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Estimation of parameters and unobserved components for nonlinear systems from noisy time serie
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We study the problem of simultaneous estimation of parameters and unobserved states from noisy data of
nonlinear time-continuous systems, including the case of additive stochastic forcing. We propose a solution by
adapting the recently developed statistical method of unscented Kalman filtering to this problem. Due to its
recursive and derivative-free structure, this method minimizes the cost function in a computationally efficient
and robust way. It is found that parameters as well as unobserved components can be estimated with high
accuracy, including confidence bands, from heavily noise-corrupted data.
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I. INTRODUCTION

For a quantitative understanding of time varying pheno
ena from nature and technology, it is often desired and q
informative to fit coefficients of nonlinear models to tim
series of observations. These models may contain quan
that cannot be measured directly. Instead, only a rather s
portion of noise-corrupted observations is available. Relia
reconstruction of all model components and parameters
ing such ‘‘real-world data’’ is one of the most challengin
research topics in nonlinear data analysis. Applications
nonlinear data analysis tools range from physical proble
~e.g., the identification of nonlinear electronic circuits a
experiments from nonlinear optics, the analysis of patt
forming systems, and the analysis of granular media and
trophysical data! to engineering problems~such as determin
ing nonlinear excitation responses and modeling of comp
manufacturing processes!, to mention just a few.

Several algorithms have been proposed and success
applied for considerably restricted model classes for the
tem and observation process. The restrictions demand
weak nonlinearities or small amounts of noise, for examp
Unfortunately, most real-world systems do not possess th
properties. The general approach to treat the problem of
timating parametrized models from incomplete time ser
amounts in astate space description. For linear state spac
models with Gaussian process and observation noise,
well-known Kalman filter@1# is the method of choice for the
consistent estimation of the indirectly observed or un
served states. But for the estimation of parameters, even
linear models this inevitably leads to nonlinear state sp
equations, which prevent the direct use of the Kalman fi
@3,4#. Very recently, Julier and Uhlmann developed a su
stantial extension of the Kalman filter for nonlinear mode
the unscented Kalman filter~UKF! @5#. Compared with the
widely used extended Kalman filter@6#, nonlinearities are
handled in a more superior way in the sense that a be
quality of estimates is achieved with less computational
pense.

The prediction-correction structure of the Kalman filt
approach in general and the superior handling of nonline
ties in the UKF approach in particular become importa
especially for chaotic systems. Estimation of states and
1063-651X/2002/66~1!/016210~9!/$20.00 66 0162
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rameters in chaotic systems using only noisy and incomp
observations is a difficult task, because chaotic solutions
pend sensitively on initial conditions, and sometimes also
initially chosen parameters. This leads to typically rath
complex cost functions that have to be minimized, as w
demonstrated for the Lorenz system in Ref.@7#. Unless the
initial values are chosen in very close proximity to the~un-
known! true values, the convergence of global methods s
as initial value approaches@8,9# may not be guaranteed. Fo
this reason, improved techniques such as multiple-shoo
methods have been proposed and successfully app
@10,11#, but these are expensive to implement and difficult
tune. For our perspective it is more important, that due
their dependence on numerical derivatives in the optimi
tion procedure, they are restricted to models that are dif
entiable. This may prevent the application to models wh
the nonlinearities are computationally complex~like in prob-
lems of meteorological data assimilation!, not differentiable
~like discontinuous nonlinearities in many engineering pro
lems!, or where an explicit form of the nonlinearity is no
known ~like in models derived from artificial neural ne
works!. In contrast, the UKF works without using numeric
derivatives, which makes an application to these proble
feasible. Due to the recursive structure of the Kalman fil
the probability of stopping in a local minimum of the co
function is greatly reduced, and it allows application to u
evenly sampled data as well. All these facts motivate to st
the potentials and limits of the UKF for state and parame
estimation of chaotic systems.

