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Comparison of time-delayed feedback schemes for spatiotemporal control
of chaos in a reaction-diffusion system with global coupling
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Time-delayed feedback control for stabilizing time periodic spatial patterns is investigated in a generic
reaction-diffusion system with global coupling. We focus on the case of low-dimensional chaos where unstable
patterns admit only a single unstable mode. Spatial degrees of freedom are taken into account to define
different control schemes. The efficiency of these schemes is discussed, where control forces are motivated by
physical requirements as well as by the possibility of obtaining analytically exact results. We find that control
schemes that contain the full feedback of the inhibitor variable may finally destroy the control performance.
Thus schemes that omit the inhibitor might be more efficient. Our numerical findings are explained in terms of
Floquet spectra and compared with analytical solutions of particular coupling schemes.
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[. INTRODUCTION of use in quite different fields of science.
The model we are dealing with was originally derived for
Control of complex chaotic dynamics has become one ofharge transport in a layered semiconductor system such as
the central issues in applied nonlinear science over the laghe heterostructure hot electron diofiE3]. The resulting
decade(cf. Ref. [1]). Control theory is of course a well- model equations in nondimensional units read
established discipline in engineering and applied mathemati-

cal sciences for almost half a centuisf. e.g. Ref[2]), but du(t)=aljo— (u—(a))]-KFy(1),
its application often requires either some information about ) (1)
the structure of the system or some data processing. The new da(x,t)=f(u—a)—-Tatda—KFy(x,t).

aspect of chaos control is the emphasis of noninvasive con-

trol methods together with the observation that chaos supHereu(t) is the inhibitor anda(x,t) the activator variable.
plies a huge number of unstable states that can be stabilizétl the semiconductor context(t) denotes the voltage drop
with tiny control power[3]. A particularly simple and effi- across the device anal(x,t) is an internal degree of free-
cient scheme uses time-delayed signals to generate contrd®M, €.9., an interface charge density. The local current den-
forces for stabilizing time periodic statp4] (time-delay au-  Sity in the device ig(x,t)=u(t) —a(x,t), andj, is the ex-
tosynchronization or “Pyragas method”It is simple to ternall_y app!led currer_ut that ac_ts as a control parameter._The
implement, quite robust, and has been applied successfully @n€-dimensional spatial coordinatecorresponds to the di-
real experiments5,6]. But the performance of the control rection transverse to the current. We consider a system of

method cannot be understood in a straightforward way. AnawIdth L with Negmann boundary conditiona=0 at x
=0,L corresponding to no charge transfer through the lateral

lytical insight into this scheme has been gained just recentl : ’
[); g g g J ¥)oundar|esT denotes the tunneling rate through the collector
T layer. The relaxation rate is determined by the internal and

An important ingredient in any control method is the external capacitance. The global coupling represented b
choice of the coupling of control forces to the dynamical P ' g pling rep y

degrees of freedom. Unfortunately, this question has not been 1L

addressed systematically for time-delayed feedback methods. (a)(t)= _f a(x,t)dx 2
Only a few preliminary results are available in the literature LJo

[9,10]. Here we will discuss this topic in the context of a

reaction-diffusion model with a global constraint. Such mod-arises from the application of Kirchhoff’s law to the circuit
els are relevant in different fields of physics and chemistryjn which the device is operatgd1]. The nonlinear part of
e.g., for the dynamics of semiconductor devitefsRef.[11]  the transport equation, giving rise to &shaped local cur-
for a recent reviewor in electrochemistnf12]. Thus we rent density vs field characteristic, is canonically modeled by
expect that our investigations show generic features that a@ simple Lorentzian of the form

f(j)=i/[j>+1]. (©)]
*Permanent address: School of Mathematical Sciences, Queen
Mary / University of London, Mile End Road, London E14NS, Equation(1) contain control force§, andF,, for stabilizing
U.K. Email address: wolfram.just@physik.tu-chemnitz.de time periodic patterns. Details of different choices for these
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TABLE I. Overview of different control schemes with the cor- delayed difference corresponds to the choRe 0. For

responding choices df, andF,. consideration of the cad®e>1, see Ref[19].

