zero energy. T
high level density is characteristic for a quantum phase tr
sition, as it is encountered, for instance, at the transitio
points of nuclei@7#. Moreover, forE,0, the heap of the
potential separating the left from the right hand side invok
tunneling between the quantum levels on the two sides. T
neling, in turn, is always associated with the occurrence
exceptional points. In short, the quantum spectrum of Eq.~2!
has aroundE50 all the characteristics of a quantum pha
transition, that is,~i! a high level density associated with~ii !
a high occurrence of exceptional points@8#.

We stress the universal aspect of our findings. Reson
behavior of a softly chaotic system near the homoclinic po
of a separatrix is locally equivalent to the behavior arou
zero energy of Eq.~2!; the specific singular behavior atE
50 is independent of how the potential is modified forx
.0 or x,0, our choice of elastic bounces is simply conv
nient. The same holds for the quantum behavior around z
energy. Tunneling is always invoked by a finite barrier,
other words, a finite barrier is always associated with a h
density of exceptional points. It is therefore expected that
high sensitivity of the classical system under perturbation
recall that the onset of chaos manifests itself immediately
the homoclinic~heteroclinic! points of a separatrix—carrie
over to a high sensitivity in the transitional region of a qua
tum phase transition. This sensitivity is due to the prese
of the many exceptional points as was demonstrated in@8#.

III. THE LIPKIN MODEL

For further demonstration of our general findings w
present a particular model. The Lipkin model@9# serves as a
prototype model for a phase transition in a quantum m
chanical many body system and has been widely used
paradigm for deformation and/or superconductivity
nuclear physics@7#. Being a soluble model it has all th
important properties such as symmetry breaking wh
sweeping over the transition point. The symmetry break
can be associated with an appropriate change of a suit
mean field@10#.

We briefly recapitulate the gist of the model and th
rather concentrate upon the essentials for our specific
pose.

The model assumes twoN-fold degenerate levels sepa
rated by the energy 1/2~in suitable units! where theN par-
ticles interact by a specific two-body interaction. In terms
the (N11)-dimensional SU~2! generatorsJi ,i 5x,y,z, the
model is written as
7-2
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H5H02lH15Jz2
l

N
~Jx

22Jy
2!, ~5!

which, after suitable rescaling, is expressed by the matri

H05
k

2
dk,k8 , k,k850, . . . ,N,

H15
N

2 F12S 12
2k8

N D 2Gdk,k821

1
N

2 F12S 12
2k

N D 2Gdk,k811 . ~6!

The model has an internal symmetry, since unpertur
states with an even number of particle-hole excitations
not mix with states of an odd number; the matrices given
Eqs.~6! have been reduced to the even numbers.

In Fig. 1 the excitation spectrum is displayed, setting
ground state level equal to zero for alll. The figure illus-
trates the essential aspects of the model, that is,~i! the phase
transition1 at l'1/4 and~ii ! the type of symmetry breaking
for l.1/4, in which systematic near-degeneracies occur~not
resolvable in the drawing!, which can be interpreted as ‘‘pa
ity symmetry’’ breaking when the even and odd numbers
unperturbed (l50) single particle excitations are consider

1It is traditionally called a phase transition also for finiteN.

FIG. 1. Spectra of the excited states forN5100 ~top! and N
5600 ~bottom!. The solid ~dotted! lines represent the positiv
~negative! parity states, i.e., the states with an even~odd! number of
particle-hole excitations. The units are those ofH0 in Eq. ~6! and
thus arbitrary.
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as parity. Note that the transition is the more pronounced
larger the value ofN; in particular, at the transitional poin
the spectrum becomes soft, the more so the larger the par
numberN. The spectrum collapses completely forN→`. In
the vicinity of the transitional point there is a high sensitivi
to perturbation@8#. These features can be understood by
high density of exceptional points at the transitional po
and their behavior under perturbation@11#. The exceptional
points, being square root branch points for finiteN, accumu-
late in the limitN→` at l51/4 and the resulting singularity
is then a logarithmic branch point. This was demonstrated
a similar context in@12#.

We may view the eigenvalue equation

kck2
lN

2 F12S 12
2~k11!

N D 2Gck11

2
lN

2 F12S 12
2k

N D 2Gck215Eck ~7!

as the discretized version of a differential equation. Su
near-equivalence is the more precise the largerN @13#. Using
the near-continuous variable

x5
2k

N
21

we obtain after division bylN/2 the differential equation

4

N2

d

dx S ~12x2!
d

dx
b~x! D1@2~12x2!2k~11x!#b~x!

5
2Ek

N
b~x! ~8!

in the rangeuxu<1, where the notationk51/l is used. With
the substitution

x5sinz,

c~z!5expS 2
1

2E
z

tanz8dz8Db~sinz!,

Eq. ~8! is transformed into

2 1
2 c91 1

2 V~z!c52 1
4 kENc ~9!

with

V~z!52
tan2~z!

4
2

N2

2 S cos2z2
k

2
~11sinz! D ~10!

in the rangeuzu<p/2. In deriving Eq.~9! nonsingular terms
and terms of lower order thanN2 have been omitted.

The Schro¨dinger equation Eq.~9! gives, for large values
of N, a reliable spectrum of the original problem. The pro
erties of the potential~10! are depicted in Fig. 2. There is
minimum at
7-3
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zmin'2arcsin
k

4
,

Vmin'2
N2

2 S 12
k

4D 2

. ~11!

