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Using Lyapunov exponents to predict the onset of chaos in nonlinear oscillators
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An analytic technique for predicting the emergence of chaotic instability in nonlinear nonautonomous
dissipative oscillators is proposed. The method is based on the Lyapunov-type stability analysis of an arbitrary
phase trajectory and the standard procedure of calculating the Lyapunov characteristic exponents. The concept
of temporally local Lyapunov exponents is then utilized for specifying the area in the phase space where any
trajectory is asymptotically stable, and, therefore, the existence of chaotic attractors is impossible. The proce-
dure of linear coordinate transform optimizing the linear part of the vector field is developed for the purpose
of maximizing the stability area in the vicinity of a stable fixed point. By considering the inverse conditions of
asymptotic stability, this approach allows formulating a necessary condition for chaotic motion in a broad class
of nonlinear oscillatory systems, including many cases of practical interest. The examples of externally excited
one- and two-well Duffing oscillators and a planar pendulum demonstrate efficiency of the proposed method,
as well as a good agreement of the theoretical predictions with the results of numerical experiments. The
comparison of the proposed method with Melnikov’s criterion shows a potential advantage of using the former
one at high values of dissipation parameter and/or multifrequency type of excitation in dynamical systems.
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[. INTRODUCTION in view of their potential application for secure communica-
tion schemes based on chaotic synchronizatign
Lyapunov characteristic exponerit<CE) provide a quan- It should be noted that, by their definition, LCE are

titative measure of stretching and contracting deformationgasymptotic quantities defined in the limit bf>, as they

of an infinitesimally small phase space sphere in the vicinitycharacterize the average growth rate of a set of mutually
of an arbitrary trajectory in a dynamical system. So definedprthogonal vectors in the tangent space. Their magnitudes
they also characterize the divergericenvergencerates of  generally depend on the starting point on the trajectory

two initially close trajectories residing on an attractor andtial conditiong, but, if the motion on the attractor is ergodic,
serve as indicators of the stability of motion. Total number ofthe averaged values are the same for almost all initial condi-
Lyapunov exponents that a system possesses is equal to tigns in the basin of attraction, except, maybe, for a set of
dimension of the phase space, or, in other words, the numbeglepesgue measure zeib,g]. In 1968 it had been proven by

of independent variables necessary to fully characterize thgseleded9] that such long time averages do exist for a

motion. Being invariant under a smooth change of coordiy gaq class of dynamical systems including most of the situ-
nates, LCE provide a useful quantitative measure of stability, ;i) ns of practical interest.

for various types of motion including complex quasiperiodic
orbits and chaos and, together with other dynamic invariantgnI

such as fractal dimension and Kolmogorov-Sinai entrdy rates in both time and phase space. The values of Lyapunov

play an important role in the theory of nonlinear oscillations. A .
The fact that LCE can be used for distinguishing differentexponents calculated over a finite time interval depend on
initial conditions, and corresponding distribution functions

types of attractors in dynamical systems makes them espén be introduced o f lexi
cially useful for the purpose of classifying the complicated@" b€ introduced as quantitative measures of complexity

oscillatory regimes or detecting transitions between motion&8:10,13. Such exponents are usually called local Lyapunov
of different types. In particular, positive sign of the largest®XPonents(LLE) or local growth rates to account for their
LCE is commonly accepted as a hallmark of chaotic oscilladependence on the position of the starting point in the phase
tions, which demonstrate strong sensitivity to initial condi-sPace, and they have been proven useful in many works
tions and exponential time diversion of nearby trajectoriesstudying the statistical properties of strange attractbgs-

On the contrary, stable periodic or quasiperiodic orbits arél4], attractor crised10,11, intermittency[15], and time
characterized by negative values of all the L@cept the variation of the fractal dimension of strange attractors
one in the tangent direction to the trajectory that is alwayg16,17.

zerg. The knowledge of the full Lyapunov spectrutar- On the other hand, different exponents have been intro-
dered by their magnitude values of all LCE of crucial duced to study both time and phase space variability of the
importance for understanding the basic phenomenology istability exponents in the limit—0. Mathematically, these
many problems of mechanic2], quantum physicg3], exponents can be interpreted as limit case of LLE calculated
theory of turbulencé4], biological system$5], or geophys-  within an infinitesimally small time interval. In order to dis-
ics [6]. Systems with two or more positive LCE also attracttinguish these instantaneous growth rates from LLE and
considerable attention as examples of hyperchaotic behavistress the importance of the explicit time dependence we call

In many cases it turned out to be constructive studying not
y the mean values, but also the fluctuations of expansion
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them temporally local Lyapunov exponen§LLE). These motion. Section Il provides the analysis and explicit formu-
guantities have been demonstrated to be effective in severkds for the stability conditions in an externally excited dy-
ways, e.g., for characterizing the interaction between detemamical system of the second order. In Sec. IV the difference
ministically chaotic and noisy systerfi$8—20, quantifying  between linear and nonlinear systems is discussed from a
local predictability in the phase spal@i,22, or numerically ~ Stability viewpoint. The procedure is further developed for
calculating the values of traditional LOR3,24. generalizing the stability analysis of linear system to the case
In this paper we consider another application of TLLE, Of arbitrary degree of nonlinearity in the oscillators of the
the method for predicting the emergence of general type of€cond order. Section V gives several examples of analysis
instability in dissipative dynamical systems that may causdor several classical nlonllnear oscillators, such as Duffing
the formation of a strange attractor with at least one positiveYStem and mathematical pendulum. The comparison of the

LCE. Our approach is based on the possibility to derive exPredictions for chaos onset made with the proposed tech-
plicit equations that govern the time evolution of TLLE, di- Nique to those following from other approaches, like Melni-

rectly from the original set of differential equations describ-KOV method or conventional stability analysis, has been also
ing the dynamical system. Then the equations for TLLE Car{:.arrled out. Section VI contains a summary'e.md interpreta-
be analyzed analytically, together with the set of governing“on of_ r_esglts in terms of the necessary conditions of chaotic
equations, enabling one to obtain the estimate of the stabiligfStability in dynamical systems.
area in the phase space and/or the space of control param-
eters. Note that, although it is typically highly desirable to Il. MATHEMATICAL FRAMEWORK
know the dependence of the Lyapunov spectrum on the con-
trol parameters, this problem defies analytical treatment. As a
rule, it appears impossible to obtain the values of LCE from TLLE are introduced in the following way18-20,23.
the functional form of the multidimensional mapping or sys- Consider a dynamical system described by the set@fi-
tem of nonlinear differential equations defining the evolutionnary differential equations
of the dynamical system of interest. So far, the numerical
calculations_ remain fche only straightforward way of analysis, d_X =F(x, 1), xeR" (1)
when the information on the largest LCE or the full dt
Lyapunov spectrum is necessafly25—21.

Contrary to previous studies focused mainly on the nu-Stability of an arbitrary solution of Eq1) x*(t), is defined
merical analysis of LCE we develop a procedure for obtainby the linearized system,
ing their estimates analytically from differential equations.
The feasibility of the principal idea based on the analysis of
dynamical equations for Lyapunov vectors in the tangent
space(initially formulated in the context of systems of linear
equations with periodic coefficien{28]) has been already where J(x*(t))=dF(x*(t))/dx is nxn time-dependent
demonstrated for several nonautonomous nonlinear OSCi”a\]'acobian matrixy is ann vector in the tangent space corre-
tors with one-and-a-half degrees of freedp29]. Here we  sponding to an infinitesimal perturbation of the trajectory
generalize the results reported in Re#9] to a broad class of x*(t). The standard algorithm for calculating the spectrum
dynamical systems of arbitrary dimension and various typegf |CE [25,26 consists in solving Eq92) simultaneously
of nonlinearity. The ultimate condition for the emergence ofyith Eq. (1) for a set of mutually orthonormal vectofy,}
instability is expressed in the form of stability criterion for a (k=1 2 . 1) and estimating the average expansion rates for

bounded region in the phase space, where all trajectories afge |engths, = |ly,/| of the vectordy,}. The general solution
asymptotically stable, and, therefore, converge to either fixedt £q. (2) is given by

points or stable periodic attractors. The proposed way of
analysis is fundamentally a Floquet's type approggfi but Y 0

; : e : y(t)=M(t)y(0),
generalized to include nonperiodic or multifrequency types
of motion. Moreover, the final result formulated in terms of

the amplitude of motion does not depend on the particula :
functional form of the external force. From this viewpoint, it 2). It follows from the resqltrs_obtame_d_ by Oselec[9¢_that
for almost any choice of initial conditions there exists the

could be especially useful in a situation of broadband eXterfollowin lona time limit for the norms of a suitably chosen
nal excitation[31,32 of oscillators, or noisy dynamical sys- ot of o?thon%rmal vectong(0): y
tems where the random time perturbations cannot be consid® L)