- Here we concentrate on the question how the coupling of
Type of control Fa Fy, Section  the control forces to the internal degrees of freedom influ-
Diagonal control Fo. Fu I ences the performance of the control. For our model we con-

sider two different choices for the control forég . On one

Local control Foc O 1 . .
Global control without voltage feedback Fgyo 0 i gi(r:]gr’dvi\:]e utze a force that is based on the local charge density
Global control with voltage feedback Fgo Fu \ 9

Global control with partial voltage feedback g, & Fy \% Floc X,y =a(x,t) —a(x,t— 7) + RFo(X,t — 7) (5)

whereas on the other hand, we propose a construction that is
forces and different control schemes are discussed b@bw only based on its spatial average

Table ). The strength of control terms is proportional to the
control amplitudek, which gives one important parameter of Fgio(t) =(a)(t) —(a)(t— 7) + RFge(t— 7). (6)
each control scheme. In the semiconductor context these
forces can be implemented by appropriate electronic circuityVe call the choice=,=F, a local control scheme in con-
[10]. trast to theglobal control schemd-,=F,, which requires

The dynamics of the free system, i.&.=0, is very well only the global average and does not depend explicitly on the
understood14—16. For our purpose it is important that the spatial variable. The second option has considerable experi-
model develops temporally chaotic and spatially nonuniformmental advantages since the spatial average can be obtained
states(spatiotemporal spiking, cf. Fig.)in appropriate pa- by & simple measurement of the total currént=u—(a).
rameter regimes_ For any value bfthe system, due to the Finally, we distinguish between control schemes that use
global coupling, allows only single spikes at the boundary ofn0 voltage feedback,=0, full voltage feedback,=F or
the spatial domaif17]. These are associated with low- even partial voltage feedbadk,=eF,; with 0<e<1. The
dimensional chaos where only one unstable Lyapunov expdjifferent schemes discussed in the following sections are
nent existg14]. Throughout this paper we focus on the spe-summarized in Table I.
cial choicea=0.035,T=0.05,L =40, andj,=1.262. In the
semiconductor context the time and length scales of our di- Il. DIAGONAL CONTROL
mensionless variables are typically given by picoseconds and
micrometers, respectively.

We are concerned with controlling unstable time periodic
patternsup(t) =up(t+7), ap(x,t)=ay(x,t+7), which are

In general the analysis of the control performance of time-
delayed feedback methods results in differential-difference
equations that are hard to tackle and analytical results on the
embedded in a chaotic attractor. For that purpose, we apply'€3' stabl_h_ty analysis ha_ve been obtalne_d only recently

burp bp —9]. Stability of the orbit is governed by eigenmodes and

control forcesk, andF, that are derived from time-delayed h i | lued h rafesFl
differences of the voltage and the charge density. For exihe corresponding complex valued growth r sFloquet

ample, we may choosE,=F with the voltage feedback exponents The eigenvalue equation that determines these
force ' ! exponents can be cast into the fofg0]

l-—exp(—A7)
Fu(t)=u(t)—u(t—7)+RF(t—7). (4 A=T K Rexp—An - @)

The last contribution, involving the filter parame{®|<1  The right-hand side contains a functidi{«) that is deter-
corresponds to an improvement by multiple time-delays promined by the linear stability of the free orbit and the cou-
posed in Ref[18] (extended time-delay autosynchroniza- pling scheme of the control forces. The argumenk oh Eq.
tion), whereas the original scheme based on a simple timg7) arises via a Laplace transform of the control forfefs
e.g., Eq.(4)].

In general it is difficult to evaluate Eq7) quantitatively,
since the explicit form of the functioh'(«) is unknown.

