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Estimation of parameters and unobserved components for nonlinear systems from noisy time series
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We study the problem of simultaneous estimation of parameters and unobserved states from noisy data of
nonlinear time-continuous systems, including the case of additive stochastic forcing. We propose a solution by
adapting the recently developed statistical method of unscented Kalman filtering to this problem. Due to its
recursive and derivative-free structure, this method minimizes the cost function in a computationally efficient
and robust way. It is found that parameters as well as unobserved components can be estimated with high
accuracy, including confidence bands, from heavily noise-corrupted data.
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I. INTRODUCTION rameters in chaotic systems using only noisy and incomplete
observations is a difficult task, because chaotic solutions de-
For a quantitative understanding of time varying phenom-end sensitively on initial conditions, and sometimes also on
ena from nature and technology, it is often desired and quitéitially chosen parameters. This leads to typically rather
informative to fit coefficients of nonlinear models to time complex cost functions that have to be minimized, as was
series of observations. These models may contain quantiti€¥¢monstrated for the Lorenz system in Réf]. Unless the
that cannot be measured directly. Instead, only a rather smdlitial values are chosen in very close proximity to the-
portion of noise-corrupted observations is available. Reliabl&nown true values, the convergence of global methods such
reconstruction of all model components and parameters ugs initial value approach¢s,9] may not be guaranteed. For
ing such “real-world data” is one of the most challenging this reason, improved techniques such as multiple-shooting
research topics in nonlinear data analysis. Applications ofnethods have been proposed and successfully applied
nonlinear data analysis tools range from physical problem§10,11, but these are expensive to implement and difficult to
(e.g., the identification of nonlinear electronic circuits andtune. For our perspective it is more important, that due to
experiments from nonlinear optics, the analysis of patterriheir dependence on numerical derivatives in the optimiza-
forming systems, and the analysis of granular media and adlon procedure, they are restricted to models that are differ-
trophysical datato engineering problemuch as determin- €ntiable. This may prevent the application to models where
ing nonlinear excitation responses and modeling of complefhe nonlinearities are computationally compléke in prob-
manufacturing processego mention just a few. lems of meteorological data assimilatjpmot differentiable
Several algorithms have been proposed and successfulfjjke discontinuous nonlinearities in many engineering prob-
applied for considerably restricted model classes for the sydeéms, or where an explicit form of the nonlinearity is not
tem and observation process. The restrictions demand onkpown (like in models derived from artificial neural net-
weak nonlinearities or small amounts of noise, for exampleWorks). In contrast, the UKF works without using numerical
Unfortunately, most real-world systems do not possess thegterivatives, which makes an application to these problems
properties. The general approach to treat the problem of edeasible. Dl_Jg to the reqursiye structure _of the Kalman filter,
timating parametrized models from incomplete time serieghe probability of stopping in a local minimum of the cost
amounts in astate space descriptiorFor linear state space function is greatly reduced, and it allows application to un-
models with Gaussian process and observation noise, tfvenly sampled data as well. All these facts motivate to study
well-known Kalman filte 1] is the method of choice for the the potentials and limits of the UKF for state and parameter
consistent estimation of the indirectly observed or unob£stimation of chaotic systems. _ _
served states. But for the estimation of parameters, even for This paper is organized as follows. First, the mathematical
linear models this inevitably leads to nonlinear state spac&@mework of state space modeling is reviewed. Then, the
equations, which prevent the direct use of the Kalman filtealman filter and its extensions are briefly described with
[3,4]. Very recently, Julier and Uhlmann developed a sub-emphasis on the unscented Kalman filter. Finally, the un-
stantial extension of the Kalman filter for nonlinear models,scented Kalman filter is applied to simultaneously estimate
the unscented Kalman filtgtJKF) [5]. Compared with the States and parameters from noisy data of the periodic Lotka-
widely used extended Kalman filt¢6], nonlinearities are \olterra, the chaotic Lorenz, and the stochastic van der Pol
handled in a more superior way in the sense that a bettéfyStems.
quality of estimates is achieved with less computational ex-
pense. o , , Il. STATE SPACE REPRESENTATION
The prediction-correction structure of the Kalman filter
approach in general and the superior handling of nonlineari- We consider models with only few degrees of freedom.
ties in the UKF approach in particular become importantinfluences of rapidly fluctuating subsystems or unknown dy-
especially for chaotic systems. Estimation of states and pazamics are approximated by a stochastic tetrithis noise
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term is assumed to be independently and identically distribspace model is discrete, time-continuous model functions are

uted over time, and influences the system in such a way thamcluded in Eq(3) as well. For the case of stochastic systems

the state becomes a random variable itself. The dynamics avith additive noise the respective integral equation is given

time evolution of this stat&X(t) e R" is modeled by a sto- in Sec. V.