A. Definition of temporally local Lyapunov exponents

dy A
a—J(X 1)y, (2

hereM(t) is the fundamental matrix of solutions for Eq.

ered small. 1
The paper is organized as follows. In Sec. Il we introduce A= lim—In|M(t)y,(0)]. (3)
the concept of TLLE for systems of differential equations too

and formulate the stability conditions for an arbitrary trajec-

tory in the phase space. Then we discuss the effect of a line&n other words this means that asymptotically, in the limit of
coordinate transform on the stability properties of governing—c, the evolution of|y,/| is approximated by|y(t)||
equations and describe a procedure for optimizing the stabilk=|y,(0)||e*<, where the exponents, constitute the spec-
ity criterion in terms of the amplitude and/or velocity of trum of LCE.
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In order to obtain the dynamical equations for TLLE we

use the approach similar to the one described in Réfs-
24] and rewrite Eq(2) in the polar coordinate frame for the
amplitudep=|y| and directionsp,,, (m=1,2,...n—1) of an
arbitrary vectory in the tangent space.

dp dy,
PE—Zl Yigr (4a)
de
gt = ®(e1.02.n-1), (4b)

where y, are Cartesian components of the vecior p?
=>_,y? and the angleg, can be found from the follow-
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d i n m—1
d_)::mzzl J'|m(x*(t))ym=me:I jm(x*(t))cosgomi[[1 sing; ,

®

where j,,, are the components of the time-dependemtn
matrix J, and Eqgs.(5) have been also taken into account.
Note that each componewt in Egs. (5), as well as its time
derivativedy, /dt, given by Eq.(8), is a linear function op,
therefore, the dynamics of [In(t)] do not depend om, and
the general form of the evolution equation fofdt)] can be
now written as

d
a[lnp(t)]:P(@l!@Zi"'!Qanl)i (9)

ing formulas defining the transition from Cartesian to spheri-

cal coordinates irR":

Y1=p COS¢@y,

Y>=p Sing; cose,,

i—1

yi=pcos<pi|1]l singy, (5)

n-2
Yn-1=pP COSSDn—llljl singy,

n—-1
yn=p|1:[1 sing .

It is easy to see that, e.g., in the case 3 Egs.(5) are

whereP is a function of angular coordinates only. Integration
of Eq. (9) over the finite time interval gives

.
|n[P(T)]=fO Ple1(t), @2(t),....on-1(1))dt,  (10)

where the time-dependent functions,(t) (m=1,2,...n

—1) are defined by the solutions of Eq4b) and(1). Even-
tually, by substituting Eq(10) in Eqg. (6) we obtain the fol-
lowing equations, defining the spectrum of LCE:

1T
A= “mfj Pi(e1(t), ¢a(t),....on—1(D))dt. (1)
0

T—o

It follows from Eg. (11) that LCE are, in fact, long time
averages of corresponding functions of angular coordinates
of the vectors{y,}. If we calculate the integral in Eq11)

reduced to the standard spherical coordinates in the threever a finite time interval, we obtain the growth rates, de-

dimensional spacdp, ¢, 6), where ¢;=0, ¢,=¢, and,

hence, the formula&) are just a generalization of the stan-

dard spherical coordinates to a high-dimensional space.
Note that if we pufp(0)=1 then by the definitiori3) the
spectrum of LCE is expressed as

1

T (6)

)\k: lim

To»

Inpy(T),

wherep,(T) correspond to the lengths of the initially ortho-
normal vectordy,} after the time interval.

By dividing Eq. (48 by p?, we obtain the differential
equation for the time evolution of |s(t),

. (7)

d 1% dy
a[lnp(t)k;z[;l Yrar

On the other hand, Ed2) rewritten in the scalar form for
each of the Cartesian components of the veygttmoks like

pending on the starting point of integration in E@¥), i.e.,

the spectrum of LLE. The instantaneous values of the func-
tions Py (¢41(t),@s(t),...,¢on_1(t)) depend on both the time
and phase space coordinates and constitute the spectrum of
TLLE. So, the following expression can be used as the defi-
nition of TLLE [denoted hereafter gs,(t)]:

dlIn p,(t
:%:Pk(‘Pl(t)i@Z(t)a---v‘Pn—l(t)).

(12

(t)

The anglesp; (i=1,2,...n—1) in Eq.(12) have to be calcu-
lated from Eq.(4b) solved simultaneously with Ed1).

The equations for the angles in E@b), as well as the
functions P, (¢1(1),(1),...,05_1(t)), do not depend on
the amplitudesp, and, hence, can be integrated indepen-
dently from Eq.(4a). This assertion can be proved by differ-
entiating Egs(5) with respect to time and substituting Egs.
(2) on their left-hand side. For an arbitrary component of the
vectory we have from Eq(5),
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dy; dp i-1 do; i-1 specify wher_g th_e unstable motions can arise by finding an
qi aCOS(,DiH Siﬂqm—pWSingoiH sing, area of stability in the phase space or the space of control
=1 =1 parameters.
qli-t As follows from (11), (12), the LCE (\;) are long time

H sing |, (13 averages of the corresponding TLLR;j. If we arrange the

=1 values of)\; in descending order, then the instability means
. the positive value of the firdlarges} LCE, i.e.,A;>0. It is

wherell denotes the usual product. Now, starting from theevident, that, can take a positive value only i, is greater

last two components of the vectpry,—, andy,, we mul- - 5 766 during some time intervals. On the contrary, if the
tiply their derivatives by sing, ;) and cosg,_4), respec-

+p COS@i

inequalit
tively, and subtract one from another. Finally, we have the d y
implicit equation for the dynamics of the phagg_,, wy(t)<0 (15
n—-2
dyn dyn-1 den-1 holds all the time, the system is asymptotically stable, i.e., all

—_ 4 — ———sinp,_1=p—— ing,. ) : S o
dt €OS¢n-1 dt SN@n-1=p dt |1:I1 sine: the perturbations are exponentially shrinking with time and,

(14) hence, chaotic motions are precluded. From the inequality
o . (15), together with Eqs(l), (2), it appears possible to obtain
After substituting Eq.(8) for I=n, n—1in Eq. (14) and  the relation between the control parameters and phase space
dividing by p, we come to the equation fakp,_,/dt of the  coordinates which guarantees that the system is “safe” in the
form (4b), where the right-hand side depends only on angusense that if the trajectory never leaves the region with nega-
lar coordinates. It can be proved by induction that all othetjye values ofu,, then no chaotic behavior appears. The
equations for the anglesy, in Eq. (4b) are also independent goga| is reached by analyzing the structure of the function
of p. (1) =Pi(e1(t),@o(1),...,¢n_1(1)), together with solu-
It should be noted that some of the just discussed generglpns of Eq. (1), which define the dynamics of angles,
properties of Eqs(4) defining the dynamics of arbitrary vec- through Eqgs(2) and (4). The general form of the function
tors in tangent space have been already utilized by Othqﬁl(cpl(t),cpz(t),...,<pn,1(t)) follows from Eqgs.(2), (5), (7).

authors in different contexts. In particular, the independencé we substitute Eq(2) in (7) and use Eq(5), the following
of expansion rates on the length of the vector in the tangenfg|ations are obtained:

space justifies the validity of the periodic renormalization of

the Ie_ngthé,|yk|| used in the standard procedure of LCE COM-p_ (¢, (1), @y(t),....0n_1(1))
putation for avoiding the overflow due to the exponential
growth of ||y,|| on a chaotic attractof1,26]. On the other 1
hand, the relations similar to EG}) have been recently dem- =2
onstrated to be useful for developing an efficient method of
computing the LCE spectruf24]. The approach proposed non -1 m-1

in Ref. [24] reduces the number of necessary-to-integrate = >, >, j;mcose, cosenl] sing [ siney. (16)
equations in the systerf2) by excluding the length of the I=1m=1 =1 k=1

vectors{y,} from consideration and analyzing the dynamics

=

> Jim Ot (D) Ym
P i=1 m=1

of some suitably chosen angular variables only. The terms in the right-hand side of the Hd6) can be re-
grouped in a way allowing the conclusion on the sign of
B. Stability of solutions of differential equations and TLLE P1(ea(t),2(t),....on-1(t)) to be made,