This paper is organized as follows. First, the mathemat
framework of state space modeling is reviewed. Then,
Kalman filter and its extensions are briefly described w
emphasis on the unscented Kalman filter. Finally, the
scented Kalman filter is applied to simultaneously estim
states and parameters from noisy data of the periodic Lo
Volterra, the chaotic Lorenz, and the stochastic van der
systems.

II. STATE SPACE REPRESENTATION

We consider models with only few degrees of freedo
Influences of rapidly fluctuating subsystems or unknown
namics are approximated by a stochastic terme. This noise
©2002 The American Physical Society10-1
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term is assumed to be independently and identically dist
uted over time, and influences the system in such a way
the state becomes a random variable itself. The dynamic
time evolution of this stateX(t)P Rn is modeled by a sto-
chastic differential equation, thestate equation,

Ẋ~ t !5F„X~ t !,l,e~ t !…. ~1!

In general,F is a nonlinear function of the state, the para
eter vectorl, and the noisee. In a more general setting th
parameter vector could also depend on time, but with res
to our applications to only autonomous systems, this dep
dence is omitted for ease of notation. The impact of
observation process is considered by adding anobservation
equation

Y~ t !5H„X~ t !…1h~ t ! ~2!

to the state equation, which maps the stateX(t) to the ob-
servationY(t)P Rm. Here,H is the observation function an
h again denotes independent white Gaussian noise that
resents unpredictable distortions and influences occur
during the observation process. Bothe andh are assumed to
be mutually independent and independent from the state
observation. Therefore,X(t) andY(t) do not alter the statis
tical properties of the noises. The entity of Eqs.~1! and~2! is
called (time-continuous) state space model@21#.

Because observations are sampled not continuously b
a finite amount of time, one has to adapt the problem
modeling accordingly. A discretization of the time
continuous state space model can be accomplished by t
forming Eqs.~1! and~2! into corresponding difference equa
tions of the form

Xt5f~Xt2Dt ,l,et! ~Dt.0!, ~3!

Yt5h~Xt!1ht . ~4!

Here,Xt2Dt andXt are the time-discrete states, andYt is the
observation or measurement. Equations~3! and~4! are called
discrete state space modeland describe the evolution of th
stateXt and its observationYt with time. The collection of
these random variables at timest151,t252, . . . ,tN5t form
time-discrete stochastic processesX5$X1 ,X2 , . . . ,Xt% and
Y5$Y1 ,Y2 , . . . ,Yt%. The statistical properties of both pro
cesses, which are functionally related via Eqs.~3! and ~4!,
are contained in the associated joint probability dens
rXY(X5x,Y5y), which describes how likely joint realiza
tions x andy of the respective processes are. In our appli
tions for deterministic models~the Lotka-Volterra and the
Lorenz system! one haset50, and for eachXt , the realiza-
tion xt is uniquely determined. The mappingf in Eq. ~3! is
then defined as

f~xt2Dt ,l!5xt2Dt1E
t2Dt

t

F~x~T!,l!dT. ~5!

Since this equation generally cannot be solved analytical
numerical approximation for the functionf has to be applied
It should be mentioned explicitly here that although the st
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space model is discrete, time-continuous model functions
included in Eq.~3! as well. For the case of stochastic syste
with additive noise the respective integral equation is giv
in Sec. V.

III. STATE AND PARAMETER ESTIMATION

A. Kalman filter

For notational convenience in the following we setDt
51, unless specified otherwise. The filtering problem in s
tistics in general consists of the determination of thefilter
densityr(Xtu$Y1 ,Y2 , . . . ,Yt%) and its evolution in timet. In
the special case of linear state space dynamics with mutu
uncorrelated Gaussian noisese;N(0,Pe) andh;N(0,Ph),

Xt5fX t211et , ~6!

Yt5hXt1ht , ~7!

the filter density is a Gaussian conditioned on all obser
tions up to timet @12#. Since a Gaussian density is describ
completely by its mean and covariance, it is sufficient to tr
the evolution of only these two quantities, instead of t
whole density. As has been shown first by Kalman and Bu
@1#, there exists an analytical expression that describes
actly the time evolution of mean and variance, often cal
estimation and estimation error, of a Gaussian filter dens
These recursive algebraic equations, the Kalman filter,
reviewed next.