2

16 There exists, however, a simple cdasdich we calldiagonal
<J1>2 contro) where the right-hand side is given by(x)=\—«

[7]. Here N denotes any of the Floquet exponents of the
uncontrolled orbit. In our context the diagonal control
scheme corresponds to the chofeg=F,,. andF ,=F. It
is a straightforward extension to a spatially extended system
FIG. 1. Projected phase portrait of the uncontrolled system irPf an identity matrix for the control of discrete systems of
the ((j),u) plane. The null isoclines of the uniform system are ordinary differential equations(cf. Ref. [9]). In such
plotted as dashed lines. The uniform fixed pointuat11.0, (j) schemes, every dynamical variable is monitored and feed-
=1.27 is indicated by a dot, and the chaotic spatiotemporal attractdpack is applied to each one based only on its own behavior.
is represented by its projected trajectory. Moreover, the feedback gain is the same for every variable.
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o FIG. 3. Leading part of the Floguet spectrum for diagonal con-
FIG. 2. Control domains in th&-R parameter plane for the | in dependence ok (R=0): from numerical simulation. The
unstable periodic orbit with periog=984.85. * denotes successful jhset shows the analytical result according to E8). (lines vs
control in the numerical simulation, denotes no control, lines de-  merical datdcircles.

note analytical result according to E@).

, . . its tip depends on the value of the Floquet exponani$ the
The diagonal scheme is amenable to analytical treatmenfn.onirolled orbit. In particular, the orbit of the uncontrolled

which makes it useful as a reference point, to which OtheEystem must satisfy the constraint Re<2(1+R)/(1—R)
control schemes may be compared. Thus for the diagongl| rder that control works successfullgo].
coupling scheme Ed7) reduces to the exact equatifi] To confirm the bifurcations at the boundaries we consider

1—exp(— A7) the Floquet s_pectrum of the orbit supjected to cor!trol. We
K= (8 use a Benettin algorithri22] for numerical computation of

1-Rexp(— A7) the Floquet exponents. Such an algorithm can be applied

easily to obtain the leading part of the eigenvalue spectrum,

Successful control _correspond_s to those control parametgice one just requires the forward integration of the full
values K,R) for which Eq.(8) yields Floquet exponentS  gystem (1) and successive reorthogonalization. The algo-
with negative real part only. rithm yields the real parts of the exponents, /Resince it

For the numerical simulations we concentrate on the Ungetects the expansion in phase space but ignores the torsion.
stable periodic orbit with period=984.85, which has only 115 complex conjugate exponents show up as doubly de-
one un;table Floque'g mode. -The correspond@ng Floquet ®fenerate pairs. We always obtain a Goldstone mddep,
ponent isk 7=0.490+i7. We implement the diagonal con- gjnce we are dealing with an autonomous model. Finally, the
trol scheme for our modefl) using numerical integration  gigorithm shows a numerical hybridization phenomenon if
with an Euler scheme of step sia¢=0.025. Spatial degrees gjgenbranches cross. Such an artifact can be reduced by in-

Ax=L/25 and the derivative is evaluated up to first order.interpreting the eigenvalue spectra.

We have also performed simulations with different step sizes Eqr the diagonal control scheme we have calculated the
to check that our results, in particular the control domainsfiye Floquet exponents with the largest real part in depen-
are robust against the choice of the step size. Furthermorgence onk for fixed R=0 (Fig. 3. The largest nontrivial
the numerical results are in accordance with analytical exaxponent decreases with increasiigand collides at nega-
pressions, where availablef. Fig. 2. As a criterion for suc-  tive values with a branch coming from negative infinity. As a
pessful_control we require co_ntrol forces to bg less thar10 result a complex conjugate pair develops and real parts in-
in amplitude. In order to avoid any complications caused bycrease again. The real part of the exponent finally crosses the
transient behavior or by multistability we usually choose ini-zero axis giving rise to a Hopf bifurcation. Our numerical
tial conditions in the vicinity of the unstable orbit. simulations are in agreement with the analytical result ac-
In Fig. 2, the regime of successful control in theR  cording to Eq.(8). Note that for the diagonal scheme no

parameter plane is depicted. The control domain has its typipther modes interfere with the leading brariet].
cal triangular shape bounded by a flip instability (Re

=0, Im A7=m) to its left and by a Hopf bifurcation to its
right. Inclusion of the filter parametd® increases the range
of K over which control is achieved. From E@®) it follows
that the left boundar{flip instability) is given by the straight Let us now concentrate on control schemes without volt-
line, age feedback, i.e., on schemes that are solely based on the
forces(5) or (6). In particular, we will discuss the local con-

trol scheme-,=F,,. and the global scheme without voltage
feedbackF,=Fg,. For our numerical simulations we focus
again on the unstable orbit with periog=984.85, which

We observe that the numerical result fits very well with thewas already used in the preceding section.