Any trajectory in the phase space of systéhpis stable, " _ - " -
if all the corresponding LCE are nonpositive. Typically, the ~1(#(:X (£))= G2 (IO (1) + Ha (o t.x* (1)), (X (t)()1)7’)
stability can be lost when at least one of the LCE calculated

along the trajectory becomes positive due to the change in :
the control parameters. In terms of the tangent space, Where the functiorG, does not depend on the anglgsand

means that the length of an arbitrary vector defining the petJ-S defined by the dynamics of the diagonal elements of the

turbation starts growing exponentially with time. As we al- Perturbation matrix only,
ready noted, it is of particular importance to be able to pre-
dict the occurrence of such kind of transition in dynamical N ) 1

systems. In the general case of an arbitrary dynamical system Gi(J)= Z«l onlii O () + on-1l an(X* (D). (18)

it appears impossible to develop an analytical method that

would allow solving the above problem. It is, therefore, .

highly desirable togobtain at Ieagt some estimates for th(g—he funcuonHl can Ee expressed as the sum of prpducts of
values of control parameters where the instability may occuﬂ,namx ellementshm()_( (t.)) and cosine or sine functions of
or, in other words, to derive a necessary condition for the/arnous linear combinations of angles,
chaotic motion to appear. In terms of stability theory, an
inverse of the necessary condition of instability constitutes a Hq(o j)=2 ij sin 2 K o;
sufficient condition for stability, therefore, one can always A o o

n—1

, (19

016214-4



USING LYAPUNOV EXPONENTS TO PREDICT TH.. .. PHYSICAL REVIEW E 66, 016214 (2002

wherecy,, k; are integer constantg;, and ¢; are time- \yhere A is a constantnxn matrix, N(x) is a nonlinear
dependent functions. The criterion of stability for any solu-yector-function vanishing at the origin(0)=0, together
tion of Eq (l) defined by |nequal|t}(15) can now be refor- with all of its partia| derivatives
mulated in terms of the functiortd;, G, as follows:
IN(X)
min[ G1(J0¢* (1)))]>mav{ Hy (e(t,x* (1)), 3(¢* (1)) ] ox
P (20)

x=0

¢ is a dimensionless parameter, not necessarily siifalljs

The opposite inequality would mean the potential instabilitya vector of external forces. Such problem posing implies the
of the trajectoryx* (t) in the phase space of the systét). ~ presence of a fixed point at the origin whih)=0. In the
Indeed, the stability of any trajectory is defined by the bal-case of a different position of the fixed point, it can be al-
ance of positive and negative values of the largest TLLE. Asyays shifted to zero by the change of coordinakesx
the phase trajectory evolves in the phase space, during ce#x,, which moves the origin to the locatiog of the fixed
tain time intervals it can lie outside the border defined by Eqpoint. Moreover, we also assume that the fixed point is
(20), where the perturbations are exponentially amplified bystaple, j.e., all the eigenvalues of the mathishave negative
the dynamics. If the positive values of TLLE prevail on av- o4 parts.
erage, the motion becomes unstable, including the possibility A jinear coordinates transform
for chaotic attractors to appear. When the long-time average
of the first TLLE is negative, then the largest LLE is also 7=Bx, (22)
negative and, therefore, the whole trajectory is stable. Actu-
ally, the inequality(20) defines an area in the phase spacgyhereB is a constant reahxn matrix, recasts the system
where any trajectory is asymptotically stable. If the trajectory 1) tg the form
never leaves the area of stabilit®0) it cannot become un-
stable and, therefore, it is by no means chaotic. dz_ . ~. . A ag N

It should be, however, noted that a straightforward calcu- gi_BAB zteBN(B )+g(t), zeR' (23
lation of the functions5; andH, from Egs.(1), (2) does not

always allow us to obtain the explicit equation for the bordenwhere, the vector-functiog(t) defines the external forces in

of the asymptotic stability area in the phase space. As Wene new coordinates. After the transformati@®), the lin-
demonstrate below with several examples of nonlinear oscilearized equations of motion read

lators this happens due to the presence of both the expanding

and contracting directions around a typical trajectory that is a -

consequence of the affine character of the phase flow in the at L ()w, (24)

vicinity of a generic stable fixed poirisee, Fig. L In terms

of the functions G; and H; this means that \here the elements of the perturbation malrinow consist

minfG,(J(x*(t)))] may be strictly less than of two parts

max, [ H1(¢(t,x* (t)),J(x* (1)))] for any trajectoryx* (t),

and, hence, the inequalit0) may never be satisfied.
Fortunately, the particular form of the functio®, and

H, depends on the choice of coordinatese also Ref.33]),

and in many cases it turns out possible to obtain the bordefghere the notatio®=BAB ! is used. The elements of the

of the asymptotic stability area by introducing a suitable COmatrix B can be always chosen in a way making the matrix

ordinate transformation. As will be shown below, the univer—ﬁd. Lor block di 851 Thi dinate t ¢
sal solution to the problem of finding such a transform is iagonal or block diagondB5]. This coordinate transform

provided by a linear change of coordinates diagonalizing thgna}kes the fixed p(_)int at the origin of the tangent space not
linear part of the flowF(x,t) in the vicinity of an arbitrary affine, that results in the absence of expanding directions for

point in the phase space. This kind of transformation <8 vector centered at the origin. As a consequence, after the

known to be a standard tool in the analysis of differentialltransiﬁrmat'odzz) d|agon?l|_z|ng the_lmt(ra]ar pr?rt of the prob—h
equationgsee, e.g.[34]] and is usually used as a first step em, Nere appears a certain area in theé phase space, where

allowing us to simplify the linear part of the problem “as &Y iqfinitesimal sphgre expgrienges only contractiqn in any
much a?s possible "p fy P P direction. Then, the inequality20) in the new coordinates

allows obtaining an explicit equation for its border.
_ ) It should be, however, noted that after such a transforma-
C. Linear coordinate transform tion of coordinates, the conditiaf20) might provide not the
A standard way of analyzing a dynamical system can b&est possible estimate for the size of the asymptotic stability
roughly described as follows. The systéf) can be repre- area. Under any circumstances, it gives some approximation

I:(z*(t))zf)+sl§>;z[N(I§’lz)] , (25)

z=7*(t)

sented by the form for, e.g., the value of the maximal stable amplitude of motion
or maximal velocity. However, since the analysis used for

dx . diagonalizing the matriXA utilizes the information on the

— = Ax+eN(x)+f m 21 gonalizing the .
dt x+eNOJI+1(),  xeRY, 2Y) properties of the linear part of the problem only, the obtained
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estimate of the size of stability area is, as a rule, stronglyhere the time dependence pf is defined by the concur-
underestimating the values of coordinates and/or control paent solution of Eqs(26) and (27). The condition for the
rameters where chaotic instability is likely to occur. As we asymptotic stability of the solutior* (t) of the systen(21)
demonstrate below, a substantial improvement can bean be now obtained from Eq&0), (28) as
achieved by applying a different coordinate transform of the

type (22). The modification consists in taking into account min[(j 11422 21>maxq (j11— ) 202+ (J 12+ j 2021
the particular form of the nonlinearity functial(x), when x* () X* (1)

calculating the elements for the transformation maix
Then, in the new coordinates, the linear part of the system i
nondiagonal, but, nevertheless, an infinitesimal sphere in th

tangent space contracts in all directions. The advantage Ver the range of variation of the phase space coordinates.

the propqsed mg_thod consist_s in maximizing the siz_e of th%owever, it should be kept in mind that an arbitrary trajec-
asymptotic stability area, or, in a different perspective, ob-Ory is asymptotically stable only if the inequality of type

taining a better estimate for the chaotic instability threshol 29) is satisfied within a certain range of the phase space

n tlirr:usb?:athueer?tmspélct;ijigﬁsaaogoée\ﬁ?ncsl?r/a?(fa E?I?gésibilit K oordinates(from minimal to maximal valuescalculated
N Y long the corresponding solutions of E¢26).

the propo;ed methqd with several examples of nonautono- Since the matrix elements, depend on coordinates
mous nonlinear oscillators of the second order. Although th?x X,), the inequality(29) defilﬁes the area in the phase

; ; p _ 11X2)
technique can be used for the analysis of almost(argjud space where the perturbations around a fiducial trajectory

Ing high dlmensmnal pa_sswe_dyr!amlcal system, we would contract with time exponentially, thus ensuring the
like to restrict our consideration in the present paper by the : - ;

asymptotic stability of the solution. Note also that the left-
case of second-order nonautonomous systeftigee-

. ; : . hand side of Eq(29) is the divergence of the phase space
dimensional phase spacé&his choice enables us to compare . * .
. ) S ... flow along the trajectoryx* (t), characterizing the overall
our results with numerous estimates of chaotic instability

area for these particular models existing in the literature dissipation properties of the system. From this perspective,
P 9 " the inequality(29) establishes a well-known fact that dissi-

pation stabilizes the motion and imposes a threshold for the
Ill. ASYMPTOTIC STABILITY CRITERION FOR A appearance of instabilities.