The Kalman filter consists of a prediction and a correct
step. Given the state space model Eqs.~6! and ~7!, the pre-
diction step extrapolates the mean of the filter density, i
the prediction for the state estimationx̂(tut21) and its asso-
ciated observationŷ(tut21), using information of all prior
observationsỸ5$Y1 ,Y2 , . . . ,Yt21%. The most likely values
or optimal predictions are given by the conditional expec
tions @12#

x̂~ tut21!5E@XtuỸ#5E@ fX t21uỸ#, ~8!

ŷ~ tut21!5E@YtuỸ#5E@hXtuỸ#. ~9!

A conditional expectation value of some random variablesA
and B with outcomes a and b is defined by E@AuB#
5*arAuB(A5auB5b)da with rAuB denoting the respective
conditional density. Due to linearity, Eqs.~8! and~9! can be
solved analytically. The solution for the states is

x̂~ tut21!5E@ fX t21uỸ#5fE@Xt21uỸ#5fx̂~ t21ut21!,
~10!

wherex̂(t21ut21) denotes the mean of the filter density
time t21. The associated covariances or prediction err
are defined by

P~ tut21!5E@~Xt2 x̂~ tut21!!~Xt2 x̂~ tut21!!TuỸ#,
~11!
0-2
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PYY~ tut21!5E@~Yt2 ŷ~ tut21!!~Yt2 ŷ~ tut21!!TuỸ#,
~12!

PXY~ tut21!5E@~Xt2 x̂~ tut21!!~Yt2 ŷ~ tut21!!TuỸ#,
~13!

where for linear models the expectations can be compu
analytically. The correction step then updates the predicti
for the state and estimation error using the new observa
yt :

x̂~ tut !5 x̂~ tut21!1K t~yt2 ŷ~ tut21!!, ~14!

P~ tut !5P~ tut21!2K tPYY~ tut21!K t
T . ~15!

Uncertainties given by the errors of the previous predict
step are considered by theKalman gain matrix,

K t5PXY~ tut21!PYY
21~ tut21!, ~16!

which acts as weight of the innovationyt2 ŷ(tut21), used in
Eq. ~14!. Starting with initial guesses for the statex̂(1u1) and
its covariance matrixP(1u1), the filter recursively improves
the estimationsx̂(t21ut21) andP(t21ut21) to x̂(tut) and
P(tut) using information available by the measurementyt .
The Kalman filter yields unbiased and consistent estima
for linear state space models only. In the case of nonlin
models non-Gaussian densities are approximated by Ga
ian distributions. The particular choice of mean and cova
ance of these Gaussians leads both to the extended an
scented Kalman filter.

B. Nonlinear extensions to the Kalman filter

The most widely used approach for filtering nonline
state space models is to approximate the nonlinear funct
f andh of Eqs.~6! and~7! by their Taylor series expansion
in terms of the prediction errorXt2 x̂(tut) @12,13#. This is
realized by the extended Kalman filter~EKF! of first and
second order. The first-order EKF assumes that the s
space model is linear within the scale of errors. Therefore
suffers from second and higher-order linearization errors,
need for Jacobian matrices, and implementation difficult
If nonlinearities cannot be approximated well by lineariz
terms~like in dry friction systems, for example!, most EKF
estimates are biased and inconsistent. The second-order
demands extensive implementation efforts due to the n
for Hessian matrices. Another way for filtering is to treat t
filter density directly by means of a representative set
samples. Applying the state space equations to these sa
sets yields new prediction statistics, i.e., mean and cov
ance, that can be used with the Kalman filter update eq
tions.