analytical prediction. The deviations from the right boundary We will compare our simulations to analytical results of
for larger R are numerical artefacts resulting from the very the eigenvalue equatidi@). For smallx a linear approxima-
small positive real part of the largest Floquet exponent. Notd¢ion can be used’[ k]=\ + x« with a constanjy. We refer

that the precise location of the control domain, in particularthe reader to Refl21] for more details concerning this as-

A=\

IIIl. CONTROL SCHEMES WITHOUT
VOLTAGE FEEDBACK

2
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FIG. 5. Fourier spectrum of the total currém}(t) =u—(a) for
FIG. 4. Control domains fota) the local andb) global control ~ global control without voltage contrgh) at the left-hand boundary
scheme without voltage feedback. * denotes domain of control, A (K=0.000318,R=—0.3), (b) at the lower right-hand boundary
denotes no control, lines denote analytical result of @) with B (K=0.0018,R=—0.52), and(c) at the upper right-hand bound-
Re\x7=0.490, y=—1. Double arrows indicate parameter settings ary C (K=0.003, R=0.216) [cf. Fig. 4b)]. The dashed line indi-
used for the Fourier spectra in Fig. 5. cates the spectrum of the periodic orbit in the control domain.

sumption. Then the control performance is approximatelyquantitatively, the instability mechanism is in accordance

governed by with the Hopf scenario described in Sec. Il. Finally, we ob-
serve at the upper right-hand bound&@) a slight shift in
l-exp—A7) the spectrum. In addition, the instability is accompanied by
A=N+x Km- (100 strong hysteresis when sweeping the control parameters

across the control boundaf¥rig. 6). Thus the upper right-

The new parametey, which is real valued in the case of flip hand control .bo_undary is generated by a subcritical bifurca.—

orbits (i.e., Im\7=) takes all the details of the control tion. The periodic state that appears beyond the threshold is

scheme into account. generated by the control loop and does not correspond to an
The results for the control domain in theR parameter unstable orbit of the free system. In fact it coexists with the

plane are summarized in Fig. 4. Control domains for bothPTOPEr periodic orbit within the control domain.

schemes look similar in shape, although the domain for the To uncover the nature of the subcritical bifurcation that
local scheme is shifted slightly towards lower control ampli-constitutes the upper right-hand control boundary we have

tudes. The left-hand border of the control domain corre-2valuated the Floquet spectrum t@b. Fig. 7). The spectrum

sponding to a flip instability is very well modeled by the shows a slightly more complicated structure compared to the

analytical formula(10) with an appropriate choice of the result of t.he simple analytical formul(ziO),.which Is rigor- .
parametery. That is not surprising since even the exact ei_ously valid for diagonal control. One still observes a flip

genvalue equatiof¥) predicts that the boundary is a straight instability at the lower threshold and the typical butterfly
line:iz/7=T[2K/(1+R)], hence the argument &fis con-

shape of the leading eigenvalue branch. But now a real Flo-
stant andR+ 1~2K. The lower right-hand boundary of the

quet multiplier expA7) with Im A= /7 and Re\ coming
control domain does not coincide very well with the analyti-ToM IR/ crosses the leading complex branch néar
cal expression, a feature already known in low-dimensiona

70.0035 and takes over the dominant role. It finally yields
dynamical systems. The shape of this boundary depends @} UPPer control threshold (Re=0) at K~0.0045, thus

details of the system. Most remarkably the domains do no@!Ving rise to a subcritical flip instability.

extend to largeR values. There exists an upper right-hand

cutoff that prevents control beyond the bound&y[Fig. IV. GLOBAL CONTROL WITH PARTIAL

4(b)]. Thus, increasindk does not necessarily increase the VOLTAGE FEEDBACK

control performancé. . .