NONAUTONOMOUS SYSTEM OF THE SECOND ORDER As we already noted, in a generic situation, it appears

necessary to perform a change of coordinates, which trans-
forms the inequality29) to the form suitable for the subse-
quent analysis. An arbitrary linear transformation of type
dxy /dt="F1(X1;Xo) + F1(t), dXo/dt="F(Xq:X)+ Falt), (22) does not change the general form of E2g), butj;, are
(26) now to be replaced with the corresponding elements of the
matrix L=BJB~* defined by the Eq(25). The condition of
where the nonlinear functiorfs , are defined by the proper- asymptotic stability (29) can now be rewritten asl{;
tles_ of_the systemF, ,(t) characterize the_applled fo_rces, —|22)2+(|12+|2])2<(|11+|22)2 or, equivalently,
acting independently of the system dynamics. Following the
procedure developed in the previous section we rewrite the R )
linearized equation§2) for an arbitrary vectoy in the tan- E Iizk<[Tr(L)]2+2 detl), (30)
gent space in the polar coordinate frame. Finally, we obtain bk
the equations describing the dynamics of the lengtand
phasee of the vectory wherel;, are the elements of the matrlx, depending on
g phase space coordinates, control parameters, and elements of
9_pP.. . oo o e the transformation matri®. Note, that the right-hand side of
at ~ pUutl2t (Jnmi2)Cod2¢) + (ot jausinZe) ],y 2 inequality(30), being expressed via the trace and deter-
4 1 minant of the matrix_, is invariant under any linear trans-
= 5[121—1'12+(1'12+J'21)00$290)+(jzz—j11)5iﬂ(2¢)], 2;rtr;§clz:f;r22:,tsh§gce, independent from the values of the
(27 The sum at the left of Eq30) is the Euclidean norm of

wherej;; (x* (t))=0df; /dx; are the components of the pertur- ﬂ;e matcr;-xL, geggrallly knO\;]vn to be .dc.ependenthogthe choice
bation matrixJ depending on time through the solutions 2" ©°°" inateq(36]. It reaches a minimum, whe trans-

x* (1) of Egs.(26). The expression for the largest TLLE fol- forms the matrix_ to the canonicaldiagonal form, and is
lows directly from the first of the Eqg27) and definition unlimited from above. It is a well-established fact in the

(29

fh the following, when studying the inequalities of the type
9), we shall omit the min and max functions calculated

Evolution equationgl) for an arbitrary dynamical system
of the second order with an external force are given by

(12) matrix theory that the Euclidean norm does not depend on
rotations of the coordinate frame, or, in other words it is a
2u1(1)=j11F joot (11— j22)€042¢) + (j 1o+ | 21)SIN(2¢0), unitary invariant matrix measure. Therefore, not all the ele-

(29 ments of the matrixB are independent parameters of the
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problem, and the inequalit{80) can be recast to the follow- and the variational equation®) in the vicinity of an arbi-

ing form containing two independent parameters only: trary trajectoryx* (t) for this system look like
[U(j 11— j22) + 21— (UP+02)] 1°<40%(j 14 20~ [ 20§ 12 %:y2
(31 dt '
where the new paramet are introduced as dy
parametY Ge= O eV, (39
b1b15+byib b;1b5—byib
= W v= % (32)  wherey; , are the components of the perturbation vegtor
12 22 12 22

dN
V(X*(t))za

andji, by are the elements of the matrixdsand B, re- ey
-

spectively.
Since the values of the parameters) are arbitrary, they Then, the explicit expression for the largest TLLE follows

can be chosen in a way maximizing the size of the stabilitydirectly from its definition(12) and the equation for the norm

area in the phase space. The matrix elemgptare different  of ||y|| =p in the polar coordinates defined lyy=p cos@);

nonlinear functions of the phase space coordinaigsx,, yo>=p Sin(p)

and the range of their variation is defined by the particular 1d

functional form of the nonlinearity functionf,;, f, in Egs. ui()== ap

(26), the type of external perturbatiofts, F, and, eventu- p dt

ally, by the size of the attractor in the phase space. So, if itis 1

necessary to obtain the asymptotic stability conditions in =§[—5+ 5C0S 2p(t)

terms of the control parameters, one has to estimate the range

of variation of the coordinates,, x,. It should be, however, +(1—wd—eV(x*(1))sin2¢(t)],  (36)

noted that this problem cannot be solved for any type of

external force and requires additional methods of analysis tahere x* (t) is an arbitrary solution of Eq(33) and ¢(t)

be used. Below, we restrict our consideration by several exstands for the direction of the vectgrdefined by the Egs.

amples and demonstrate the efficiency of the proposed af35)- R R

proach for predicting the onset of chaos in these systems.  The functionsG4(J) and H,(¢,J) defining the area of
asymptotic stability in accordance with Eq20), (29) can be

IV. NONAUTONOMOUS PASSIVE easily found from Eq(36) as

NONLINEAR OSCILLATOR Gl(j)_ — 5,

A. Asymptotic stability condition R 5 .
Hi(,J)=6cod2¢) +(1—wg—eV(X*))sin(2¢).

As an example of a particular system with_one-and-a-half (37)
degrees of freedom governed by the equations of the type A
(21), we take the following nonlinear oscillator: It is clear from Eg. (37) that max[H;(¢,J)]
Px dx =\/52+Sl—w(2)—sV(x*))2, which is always greater than
W+ 5&“’3"*8’\'("): f(t) (33 min,G,(J)=— 4, and, therefore, no conclusion about the

stability area in the phase space can now be obtained. As we
a%ready mentioned, at this stage it is necessary to introduce a
certain transformation of coordinates that would make the
¥icinity of origin not affine and enable one to obtain con-
structive results from these equations.

that has been used as a basic model in many problems
mechanics, electronics, optics, electromagnetic field theor
[31,34,37,38 etc. Here,x is a generalized coordinate,
>0 is a linear dissipation parametét(x) is the function
defining the shape of the potential w¢NM(0)=0; N’(0) B. Normal form of a linear oscillator
=0, where prime means differentiation Ry ¢ is the dimen- . . i
sionless parameter, arfdt) is the external force. Note that /N order to introduce the coordinate transform making fea-
Eq.(33) includes such classical systems as Duffing oscillatoSiPle the stability analysis, we propose to consider first the
and mathematical pendulum as special cases. most elementary case of a linear oscillater{0). Although

By introducing the variables, = x; x,=dx/dt the system such an analysis is rather trivial, it allows us to develop an

o]

(33) is transformed to the standard form intuition, necessary for a general case of oscillators with ar-
bitrary degree of nonlinearity. So, just for the matter of clar-

dx, ity, we dwell upon this simple case in some more detail.

o Xe For the linear system, the variational equati@¢85) do

not depend on the solutions of E®4), and it is well known
that for >0, irrespective of the particular form of the time
% = — X, ngl_ eN(xq) + (1) (34) dependence of the externgl_force, any trajectory is asymptoti-
dt cally stable, and no instability can appear. At the same time,
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y2 le
W = ale+ (J)Zz+ hl(t)
for 6°<4w,
dz,
A E: —le—aZZ-l- hz(t)

(39b)

=) )
Yi
where Egs. 3@®) and 39b) correspond to the cases of node
and focus types of fixed point at the origin, respectively. The

roots of the characteristic polynomial of the syste4) with
e=0 defining the stability of the fixed point at the origin are
real and negative for the node-type fixed poing,=
) o _ = (812)= \&%l4— woz and complex conjugates with negative
FIG. 1. The phase portrait of a linearized system in the vicinity (o g part for the focus-type fixed point;,=—(6/2)

of an arbitrary point of focus type. *iJw2—8%4=—a*iw. Furthermore, Eq.(38) for the