C. Unscented Kalman filtering

A novel procedure for dealing with estimation in nonli
ear state space models has been proposed recently by
and Uhlmann@5#. This procedure belongs to the class
statistical linearization schemes@13,14# in which densities
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are truncated instead of the modelsf and h. Higher order
moments of the filter density are neglected, i.e., mean
covariance are used only. A sample set with same mean
covariance is generated and propagated through the full~not
approximated as with EKF! state space model. Unlike sto
chastic approaches, e.g., rejection schemes, where
amounts of samples are needed, the idea of Julier and
mann was to use a set that is constructed in a determin
way and therefore much smaller in size. This sample
$Xi%0

2n is given by the so-called sigma points

X0~ t21ut21!5 x̂~ t21ut21!,

Xi~ t21ut21!5 x̂~ t21ut21!1@A~n1k!P~ t21ut21!# i ,

~17!

Xi 1n~ t21ut21!5 x̂~ t21ut21!

2@A~n1k!P~ t21ut21!# i ,

with i 51, . . . ,n. The value ofk is fixed ~see below!, and
(A.) i is thei th row or column of the matrix square root. Th
data set$Xi%0

2n is propagated through the full nonlinearitiesf
andh using the prediction rules

Xi~ tut21!5f„Xi~ t21ut21!…, ~18!

Yi~ tut21!5h„Xi~ tut21!…. ~19!

The resulting sample sets$Xi(tut21)%0
2n and $Yi(tut

21)%0
2n may represent a density with higher order mome

but due to linearization only mean

x̂~ tut21!5(
i 50

2n

WiXi~ tut21!, ~20!

ŷ~ tut21!5(
i 50

2n

WiYi~ tut21! ~21!

and covariance

PYY~ tut21!5(
i 50

2n

Wi$Yi~ tut21!2 ŷ~ tut21!%$Yi~ tut21!

2 ŷ~ tut21!%T, ~22!

PXY~ tut21!5(
i 50

2n

Wi$Xi~ tut21!2 x̂~ tut21!%$Yi~ tut21!

2 ŷ~ tut21!%T, ~23!

P~ tut21!5(
i 50

2n

Wi$Xi~ tut21!2 x̂~ tut21!%$Xi~ tut21!

2 x̂~ tut21!%T ~24!

are used. The weights are defined as
0-3
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W05
k

n1k
,

Wi5
1

2~n1k!
~ i 51, . . . ,2n!. ~25!

The predicted meanx̂(tut21) and covarianceP(tut21) are
updated by the Kalman equations~14!–~16! to yield the state
estimationx̂(tut) and its estimation errorP(tut) for the non-
linear state space model. The set of Eqs.~17!–~25! is called
unscented transformation.

In order to control estimation properties, a constant sc
ing parameterk is introduced. Problems with scaling arise
k,0, because then the predicted covariance may no
positive definite any longer, and the filter would yield inco
sistent estimates. This disadvantage can be overcome
the scaled unscented transformation@15# or a square root
implementation approach@16#. In our applicationsk50 is
used to keep things simple.

The advantages of the UKF can be summarized as
lows: ~i! higher order accuracy as compared with the of
used EKF of first order,~ii ! derivative-free optimization,~iii !
easy computational implementation~matrix algebra opera
tions only!. More details and investigations related to t
UKF and some recently published improvement and theo
ical framework are given in Refs.@15–17#.

D. Joint state estimation

A possible way to encounter with parameter estimation
to treat the parameter vector as a dynamical variable itse
is important to note that even if the state space model foxt
andlt is linear, i.e.,f andh are matrices, the joint-model i
bilinear in state and parameters. To this end, the param
vectorlt is modeled by the evolution equation

lt5lt21 . ~26!

Although the parameter is constant within the state dyna
ics, it is modified in each recursion step by the measurem
update equations~14!–~16!, as long as the current value d
viates from the true parameter. In order to deal with the no
realizationset and ht in a simple way, they are treated a
state variables as well@13#. A new, joint state is constructe
by merging the signalxt with the parameterlt and noise
realizationset and ht into the joint state vectorj t with the
time evolution

j t5S xt

lt

et

ht

D 5S f~xt21 ,lt21!1et21

lt21

et21

ht21

D 5f j~ j t21! ~27!

and the observation function

yt5hj~ j t!5h~xt!1hh~ht!. ~28!