In order to understand the control domains in more detail Control domains for local and global schemes without
we will discuss the instability mechanisms that generate th&0ltage feedback look similar in shape. But their size is re-
control boundaries. Since both methods generate qualitéluced, compared to diagonal control, by an additional sub-
tively similar control domains we restrict the discussion tocfitical bifurcation limiting the control for large filter param-
the experimentally more relevant global scheme withou€terR. In fact by varying the current, these domains may
voltage feedback. Let us first take a look at the Fourier spec-

tra (cf. Fig. 5 of the total curren{j) in the vicinity of the 0.3 '
three qualitatively different control boundaries. At the left- -
hand boundaryA) a peak at half the fundamental frequency 02F

develops, which indicates a flip instabilifperiod doubling
in accordance with the theoretical considerations of the pre-
ceding paragraph. At the lower right-hand boundd@)side-
band frequencies emerge while crossing the control bound-
ary. Although the theoretical prediction of the boundary fails 203 0.1 0.1 03

glo
0.1

FIG. 6. Temporal average of the control force when sweeping
We note the existence of a fourth boundary, at the lower right inacross the upper right-hand control boundari at0.003[line C in
Fig. 4, that has not yet been analyzed in detail. Fig. 4(b)].
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FIG. 8. Floquet spectra for global control with partial voltage

feedback for the periodic orbit with period=984.85 forR=0. (a)
FIG. 7. Leading part of the Floquet spectrum for global control¢=0.7, (b) £¢=0.4.
without voltage feedback fdR=0. The dashed line interpolates the
regime where the numerical accuracy is insufficient due to very

small|ReA|. of the control performance from the analytically solvable
case of diagonal control fails. Although local and global cou-
shrink and finally they even may vanish. Thus the uppelpling without voltage feedback behave similarly, the inclu-
control boundary has a dramatic effect on the control perforsion of voltage feedback results in completely different con-
mance. If we include voltage feedback the local scheme bero| performances. A partial voltage feedback with a weight
comes the diagonal coupling scheme that is very efficient. Aactor of less than 1 enhances the control performance.
naive guess would expect similar features to happen if the |n addition, we observe that Floquet branches that are not
voltage feedback according to Eq(4) is included into the  present in the system without time-delayed feedback may
global coupling scheme. Surprisingly, the global controlimpose additional limits to the control domaifts. also Ref.
scheme with voltage feedback does not work at all, and ong21]). In our case such branches are responsible for subcriti-
hardly finds orbits that can be stabilized with such a schemesal bifurcations and strong hysteresis. In particular, the per-
The corresponding Floquet spectrum displays a branch witformance of extended time-delay autosynchronization may
entirely positive real part, so that stabilization is neverdecline if the filter parameteR is increased. The details of

achievedcf. Fig. 8a)]. the Floquet spectrum, however, depend on the particular sys-
However, if we reduce the relative strength of the voltagetem and the orbit under consideration.
feedback, i.e., if we introduce a parameten F,=¢F; and So far there exists no complete and systematic treatment

decrease its value continuously, then the unstable brandaf the effect of different coupling schemes for time-delayed
moves downwards. At~0.6, a region develops where all feedback control. Even for the simple case of stabilization of
exponents are negative. A rather large control interval develtime independentfixed points such a problem requires the
ops ate=0.4 as displayed in Fig.(B). The whole structure analysis of transcendental equatidi®8]. The situation is

of the spectrum now resembles to some extent the purelgven worse if time periodic states or spatiotemporal patterns
diagonal control schemf. Fig. 3. Loweringe further the  are considered, where an analytical discussion of the corre-
spectrum then finally transforms to the form of the globalsponding Floquet problem seems to be at the moment out of
control without voltage feedbadkf. Fig. 7). Thus we expect reach. However, some insight can be gained by numerical
that an optimal feedback ratio farcan be determined such results and the semiquantitative discussion presented above.
that control domains become maximal. A full voltage feed- We have focused here on the simplest type of spatiotem-
back withe =1 results in an overshoot and destroys the conporal patterns that admit just a single unstable mode.

trol performance completely. Whether time-delayed feedback methods can be applied suc-
cessfully to fully developed extensive spatiotemporal chaos
V. CONCLUSION where numerous unstable modes are present remains still one

of the challenges of spatiotemporal control of chédse.g.,

We have compared different coupling schemes for timeRef. [24]), from the experimental as well as from the theo-
delayed feedback control of spatiotemporal patterns with getical point of view.
single unstable eigenmode. For classical control techniques,
such a comparison is one of the central issues of modern ACKNOWLEDGMENTS
control theory and there exists a detailed theory of the con-
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