. ) ) largest TLLE now reads as
the expression for the largest TLLE for this oscillator shows

the presence of potential instability in exactly the same man-

ner as it was in the case of the nonlinear oscill#&8) 2u1(t)= — 8+ 8*— 4wj cog 2¢), (409
_1r_ 2\ e
ma(t)=3[— 6+ dcog2¢)+(1—wp)sin(2¢)] 2ua(t)=— 5 (40b)
=3[—6+Acog2¢— )], (38

for the node and focus cases, respectively. It immediately
where A= \/8%+ (1- w2)?, y=tan Y[1—w3)/d). It follows  follows from Eq.(40) thatu, is always strictly negative and
from Eq. (39), that, sinceA> &, the phase of the vectgr  in the case of a focus-type fixed point even does not depend
may hit the angular sector defined [8¢— |<cos }(8#/A)  on time. Therefore, we come to a conclusion tha #0,
where the largest TLLE is positive and, hence, the length ofhen, as it should be expected for any passive linear oscilla-
y may grow exponentially with time, thus presenting quitetor, all LCE are negative and any solution of E¢34) is
unexpected behavior for a linear system. This “unstable’asymptotically stable. In the next section we derive similar
character of solutions can be easily understood by considegonditions for the general case of an oscillator containing
ing the geometry of trajectories in the vicinity of the origin nonlinear terms. The basic scheme is essentially the same,
for the linearized systeni35) shown in Fig. 1. If 6<§  except we demonstrate that, depending on the particular type
<2w,, there is a stable focus at the origin, whereas dor of nonlinearity, somewhat different choice of the coordinate
> 2w, the focus becomes a stable node. Although, on avertransform(22), may provide a better result maximizing the
age, the length of an arbitrary vector at the origin contractsize of the stability area.
with time, there are both stretching and contracting phases in

its time evolution. For example, the vectbrin Fig. 1 is C. Stability of a nonlinear oscillator

stretched by the dynamics, while the vect®ris getting , ) ) L
shorter with time. This effect is caused by affine character of €t US now consider what happens if nonlinearity is
the phase flow, and it is a generic property of the phase floR"€Sent, i-e., in the case of E§3) ats #0. Note that we do

in the vicinity of any stable fixed point. It is, however, well Ot Impose any restrictions on the value of the paramster
known from the theory of differential equatiof@5] that any thergfore,_ an oscillator under study_has an arbitrary degreg of
linear phase flow can be made not affine by means of a "ned}o_nllnearlty. We .als_o assume that it possesses a stable fixed
coordinate transformatiof22), which has no effect on the point at the origin in the absence_ of an _external force. The
stability properties of trajectorid87] but recasts Eqs34), latter assumption imposes a certain restriction on the class _of
(35) to the form with the largest TLLE being strictly negative the systems amenable to this type of analysis, although in
in a certain area of the phase space. After such a transformJ12ny cases it can be avoided by a trivial change of coordi-

tion, the equation§34) with ¢ =0 take the so-called normal nates shifting the position of the origin to that of one of the
form stable fixed point$34].

As we already noted, the straightforward stability analysis
in terms of TLLE results in the equation of ty@6), which

E =N1Z;+0;(1) gives no information on the size of asymptotic stability area.
dt AT o , , In the previous section we managed to derive a constructive
dz, for 6°>4wy (398 result for a similar situation by applying the linear coordinate
—— =N\,Z,+gy(t) transform, reducing the system to a diagonal form. Proceed-
dt ing in exactly the same way, by diagonalizing the linear part
of the problem(34), one can recast E¢36) to the following
or form:
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sity of including the origin in the interval o¥(x) variation,

1
pa(t)= il o+ \/52—4(1)07 since, by our initial definition of the systef83), the func-
tion V(x) had been chosen vanishing at the origin in order to
split the original vector flow to linear and nonlinear sub-
+ 2e VX* (1)) | cog2¢) | if 52>4w37 systems. This condition Qe_termines the_ value for_ one of the
\/52—40)3 parameters,, v. The remaining freedom in the choicewfv

can be further used in a constructive manner for maximizing
(418 the area of asymptotic stability in the phase space. The solu-
5 tion of the latter problem depends on the particular form of
e : . .
th==|—s6— V(X* (1))cog 2 the nonlinear functionN(x), therefore, it should be per-
#a(0) 2[ 1/4(,,3_ 52 (*(t))cod2¢) formed on the case-by-case basis. Below, we demonstrate the
efficiency of the proposed method for several nonlinear os-

if 8°<4w? (41b  cillators of the type(33).

which, under the assumption thatcan take any value in the
interval[0;277], leads to the explicit formulas of tyg&0) for V. EXAMPLES

the border of the asymptotic stability area A. Duffing oscillator with hardening type

Vi< eV(X)<V,, (423 of nonlinearity function

To make the ideas developed in the previous section pre-
where cise, let us specify the nonlinear functidifx) and consider
first the case of Duffing oscillator, i.e., E(B3) with

Vi= 3V —40d(V2—40dT ) if 62>40},
(42D 3 dN_ o,
N(x)=Xx7; V(X)E&=3X . (45)
V= F38Vdwy— & if 8°<40d. (420

Equations(42) thus define the limits of variation for the Many authors have studied this oscillator in different con-
functionV(x) and, hence, for the coordinateof the nonlin-  texts(see, e.g., the booK89,40). It can be considered as a
ear oscillator(33), ensuring the asymptotic stability of mo- classical example of a time-continuous nonlinear system ca-
tion. pable of producing many types of complex behavior, includ-
The conditions(42) are sufficient for the stability of all ing chaotic motion. As is well knowf37], the main source

the trajectories in the corresponding area, but they are ndif complex behavior in a generic dynamical system is
necessary, in the sense that the areas of stable motion in te@ddle-type fixed points or periodic saddle orbits, which pos-
phase space may be larger, compared to those defined Bgss invariant manifolds capable of intersecting under the
inequalities(42). Indeed, if instead of making the coordinate action of perturbation and forming homoclinic tangles. Since
transformation diagonalizing the linear part of the problemin the absence of external force there is only one fixed point
we consider the case of an arbitrary linear change of coordiof focus-type in the phase space of the Duffing oscillator, the
nates(22), Egs. (42b), 42(c) for the borders of asymptotic chaotic behavior and other complex motions can appear here

stability take the form only after new saddle-type orbits are created by perturbation,
for example, by a periodic external force. The absence of
Vi ,=[Vu(é—u) Fu]?- wé, (43 saddle points in the phase space of the unperturbed oscillator

is, perhaps, the main reason for the lack of analytical meth-

whereu, v are the free parameters defined by the 88).  ods allowing one to predict the onset of chaos in this system.

Note that Eqs(42b), 42(c) are just a special case of the Eq.  As an approximate criterion for the appearance of chaotic

(43). If we putu=4/2; v= \/i(52—4w02), then the trans- attractors, one can use the condition for saddle orbits to be
formation(22) makes the linear part of the problem diagonalcreated by external force or the stability loss of the existing
(for the cases of node or focus, depending on the sign in thperiodic attractors. If the functional form of the external
expression fow), and Eq.(43) turns into Eqs(42h), 42(c). force is simple, like a harmonic or quasiperiodic function of
The size of the asymptotic stability area in the generatime, this problem can be solved analytically, at least for
case of arbitrary linear coordinate transformation is definedmall values of nonlinearity and dissipation parameters, by,

by the residual e.g., methods of harmonic balan®9], averagind41], and
Floquet stability analysis. It, however, appears quite prob-
Vo= Vi=4vJu(s—u), (44)  lematic (if possible at all to predict the appearance of

. ) ) ] saddle-type orbits, when the number of harmonic compo-
so the stability range of the functioi(x) is determined by nents in the external force becomes larger than three. The
the value of the dissipation parameteand parameters, v, problem also defies analytical treatment, when the dissipa-
defined in their turn by the elements of the matBf the  tion parameteb or the parameter of nonlinearitycannot be
coordinate transforni22). The values olu, v, however, are considered small. So, under such circumstances, a numerical
not absolutely arbitrary. The limitation consists in the necesexperiment becomes the only tool of analysis for the study of
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various bifurcations and predicting the onset of chaotic os-|x|

cillations in particular. max
The method proposed in this paper is free from the draw- 15 ]

backs just mentioned, for it is developed for thebitrary

level of nonlinearity and dissipation, as well agy func-

tional form of the external forcing. Indeed, by substituting 1

Eq. (45) in (43), one can obtain the equations for the border

of asymptotic stability in terms of the amplitude of motion as

05|
1
Xnin=3 [ (Vu(6—1)—v)*~ wf], (469
. 0 05 1 15 2 25 5
sznax:_s[(\/ u(é—u)+v)’—wfl. (46b) FIG. 2. Size of the asymptotic stability area vs dissipation pa-

rameters for the hard-mode Duffing oscillator aty=1, e=1. The

Equationg(46) define minimal and maximal values for the application of TLLE together with optimized linear coordinate
transform results in a larger area of asymptotic stabiligavy ling

amplitude of oscillations with guarar?teed stab|l_|ty. They pOS'compared to the case of the system with diagonalized matrix of the
sess two free parametetsandv, which are defined by the