For our case of additive and uncorrelated measurement n
the functionhh reduces to the identity. But it should be me
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tioned here that measurement disturbances often have t
described in terms of correlated noise components; the fu
tion hh then differs from the identity, e.g., it becomes a no
diagonal matrix. Note that the filter implementation must a
sure not to alter the noises by the incoming observationyt
during the update step, because the noises are by defin
independent of this observation. Detailed information co
cerning this issue within the UKF framework can be found
Ref. @5#.

IV. PARAMETER ESTIMATION FOR NONLINEAR
DETERMINISTIC SYSTEMS

We demonstrate the potentials of the UKF for two pa
digmatic models in nonlinear science, the Lotka-Volterra s
tem @18# and the chaotic Lorenz system@19,23#.

A. Lotka-Volterra system

First we estimate the state and parameters for the Lo
Volterra system,

ẋ(1)5l (1)x(1)2l (2)x(1)x(2),

ẋ(2)5l (2)x(1)x(2)2l (3)x(2). ~29!

Superscripts denote the component of the statext
5(x(1),x(2))T and the parameterlt5(l (1),l (2),l (3))T. Data
of lengthN510000 are generated by numerically integrati
Eq. ~29! with the parametersl (1)51, l (2)51.5, andl (3)

52, using an embedded Runge-Kutta method@20# with au-
tomatic step size control and subsequent sampling with
terval Dt50.1 ~note that the integration step size may diff
from the sampling interval!. This yields nonlinear periodic
oscillations represented by a limit cycle in state space@Fig.
1~a!#. The observations are generated by corruptingxt

(1) with
additive Gaussian noiseht;N(0,Ph).

Using the state space formalism, the system

FIG. 1. ~a! Limit cycle of the Lotka-Volterra system with pa
rametersl5(1,1.5,2)T for tP@900,1000#. ~b! Estimated limit cycle
for tP@900,1000#. ~c! Clean (3), noisy (•••), and estimated~—!
time series fortP@950,1000#.
0-4
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S xt

lt

ht

D 5S fLV~xt2Dt ,lt2Dt!

lt2Dt

ht2Dt

D , ~30!

yt5xt
(1)1h t

(1) ~31!

is obtained, wherefLV denotes the integral equation~5! for
the Lotka-Volterra system withDt50.1 andh t

(1) the first
component ofht with h t

(1);N(0,s2). The amount of obser
vation noise is characterized by the percental signal-to-n
ratio of the standard deviations of the clean statext

(1) and the
noise. In this cases is 10%. Next, we estimate the param
eters and the clean state, under the assumption that the
derlying dynamical model and statistics of the measurem
noise is known. Initial guesses for parameters are chose
be twice the true values;l̂1

(1)52, l̂1
(2)53, andl̂1

(3)54. The

initial state estimationx̂(1u1)5 x̂1 is chosen to bex̂1
5(y1 ,y1)T. As with every estimation, the error for the es
mated quantities is required in order to state the reliability
the results. This information is provided by the covarian
matrix. If the estimation errorsj t2 ĵ (tut) are assumed to b
Gaussian, then with probabilityp the true value of the pa
rameter lies within the respective confidence interval aro
ĵ (tut). The confidence interval for each parameterl̂ ( i ) is
given by

@ l̂ ( i )2c~p!APii , l̂ ( i )1c~p!APii #, ~32!

with Pii being the i th diagonal element of the associat
estimated covariance matrix andc(p) a distribution depen-
dent value @21#. For non-Gaussian estimation errors, t
value ofc(p) cannot necessarily be determined exactly a
therefore is approximated by making the assumption
Gaussianity.

The result is

l̂ (1)51.0024, AP1150.0057,

l̂ (2)51.4870, AP2250.0119,

l̂ (3)51.9844, AP3350.0160.