The minimum becomes flatter whenk increases from zero to
4, where the minimum disappears. There are two pronoun
maxima atz values for which cos4z'1/(2N2), where the
potential assumes the values

Vmax
r ' 1

2 N2k, ~12!

Vmax
l '2S 12

k

8D N

A2
~13!

at the right and left hand maxima, respectively. We use
approximate sign for the relationships as the relations
valid only up to order 1/N2. In addition there are secon
order poles atz56p/2.

Our attention is focused upon the dependence of the q
tum levels on variation of the relative positions, values, a
interplay between the minimum and the left hand maxim
when k51/l is varied between zero and infinity. First w
note that there is one state denoted byuc0& whose wave
function is localized between the left hand singularity of t
potential atz52p/2 and the left hand maximum atz5
2arccos(1/A4 2N2). This state has an energy just belowVmax

l

and its energy is virtually independent of eitherk or N. Next
we note that, considering very large values ofN, the mini-
mum of the potential is, fork,kc54, appreciably lower
than its maximum. This implies many states being acco
modated within the potential mold. These states are pus
out of the mold whenk approacheskc . They undergo a
level repulsion when they pass the energy associated
uc0&. The level repulsions are associated with exceptio
points which are square root singularities in the complexk
plane. It is clear from the discussion that a particularly h
density of level repulsions and hence exceptional po
arises in the vicinity ofkc ; the density of levels within a

FIG. 2. The single particle potential for various values ofk.
Note that the ordinate scales withN2. As in Fig. 1 the units are
arbitrary.
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fixed small window ofk values aroundkc is larger for larger
N. For k,kc the lowest state occurs essentially atE0Nk/2
'Vmin'2N2(12k/4)2/2, i.e., in this range we finduE0u/N
;l. Fork.kc54 the state of lowest energy isuc0& with an
energy that is weakly dependent onk andN. Remember that
k.kc54 corresponds to the range of interaction stren
before the phase transition has taken place, while the ra
0,k,kc54 corresponds to the regionafter the phase tran-
sition has taken place. We recall that in Fig. 1 the grou
state energy is set equal to zero before and after the trans
point.

In summary, we have demonstrated in the particular c
of the Lipkin model how a quantum phase transition is
lated locally to the behavior of a potential of the type giv
in Eq. ~2! representing generically a classical instabil
point. For energies around zero Eq.~2! mimics the potential
of Fig. 2 for energies aroundVmax

l . Large values ofN2 in Eq.
~10! translate into large values ofb in Eq. ~2!. Variation ofk
is emulated by a variation ofa.

IV. ONSET OF CHAOS UNDER PERTURBATION

So far we have considered the parallel behavior betw
the classical instability and the quantum mechanical ph
transition under the regular regime~note thathcl is integrable
and so is the Lipkin model!. Yet the analogy between a tran
sitional point in quantum mechanics and a point of instabi
of a classical system is upheld also in their respective beh
iors under perturbation. It is known@6# that the points of
instability—the homoclinic points of a separatrix in pha
space—are the points where the onset of chaos mani
itself immediately when a generic perturbation is switch
on. It is at these points that the tori associated with the re
nances begin to decay first. We understand this from
singularity encountered in the discussion above.

The same holds for the quantum mechanical system a
transitional point. The model considered as an example in
present paper is regular for all values of the interact
strength, i.e., no fluctuations ascribed to quantum chaos
cur, including in the transitional region. However, it has be
demonstrated@8,11# that even a minute generic perturbatio2

gives rise to the typical fluctuations of the spectrum asso
ated with quantum chaos@14–16#. For largeN any small
generic perturbation generates a Gaussian orthogonal
semble~GOE!-type level distribution within the transitiona
region but leaves the regions outside unaffected. We un
stand this high sensitivity from the high density of exce
tional points at the transition; in particular, it comes as
natural consequence that the sensitivity increases with
creasingN.

V. SUMMARY

The close relationship between points of instability
homoclinic points of a separatrix—and the transition point

2The largerN, the smaller the perturbation needed for chaos
occur.
7-4
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a quantum mechanical phase transition has been shown
a universal feature and has been demonstrated using a s
model. For the separatrix, there is a typical singular beha
of certain classical quantities~action variable, frequency! and
a dramatic change of the type of the motion when switch
from inside to outside the separatrix. Under perturbation
onset of chaos manifests itself at these points first. The
allels with the quantum mechanical transition are strikin
There is a high density of exceptional points which, in t
case of the Lipkin model, becomes a logarithmic bran
point in the largeN limit. There is likewise a dramatic
change of the ground state, i.e., a phase transition, and
transitional region is the most sensitive region to pertur
s
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tion, leading generically to the typical signature of quantu
chaos.

We mention that a semiclassical treatment of tunnel
through a potential barrier has been addressed in@17#. The
interest was focused in the quoted paper on transition r
and not on the exceptional point connecting two levels,
the presence of these singularities is quite obvious from
approach. While local aspects of exceptional points are
interest on their own@18#, our major point in the presen
paper is the occurrence of a high density of exceptio
points associated with tunneling on a large scale, and
identification of the common origin of these singularities
the classical and quantum mechanical cases.
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