) . ) linear part(light line).
elements of the transformation matix In order to specify
their values, some additional information on the type of ex- B. Duffing oscillator with soft nonlinearity
ternal force and character of motion is necessary. If we as-

sume that the external force does not contain constant terrrg;sa Teh(e)fer?;ztlr?]r:)g; rg°¥f9: f(()ar th;.g;(:c'gﬁt(?;'esresémg%? thee.
shifting the equilibrium position from the origin, and the S ra- uthing equatl S| : previ-

motion occurs in an approximately symmetric area aroum\&/’vueshsaevcé'?ﬁé ixcfgggzeo?ﬁ%?f ;%%)nv(\)/irtﬂrl]near term. Therefore,
the unperturbed fixed point, then we can puyf,=0 and q y

exclude the value of one of the parametersy from Eq. N(x)=—x3, V(x)=—3x2
(469 as
The change in the shape of nonlinearity function results in
v=\U(6—U)+wq. (47)  qualitatively different types of solutions typical of this oscil-
lator. The motion now occurs not in the unbounded potential
After the substitution(47), the Eq.(46b) becomes well as it was in the hard-mode oscillator, but in the potential

shown in Fig. 3. In this case the amplitude of oscillations is
limited from above by the homoclinic trajectory correspond-
ing to the maximum of the potential curve, and the motion
becomes unbounded when the trajectory crosses the line
The demand of maximizing the size of the stability areaseparating the area inside the potential well from that of the
leads to the choice af= 6/2, for Eq.(48) has a maximum at unbounded motion. The presence of saddle points and the
this point. Finally, we have the equation for the border of theseparatrix in the unperturbed potential shown in Fig. 3 makes

4
Xna= g5 VUG- W(Vu(e-u)+wg)]. (48

stability area, this system subject to various instabilities at substantially
lower levels of perturbation compared to the Duffing oscil-
[X| <\8(5+2wq)/3e. (49  lator with hard nonlinearity. It is well known that in the

softly nonlinear oscillator chaotic motions appear at much
The general observation derived from the inequalt9) is
that the higher the dissipation level the larger is the area of u
asymptotic stability around the origin. An example of the
curve defined by the E¢49) is shown in Fig. Zheavy ling
where we plot the dependence of the maximal stable ampli-
tude versus dissipation parametgrwhen other parameters
are fixed. In the same figure, we also plot the line of the
maximal stable amplitude obtained with the coordinate trans-

form B diagonalizing the linear part of the problem, i.e., Eq. X
(42) (light line). One can see the advantage of using the
optimized coordinate transform, resulting in a significant in-
crease in the size of the asymptotic stability area. Another
interesting fact is that higher values of natural frequency also
result in a larger stability area, that means better stability to
external perturbations of high-frequency oscillators com- FIG. 3. Potential function for Duffing equation with soft-type
pared to low-frequency ones. nonlinearity.
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lower values of the amplitude of external force, given that
under all other parameters are kept constant. Usually, thi4x|max
fact is attributed to the presence of a homoclinic structure
that arises in the phase space in the vicinity of the separatrix
when it becomes broken by the perturbation.

It is interesting that the approach we consider in this paper
also allows us to detect the effect of lowering the instability
threshold with respect to the amplitude of external force in
the soft-mode oscillator. It should be, however, noted that the
analysis of TLLE provides the threshold of stability in terms 0 ‘ :
of the amplitude of oscillations, rather than the external forc- 0 05 1 15 2 25 5
ing. This requires additional methods to be used, for estab-
lishing the relation between the amplitude of perturbatlonrametercsforasoﬁ_mode Duffing oscillator ab,=1, e= 1. TLLE
and response of the system. . analysis and optimized linear coordinate transfofimeavy line

To demonstrate how_the method works for this sysftem'_w%ompared to the case of the system with diagonalized matrix of the
start from the observation that for the soft-type nonllnearlty,“near part(light line). Note also the difference with hard-mode

. _ 2 . .
the functionV(x) = —3x* decreases with the growth in the gjjiator(Fig. 2): the size of the stability area is limited from above
oscillation amplitude. This results in the following restriction 4ng independent of dissipation, startingdat wo= 1

for the parameters, v defined by the necessity of including

FIG. 4. Size of the asymptotic stability area vs dissipation pa-

the origin in the range of variation in the coordinate C. Double-well Duffing oscillator
As the next example, we take a variant of the Duffin
v=wy— Yu(s—u). (50 P d

oscillator, which possesses a saddle point at the origin in the
) , . ) absence of external forces. We would like now not only to
Then, the following equation for the maximal amplitude of jefine the maximal stable amplitude of motion, but also
motion can be obtained: compare our results with the predictions for chaos-arising
4 threshold following from the Melnikov theory45] and con-
Xﬁqang[ JU(3—0) (wg— u(o—u))]. (51) \r/]zgt;ck)]r;a]!osrﬁbmty analysif30,46]. The equation we analyze

Simple analysis of the Eq&50), (51) reveals that, depending ﬂ+ 5d_x_ ax+ Bx3=1f(t) (54)
n .

on the value ofs, there may be two ways to choose the dt? d

parameteu and, hence, the value of the maximal amplitude: o o
In the absence of dissipation and external forcing, i.ed if

(1) If 6<wp, then maximal size of the stability area is =0 andf(t)=0, the system possesses two potential wells,
attained atu= 6/2, and located symmetrically with respect to the origin and centered
at Xo=* \Ja/B. When the parameters controlling damping
2 and external excitation are nonvanishing, the motion is con-
Xmang(z“’o_ 9). (52 fined within one of the potential wells, until some threshold
in amplitude is reached, when the transitions between wells
become possible. Chaotic motions exist in this system either
as a pair of identical chaotic attractors located symmetrically
with respect to the origin when the external excitation is
small, or as a single symmetric attractor at larger values of

(2) If 6> wq, then the parameter has to be chosen as a
root of the equatiom(5—u)= w§/4, and the maximal stable
amplitude does not depend @h

2 the external force.
Xﬁqang_s_ (53) Since the method we propose here deals with lower

bounds for the amplitude of motion ensuring the asymptotic
stability of any trajectory, we do not expect it to be appli-
An example calculation of the value of maximal stable am-cable to the “large” attractors embracing both potential wells
plitude for the soft-type Duffing equation is given in Fig. 4. and consider the dynamics in one of the potential wells only.
The effect of optimizing the coordinate transform is not soTo make the syster(b4) consistent with preceding analysis,
pronounced here as it was in the case of hard-type nonlinye apply first the coordinate transforra-x—X,, shifting
earity, although the stability area is somewnhat larger in optithe origin to the center of a potential well. This transforms
mal coordinates for this oscillator too. The comparison ofthe Eq.(54) to the form

Figs. 2 and 4 indicates that maximal stable amplitude is

larger for the hard-mode oscillator, that is consistent with d’>  dx )

previously reported results of other authf42—44, where T 5a+(2a+3@X+ﬂX x=f(t). (59
large perturbation was demonstrated to be necessary for ob-

taining chaotic motions in the Duffing oscillator with hard- After such a transformation, it becomes evident that the only
ening type of nonlinearity. difference of this system with previously considered hard-
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and soft-mode Duffing oscillators consists in the presence of , U(d6—u) [m(Ag)—a—u(s—u)

a quadratic term in the nonlinearity function. This type of 1= 38 m(Ag) —u(o—u) |’
nonlinearity is known to be similar in many respects to the 0

case of soft-mode_Duffing oscillatp46,47, as it prqduces. where the notatiom(Ag)=3(\BA,+ V)2 has been used.
the effect of lowering the resonance frequency with the in—ha maximization problem for the paramefer with respect
crease in the amplitude of excitation. Another characteristi¢, |, reduces to the following two cases, depending on the

feature of motion in the potential well described by Esp)
is the presence of dynamic asymmetoy constant shijtof

dissipation level and the value éf,.

the center of the phase orbit, which manifests itself starting (1) If §=2.m(Ag)—[am(Ay)]*? then AT does not

from arbitrarily low values of the forcé(t). For example, in
the case of harmonic excitation,

f(t)=ycoq wt), (56)

the approximate solution has to be searched in the form

X=A0+A1005(wt+ 9), (57)

contrary to the previously considered single-well oscillators,

whereAy=0 in the first approximation.
The presence of the additional parametgr makes the

subsequent analysis a little more complicated, but eventually
the resulting equations have a lot in common with those of
the soft-mode Duffing oscillator considered above. The func-

tional form of the nonlinear potential is now given by
N(x)=3apBx?+ Bx3,

and the natural frequency of oscillations is defined by th
parametemgz 2a. The stability area can now be introduced
in terms of the parameteis,, A, as the range of variation
for the variablex: xe[Ay—A;; Ag+A;]. The maximum
and minimum values of the functios(x)=dN(x)/dx can
be found from the following equations:
Vinin=3B(Ao— A1)+ 6 aB(Ag—Ay)

=[Ju(6—u)—v]?>—2e,

Vina=3B(Ag+A1)2+6\aB(Ag+A;)
=[Ju(6—u)+v]?>—2a.