All estimated parameters differ from the true values by l
than 1%. The estimated parameters with 95%-confidence
tervals calculated from the covariance matrix are given
Fig. 2, the state estimatesx(1) andx(2) in Fig. 1. The differ-
ences between estimated and clean states are negligible
if related to the difference between clean states and n
data.

B. Lorenz system

Now we treat the, more complicated case with respec
convergence, of chaotic dynamics. A well known example
the Lorenz system@23#
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ẋ(1)52l (1)x(1)1l (1)x(2),

ẋ(2)5l (2)x(1)2x(2)2x(1)x(3),

ẋ(3)52l (3)x(3)1x(1)x(2), ~33!

with parametersl (1)510, l (2)546, andl (3)58/3. We add a
difficulty here by generating unevenly sampled data
length N510 000 by integrating these equations with sa
pling time intervalsDt that vary in a random manner, un
formly distributed within the range@0.01,0.05#. Figure 3~a!
shows a projection of the three-dimensional clean cha
attractor into a two-dimensional subspace spanned byxt

(1)

and xt
(2) . The observation is constructed by corrupting t

componentxt
(1) with Gaussian noiseht;N(0,Ph).

Again, in order to estimate states and parameters simu
neously, the problem is written in the state space form a

FIG. 2. ~a!–~c! Estimated parameters vs time for the Lotk
Volterra system.~d!–~f! Enlargements taken from~a!–~c! show es-
timates with associated 95%-confidence intervals.

FIG. 3. ~a! Projection of the clean attractor of the Lorenz syste
with parametersl5(10,46,8/3)T into the two-dimensional subspac
for tP@268,300#. ~b! Projection of the estimated attractor fort
P@268,300#. ~c! Clean (3), noisy (•••), and estimated~—! time
series fortP@292,300#.
0-5
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S xt

lt

ht

D 5S fL~xt2Dt(t) ,lt2Dt(t)!

lt2Dt(t)

ht2Dt(t)

D , ~34!

yt5xt
(1)1h t

(1) . ~35!

The signal-to-noise ratio is set to 50% of the standard de
tion of the clean signal. The integralfL in Eq. ~34! is solved
numerically by the same method as in the previous exam
Initial guesses for the joint state are chosen to be half the
values. All components of the initial statex̂1 are set to the
only observed value (y1 ,y1 ,y1)T.

Figure 4 shows the parameter estimation, as it develop
time, with associated confidence bands. Convergenc
reached for times larger thant5275. The final estimates~at
t5300) are

l̂ (1)510.2588, AP1150.1574,

l̂ (2)545.6972, AP2250.4811,

l̂ (3)52.6399, AP3350.0437.

These estimates differ from the true valuesl (1)510, l (2)

546, andl (3)52.6666 by a few percent only. The true va
ues are located all within the estimated 95%-confide
bounds given byl̂ ( i )61.96APi i . The reconstructed attracto
is shown in Fig. 3~b!, and a visual comparison of nois
estimated, and clean state variablext

(1) is given in Fig. 3~c!.
One observes that the measurement disturbances have
compensated considerably.

V. PARAMETER ESTIMATION FOR LANGEVIN
SYSTEMS

In the preceding section the UKF was used for state
parameter estimation of deterministic state equations. N

FIG. 4. ~a!–~c! Estimated parameters vs time for the chao
Lorenz system. Enlargements taken from~a!–~c! show estimates
with associated 95%-confidence intervals~d!–~f!.
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we treat the more general case of systems with additive
namical noise, i.e., systems described by Langevin eq
tions.

A. General setup

We consider systems of the form

Ẋ~ t !5F~X~ t !,l!1e~ t !, ~36!

with constant parameterl and e;N(0,Pe). Again, due to
time discrete observations, one needs to integrate Eq.~36!
over the sampling time intervalDt. Then the functionf in
Eq. ~3! reads

f~Xt2Dt ,l,et!5Xt2Dt1E
t2Dt

t

F~X~T!,l!1e~T!,dT.