Since the inequalitpV(x)>—2« always holds inside the

(58)

e

depend on$ and the maximum is attained at the valueuof
defined as a root of the equatioRu(s—u)=m(Ag)

—+am(Ap). Then, we have
172
VI )

(2) If 5<2ym(Ay) —[am(Ay)]*4 the value ofu maxi-
mizing the amplitude?; is given byu=6/2, and

2
+1

1

N3

m(Ao)

a

o

max__
A= m(Aq)

(61)

g JIM(Ag) — a— 8%14]I[m(A,) — 62/4].
(62)

max__
Al —

1
35

For example, in Fig. 5 we plot the dependence of the maxi-
mal amplitudeAT® on the parameterd, and §, at a=p

1/2. The typical behavior of the curves shown in this figure
Is similar to that of the soft-mode Duffing oscillator, e.g., the
amplitude of stable oscillations is limited from above and
does not depend o# starting from a certain level of dissi-
pation. Another feature is the increase of the size of
asymptotic stability area in the phase space with dissipation
in case(2), i.e., whend is below its critical value.

It is interesting to compare the performance of the pro-
posed method with the results of direct numerical experi-
ments, as well as estimates for the chaotic instability thresh-
old made by means of other techniques, e.g., Melnikov
method[31] or the combination of harmonic balance method
with Floquet-type analysi$46,4§. Usually, in the frame-
work of these methods, the analysis is conducted in terms of
control parameters describing the external force, such as, the
amplitude and frequency of a harmonic excitation or similar

stability area, we obtain the following limitation on the value characteristics of a quasiperiodic forcing. Follow{d¢] and

of the parameteA,:

Ao=—(al3B)(V3—-1).

The size of the stability area is defined by the paramater

(59

[46] we take the external force in the form of harmonic ex-
citation given by Eq(56) and search the approximate solu-
tion of Eq. (55) in the form (57). The application of the
harmonic balance methd®0] gives the solution in the fol-
lowing form [46]:

Therefore, the remaining problem consists in maximizing its

value by performing an optimal choice of the parameters
v. The parameter can be excluded from consideration by
combining two of the Eqs(58) as

L 3AUBAGT Jap)
u(é—u) '

(60)

Substitution of the Eq(60) in one of the Eqs(58) leads to
the following equation for parameté; :

a -1/2 @ 1/2
vl -l e
2, 19 22 2 2| p2_ .2
20— w +Z’BA1 + 0w |AT= 1y (64)

Equation(63) allows us to exclude the constant biagfrom
the asymptotic stability analysis by substituting it in E8g8)
and obtain the equation for the border of stability area in
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terms of A; only. Some algebraic transformation of Eqgs. Then, depending on the value of the dissipation parameter,

(59)-(62), taking into account the constraif@3), results in  we have two cases to consider:

the conclusion that the maximal stable amplitugeis lim-

ited from above by the valuad*, whereA* is found as the

minimal positive root of the equation (2) If 6> 6, then the maximal stable amplitude does not
depend on the dissipation level, aAd®=A*.

3 3 1/2 . . max
20— —'BA*2—6,8A* (ﬁ_ —A*z) —0. 65) 2) If §< Ser .t.hen the maxw_nal siz&; " of the area of
2 B 2 asymptotic stability can be derived from the equation
|
a 3 172 a 3 172
\/2a’-(3,8/2)( 7292+ 65AT3“< 5 2 ATaX)Z) - \/Za— (3,8/2)(AT3X)2—6,8AT3"( 52 ATa")z) =5,
(66)
|
where turbed system are expected to appear. We use for this pur-
pose the explicit formula obtained in Ref82], [45],
a 3 172
cr— a— (3B +68 =75 . a\a TW
5 2a—(3BI2)A*2+6BA* A*2 28aa
B 2 Vo= cos . (67)
30w\2 2\Ja

Figure 6 shows the result of calculations for the border ofN
stability area by means of our method. For the chosen valu
of the parametersvr= =%, the magnitude ofA* can be

ote that at the chosefrather high value of dissipation
eﬁarameter the Melnikov method fails to provide the correct

2 ) : location of the chaos area and gives an absolutely misleading
found from Eq.(65) as A*=0.335, which establishes the ,ejiction indicating the threshold for chaotic motions at

critical value of dissipation at the levél,=1.354. Choosing  m,ch higher levels of the external force than those where
1) as, e.g.,0=1, one can obtanlg the limiting value for the strange attractors actually appéaee also Ref46]).
maximal stable amplitude a&7'**=0.296 atA,=—0.068. Another method of predicting the onset of chaos in this
The solid line in Fig. 6 corresponds to the result of numerlcalsystem has been reported in Ref6]. It places the chaotic
integration of the Eq(54), and indicates the locus of points area between two critical values of the frequency ondghe
on the w-y plane where the amplitude of oscillatioAsde-  pjane: the vertical tangent to the amplitude response curve
fined as A=(Xmax—Xmin)/2 reaches the value oAT™  defined by the Eq(64) and the first period doubling bifurca-
=0.296. The area of chaos is located well above this line, agon. Although this criterion gives quite accurate prediction
could be expected from the theoretical analysis given abovéer the border of chaotic zones at small values of dissipation
It is also evident that the TLLE method strongly underesti-parameter, it loses the accuracy at higher levels of dissipation
mates the position of chaotic area, since it predicts, in factespecially in the low-frequency part of the y plane. Here
the onset of any type of instabiliti®ot just chaotic mo- we use an earlier version of the same metht@] that dem-
tions), like period-doubling or saddle-node bifurcations, onstrates better performance at higlalues. The empirical
some of which are known to appear at much lower levels otriterion for chaos has been formulated o= 8=13 as
external excitation than chaotic attractors. The borderline of
instability can be also obtained analytically by utilizing the 1 33/(15/4) y2< w2<i(1- 6%+ 6%~ 25%+ 15/9),
harmonic balance method that links the amplitude of stable (68)
oscillations to the parametefsandw. The line calculated by
substituting the valueAT®=0.296 to the Eq(64) is also  where the chaotic area is located between the frequencies of
plotted in Fig. 6 for the sake of comparison. One can noticaghe vertical tangent to the response curve and maximal am-
good agreement of this prediction with the results of theplitude of the response calculated in accordance with Eg.
direct numerical integration, although there is a certain dis{64). The results of calculation using the inequalit{é8) are
crepancy at small values of the excitation frequency. Italso plotted in Fig. 6. Apparently, this approach gives good
should be, however, noted that this deviation between therediction for the location of chaotic areas on they plane,
curves comes solely from inefficiency of the harmonic bal-even in its low-frequency part and at quite high value of the
ance method at low frequencies and high values of dissipadissipation parameters& 1). It is interesting that, although
tion, resulting from inaccuracy of the approximatiBVv) in  this method is, in fact, an empirical technique based on cer-
this part of the control parameters space. tain subjective assumptions on the possible location of chaos
In order to compare the prediction of the chaos thresholdrea in the control parameters space, it implicitly uses certain
given by Eqs(61)—(64) with Melnikov theory, we also plot information on the asymptotic stability of motion. Indeed,
in Fig. 6 the critical line where the homoclinic structures the criterion(68) considers theamplitudeof motion as the
associated with the saddle point at the origin of the unpermost important indicator of incipient instability, and predicts
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FIG. 6. State diagram of the double-well Duffing oscillatb4)
ata=pB=3%; =1 (a) and its blow-up(b).

wherex is the angle of elevation of the penduludw/dt is

its angular velocityg is the damping term responsible for the
decay of oscillations in the absence of external force, and
f(t) is the driving torque. Contrary to the previously consid-
ered Duffing oscillator, the potential function for this oscil-
lator has a periodic character, i.e., consists of infinite number
) L ) of potential wells separated by the distance af & the

the appearance of chaotic attractors within certain range ofngylar coordinate. Near the bottom of each of the wells,
the x coordinate, where expanding directions exist in the Vi-the hehavior of this system is similar to that of the soft-mode
cinity of saddle-type orbits created by the external forcepffing oscillator, with the only exception that both the de-
Note, however, that unlike the approach proposed in theee of nonlinearity and the parameter of natural frequency
present paper, this method has certain limitations restrictings oscillations are now controlled by the sihfunction, and,

its applicability in many situations of practical interest. FOr therefore, cannot be tuned independently. In order to use the
example, it cannot be used when it is necessary to predict thegts obtained in the previous section for the oscillator of

onset of chaos in a nonlinear oscillator being excited by th‘?ype (33), we add and subtract the termz)x from the left-
external force containing more than one harmonic COMPO, - 4 sid'e of the Eq(69) and have for the case @§2=1:
nent or when a reliability of the prediction is of crucial im- =1 ‘ o

portance.