~37!

Contrary to deterministic systems, for a numerical integ
tion of this equation only low order integration methods, li
the explicit Euler scheme, can be applied@2,21,22#. This is
due to intractable stochastic integrals that would occur on
right-hand side of Eq.~37! when constructing higher orde
integration schemes like the Runge-Kutta method of fou
order. Using a low order scheme enforces an integration
dt that often is considerably smaller than a reasonable s
pling time intervalDt. Therefore, several integration step
from time t2Dt onwards are needed in order to predict t
statistics of the state at the update timet. The Euler scheme
for Langevin equations of the type Eq.~37! reads

Xt2Dt1dt5Xt2Dt1dtF~Xt2Dt ,l!1Adtet2Dt . ~38!

Since a random variable like the stateXt2Dt is completely
characterized by its probability density, it is sufficient to loo
for the evolution of this density. This can be done using
respective discrete Fokker-Planck equation or simulati
utilizing a discretization of the density by a finite, but repr
sentative, set of samples$xi ,t2Dt%. The discrete density a
time t2Dt1dt then is obtained by propagating the samp
according to

xi ,t2Dt1dt5xi ,t2Dt1dtF~xi ,t2Dt ,l!1Adtei ,t2Dt . ~39!

Here,ei ,t2Dt denotes thei th sample of the stationary Gaus
ian white noiseet2Dt . With respect to the UKF, the set
$xi ,t2Dt% and $ei ,t2Dt% are chosen as the sigma poin
$Xi(t2Dtut2Dt)% i 50

2n and $Ei(t2Dtut2Dt)% i 50
2n of the re-

spective state and noise density. Thus, only information p
vided by the mean and covariance of the full state densit
utilized during each integration step. The numerical integ
tion step overdt is performed by propagating the sigm
points through the Euler scheme of the respective stocha
differential equation given by Eq.~39!, in shorthand notation
written as
0-6
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Xi~ t2Dt1dtut2Dt !5fEULER(dt)~Xi~ t2Dtut2Dt !,l,Ei~ t

2Dtut2Dt !!. ~40!

From the predicted points$Xi(t2Dt1dtut2Dt)% i 50
2n the

mean and covariance according to Eqs.~20! and ~24! are
nt

se

th

-
to

i

u
ly
s

t

nl
y-

g
%

01621
computed. Using this mean and covariance, a new se
sigma points$Xi(t2Dt1dtut2Dt1dt)% i 50

2n is constructed
for the next Euler step to be performed att2Dt1dt. Since
the dynamical noise is stationary, the predictions for
sigma points, which represent the density of the noise r
Ei(t2Dt1dtut2Dt)5Ei(t2Dtut2Dt) for every i. It fol-
lows the joint state space representation
S Xi~ t2Dt1dtut2Dt !

li~ t2Dt1dtut2Dt !

Ei~ t2Dt1dtut2Dt !

hi~ t2Dt1dtut2Dt !

D 5S fEULER(dt)~Xi~ t2Dtut2Dt !,li~ t2Dtut2Dt !,Ei~ t2Dtut2Dt !!

li~ t2Dtut2Dt !

Ei~ t2Dtut2Dt !

hi~ t2Dtut2Dt !

D , ~41!
at

ted
t
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ted
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ted
where a constant parameterl and stationary measureme
noiseh is assumed.

Repeating this unscented transformation for all sub
quent integration steps until the sampling timet is reached,
gives a predicted mean and covariance for the joint state
is updated finally by the observationyt according to the UKF
rules Eqs.~14! and~15!. Next this ‘‘unscented Euler integra
tion scheme’’ is used within the UKF framework in order
estimate states and the parameter of the stochastic van
Pol system.

B. Stochastic van der Pol system

The stochastic van der Pol system in first order writing
given by

Ẋ(1)5X(2), ~42!