(b)y o 0,.5 1 1‘.5 8

FIG. 5. The size of asymptotic stability area in the double-well
Duffing oscillator(54) vs constant shift of solution due to asymme-
try of periodic orbits(a) and dissipation levelb) at azﬁz%.

N(x)=sin(x)—x; V(x)=cogx)—1.
D. Pendulum oscillator

As the last example we take a classic nonlinear dynamicdy!aximal and minimal values of the coordinateare now
system, the externally driven damped pendulum. Startinéieflned by the equation
from the works of Huygens more than 300 years ago, this
oscillator has been at the focus of enormous interest due to Vi=[Vu(és—u)Fv]*~1,
its apparent simplicity, richness of dynamical behavior, and
importance of applications, such as, e.g., resistively shuntedhere, againu andv have to be chosen as maximizing the
Josephson junctiof50], where it has been used as an ad-amplitude of stable motions around the origin. Following the
equate mathematical model. In dimensionless form, thesame reasoning as the one we used in the case of Duffing

equation of motion for this system reads oscillator, the critical value of dissipation parametgf=1,
P2 q which separates two qualitatively different types of behavior
ax axo for oscillations located in a symmetric area around the ori-
g ogg TSN =1, (69 gin, can be obtained.

016214-14



USING LYAPUNOV EXPONENTS TO PREDICT TH. .. PHYSICAL REVIEW E 66, 016214 (2002

external excitation. For the sake of comparison, we also
show on the same plot the curve corresponding to Melnikov

criterion[41],
46 T
Yor= ? cos 7 s

which also gives a good estimate for the threshold of chaos
in pendulum oscillator at the chosen value of dissipation pa-
rameter. Therefore, we arrive at a conclusion that for this
system the two criteria work in a complementary manner,
predicting the onset of chaotic motions in different frequency

0 w * bands.
0.25 0.5 0.75 6)

o

FIG. 7. Comparative performance of the proposed method, i.e., VI. DISCUSSION

the combination of harmonic balance and TLLE analysslid

line), and Melnikov criterion(dashed ling for the pendulum oscil- We have proposed an analytic criterion for predicting the
lator (71). The areas of chaotic behavior are hatclisEdm Ref.  Onset of chaotic motion in a broad class of nonautonomous
[51)). damped nonlinear oscillators. We suppose it can be used as a

first step in investigating complicated nonlinear regimes that

(1) If <&, then the maximal displacement is defined can arise in oscillators subject to the external perturbation. In

by fact, the method allows obtaining the border of stability area
in the phase space or, being combined with another tech-
nique, e.g., the harmonic balance procedure, in the space of
control parameters. Although it, as a rule, underestimates the
Oactual position of the threshold of chaos, in some situations it
performs better than other existing techniques such as Melni-

kov method or Floquet-type stability analysis of periodic at-
tractors. Our approach is expected to be especially useful in
situations when chaotic behavior is an undesired effect, and
|X|max:§' (70b) the problem consists in finding the area in the control param-
eter space where the motion is stable and by no means cha-

In order to check the efficiency of the proposed criterion andPtic. From this viewpoint, we provide the stability criterion
compare it to the results of previous woifles —53, we con-  for nonlinear dynamical systems which guarantees the ab-
sider the case of harmonic excitation of ty(56) and use the ~sence of an additional noise source coming from the chaotic

following formula for an approximate solution of E(G9): dynamics.
It has been recently recognized that in many oscillatory

systems the threshold of chaos may be strongly dependent on
the frequency content of the external excitation. As it was
shown, e.g., in Refd.29], [54], the change of harmonic to
bifrequency excitation in an equation of cla88) results in
considerable lowering of the chaos onset in the intensity of
the external force. A natural question stems from these find-
[23,(t) — 02A)%+ (Awd)?= 2. (720 ings: what is the lowest possible level of excitation that can
result in chaotization of motion? As we have demonstrated
For any given value of the dissipation level, Eq30)  with several examples of nonlinear oscillators, the analysis
specify the upper bound of the amplitude of oscillations withof asymptotic stability in terms of TLLE allows us to answer
the guaranteed stability. By substituting the value of maximathis question and to estimate the maximal stable amplitude of
stable amplitude defined by E(0) to the Eq.(72), one can  motion, and thus provides a necessary condition for chaotic
obtain the borderline of the asymptotic stability area ex-motion and any other bifurcation as well. We would like to
pressed in the explicit forny(w). Extensive numerical analy- stress that the method we propose is independent of the type
sis of the oscillatof69) has been performed in Réb1] for  of external force and dimensionality of the dynamical sys-
the value of6=0.25, and the locus of chaotic areas on thetem, therefore, it yields a fundamental limit for chaotic in-
plane of control parametets y has been established. In Fig. stability to appear in a broad class of nonlinear dynamical
7 we show the results ¢61] together with the curve delim- systems.
iting the area of asymptotic stability found from Eqg0a Another important motivation for applying this particular
and (72) at §=0.25. Apparently, the stability analysis pro- method to the analysis of dynamical systems is that it pro-
vides rather good prediction as for the onset of chaotic osvides a rigorous necessary condition for chaotior
cillations, especially in the region of small frequencies ofLyapunov-typg instability to appear. We would like to note

[X|max=cos (1= 8)]. (709

(2) 5> 6, then the size of stability area does not depen
on dissipation and is limited by the value of

x=Acog wt+¢), (71)

where the amplitud@ can be found as a root of the equation
[51]
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that despite considerable efforts undertaken to formuiate constitute a basis for a definition of the necessary condition
terms of control parameteraecessary and/or sufficient con- for chaos, especially in view of its importance for engineer-
ditions for the emergence of chaotic attractors in nonlineaing and other applications where chaos is considered as an
systems, there seems to be no universal criterion existing aindesired effect like, e.g., a source of additional noise,fetc.
the moment. In the situation when the prediction of chaoticnecessary condition of chaos guarantees the absence of cha-
motion is necessary, the Melnikov method is commonlyotic regimes in the system in the case it is not satisfieid
used. This approach provides an estimate of the distance bevident that from this viewpoint the Melnikov method can-
tween perturbed stable and unstable manifolds for a particurot be considered as a proper one, since it can only guarantee
lar saddle-type orbit existing in the unperturbed system. If, inthe absence of chaotic motions associated witlyiveen
the presence of perturbation, this distance can vanish at sonsaddle state, and nany chaotic attractof32,55.
value of controls, this means an intersection of stable and The method proposed in the present paper estimates the
unstable manifolds and presence of geometrically complermaximal value of oscillation amplitude below which chaos
structures in the phase space. This analysis allows us to catannot occur at all. Accordingly, the larger amplitude means
culate the parameter values where the homoclinic structurate possibility for chaos to appear. We assert that this crite-
appear indicating the possibility for chaotic motions to berion can be used as a necessary condition for chaos in accor-
formed. Apparently, this method gives neither sufficient nordance with the definition given above. As far as amplitude of
necessary condition for chaos. Indeed, it does not provide ascillations is concerned, it is a rigorous analytic criterion,
sufficient condition, because the method cannot guarantegithout any approximation used at any stage of estimating
that the homoclinic structure, once emerged, becomes attrathe size of the stability area in the phase space. In order to
tive and forms a strange attractor. It does not constitute abtain the border of instability in terms of control param-
necessary condition for chaos either, because of the preseneters, e.g., amplitude and frequency of external force, some
of multistability in any nonlinear oscillatory system. By the approximation is necessary for establishing the relation be-
term multistability we mean coexistence of several attractorsween those parameters and size of the attractor.
in the phase space at fixed values of all the controls. Typi- Although in this paper we restricted our consideration by
cally, each of the attractors occupies a well-separated area the systems with three-dimensional phase space, the method
the phase space and, as the control parameters change, eveayn be also utilized for specifying stability threshold in high-
attractor may undergo various bifurcation sequences indedimensional dynamical systems as well. The straightforward
pendently of the others. Some of them may become chaotiway of performing such an analysis consists in applying the
at much lower levels of perturbation compared to those prelinear coordinate transform that makes the matrix of the lin-
dicted by Melnikov’s criterion. ear part of the problem diagonal or block diagonal. Then, the
Of course, our understanding of the necessity depends cgquation for the border of the stability area can be obtained
definition. We suppose that the following statement shouldrom the explicit equation of typ€9) for the largest TLLE.
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