Ẋ(2)5l (1)
„~12X(1)X(1)!X(2)2X(1)

…1e, ~43!

where the second component is driven stochastically by
correlated noisee. This system has been studied extensive
and for the sake of comparability we use the setup propo
in Ref. @2# by fixing e;N(0,1), l (1)53, and taking an in-
tegration step width ofdt50.001 for the respective explici
Euler schemefEULER(dt) . This is given by

xt2Dt1dt
(1) 5xt2Dt

(1) 1dtxt2Dt
(2) , ~44!

xt2Dt1dt
(2) 5xt2Dt

(2) 1dtl (1)~~12xt2Dt
(1) xt2Dt

(1) !xt2Dt
(2) 2xt2Dt

(1) !

1e t2Dt . ~45!

The sampling time is set toDt50.1. Applying the Euler
scheme to the stochastic van der Pol system yields a no
ear periodic oscillation that is slightly disturbed by the d
namical noise. Observations$yt% t50.1

1,000 are generated by takin
the first state component only and corrupting it with 10
measurement noiseh;N(0,sh

2). Applying the UKF with
-

at

der

s

n-
,
ed

in-

starting guessesx̂(1u1)5(y1 ,y1)T, l̂ (1)(1u1)56, and the
unscented Euler scheme we obtain for the parametert
51000,

l̂ (1)52.9600,APl50.0432. ~46!

Figure 5 shows the convergence behavior of the estima
parameter over time. The final estimated parameter at
51000 differs from the true one by less than 2%. Finally w
can state that the UKF in conjunction with the unscen
Euler scheme enables reliable parameter estimation from
complete and noise corrupted data of the stochastic van
Pol system.

VI. DISCUSSION

We have demonstrated that the technique of unsce
Kalman filtering enables simultaneous state and param

FIG. 5. ~a! Estimated parameter vs time for the stochastic v
der Pol system. Due to rapid convergence, a logarithmic axis is u
for the time.~b! A zoom of the estimated parameter with associa
95% confidence intervals taken from~a!. ~c! Clean (3), noisy
(•••), and estimated~–! time series fortP@980,1000#.
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estimation from incomplete data of a variety of nonline
dynamical systems with relatively large amounts of measu
ment noise. Contrary to methods that yield similar estimat
results for deterministic systems@24#, the unscented Kalman
filter has smaller inplementational efforts and can be u
with stochastic systems as well. Unlike in many other a
proaches, the model nonlinearities are taken as they are
arenot approximated by a Taylor series expansion. Furth
more, time expensive stochastic simulations are not ne
sary. This makes this approach very flexible, and it can a
be applied to systems where the explicit form of the non
earities are not known or derivatives are difficult to compu
Therefore the numerical solver of the model can be u
identically also in the model estimation procedure, therefo

We note that the choice of the initial covariance matric
may be crucial for the convergence rate of the filter. T
estimation of the variances, especially of the dynamical no
term, for the case that they are unknown, is an ongoing to
of research. The ability to tune the scaling parameter and
absence of derivatives in the unscented Kalman filter allo
for parameter estimation in discontinuous models as w
but also this needs some further treatment@25#.

In the examples studied here, the functional form of
state space model must be known beforehand. To our kn
edge, there are no nonparametric methods of state estim
which would also allow for the estimation of the function
c
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form of the model. This is possible so far only if all comp
nents of the model are observed, and only for small amou
of noise @26–28#, problems of much less complexity tha
those considered here.~These approaches differ from othe
nonparametric approaches of nonlinear time series ana
based on reconstruction methods@29,30#, in that the former
yield estimates of equations of motion.! Our future research
will concentrate on a combination of parametric modeli
and nonparametric approaches@31#.

We consider the approach proposed here to be promi
in particular for the analysis of physical experiments
which the parametrization cannot be derived from first pr
ciples, like in many problems of pattern formation in liquid
and granular media@27,32–34#, in the modeling of severely
nonstationary data that are abundant in life sciences@35–37#,
or in materials science@38,39#. Finally, we mention that the
accurate estimation of a model can help in estimating inv
ant quantities like Lyapunov exponents from observatio
@40,41#.
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