chastic differential equation, tretate equation

. Ill. STATE AND PARAMETER ESTIMATION
X()=F(X(1),\, &1)). D

A. Kalman filter
In generalF is a nonlinear function of the state, the param- For notational convenience in the following we skt

eter vector, and the noise. In a more general setting the _ 1, unless specified otherwise. The filtering problem in sta-
parameter vector could also depend on time, but W't.h r(':'Spe%tstics in general consists of the determination of fiiter
to our applications to only autonomous systems, this dependensityp(XtHYl Y,, ... X)) and its evolution in time. In

gggg?\/;o?]m'ifge;:riseizﬁsfgepgéagOné d-clj—ihne :arggfvcétigfn thethe special case of linear state space dynamics with mutually
P y ® uncorrelated Gaussian noises M(0,P,) and »~A\(0,P,),

equation

Y (1) =HX(1)+ n(t) 2) Xi=tXi-1t €&, (6)

to the state equation, which maps the stéf¢) to the ob- Yi=hXi+ g, (7)
servationY(t) e R™. Here,H is the observation function and _ o _ N
» again denotes independent white Gaussian noise that refii filter density is a Gaussian conditioned on all observa-
resents unpredictable distortions and influences occurrinons up to timet [12]. Since a Gaussian density is described
during the observation process. Batland # are assumed to completely by its mean and covariance, it is sufficient to treat
be mutually independent and independent from the state arf§e evolution of only these two quantities, instead of the
observation. Thereforé(t) andY(t) do not alter the statis- Whole density. As has been shown first by Kalman and Bucy
tical properties of the noises. The entity of E¢8.and(2) is  [1], there exists an analytical expression that describes ex-
called (time-continuous) state space mo¢21]. actly the time evolution of mean and variance, often called
Because observations are Samp|ed not Continuous|y but mstlmatlon and estimation error, of a Gaussian filter denSity.
a finite amount of time, one has to adapt the problem offhese recursive algebraic equations, the Kalman filter, are
modeling accordingly. A discretization of the time- reviewed next. . o .
continuous state space model can be accomp”shed by trans- The Kalman filter consists of a pr6d|Ct|0n and a correction
forming Egs.(1) and(2) into corresponding difference equa- Step. Given the state space model Hgs.and (7), the pre--
tions of the form diction step extrapolates the mean of the filter density, i.e.,
the prediction for the state estimatiaft|t—1) and its asso-
ciated 0bservatior§1(t|t—1), using information of all prior

Y =h(X,)+ 7. (4) observation& ={Y;,Y,, ...,Y;_;}. The most likely values
! ! or optimal predictions are given by the conditional expecta-
Here,X,_ , andX, are the time-discrete states, aridis the  tions[12]
observation or measurement. Equatiéd)sand(4) are called

Xi=f(Xi—at. N &) (At>0), ©)

discrete state space modahd describe the evolution of the X(t|t—1)=E[X|Y]=E[fX_4| Y], (8)
stateX; and its observatiory, with time. The collection of
these random vanable; attimpgs=1t,=2,... ty=t form §/(t|t—1): E[Yt|\~(]= E[hXt|\~(]. )
time-discrete stochastic processés {X,X,, ... X} and

Y={Y,,Y,,...,Yy}. The statistical properties of both pro-
cesses, which are functionally related via E@. and (4),
are contained in the associated joint probability densit
pxy(X=x,Y=y), which describes how likely joint realiza-
tions x andy of the respective processes are. In our applica
tions for deterministic model$the Lotka-\Volterra and the
Lorenz systemone hasg;=0, and for eactX;, the realiza-
tion x, is uniquely determined. The mappifgn Eg. (3) is

A conditional expectation value of some random variadles
and B with outcomesa and b is defined byE[A|B]
y=fapA‘B(A=a|B=b)da with pa g denoting the respective
conditional density. Due to linearity, Eq&) and(9) can be
solved analytically. The solution for the states is

X(t|t—1)=E[fX,_1|Y]=fE[ X,_4|Y]=fx(t— 1|t— 1),

then defined as (10
t wherex(t—1|t—1) denotes the mean of the filter density at
f(Xt—at, M) =Xe—art _MF(X(T)-)‘)dT- ) time t—1. The associated covariances or prediction errors

are defined by

Since this equation generally cannot be solved analytically, a . . ~
numerical approximation for the functidrnas to be applied. P(t|t—1)=E[(X;—x(t|t—1))(X—x(t[t—1))T| Y],
It should be mentioned explicitly here that although the state (11
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Pyy (t|t—1)=E[(Y,—y(t|t— 1) (Y~ y(t|t—1)T|¥], are truncated instead of the modélsnd h. Higher order
moments of the filter density are neglected, i.e., mean and
covariance are used only. A sample set with same mean and

Pyy (t[t—1)=E[ (X~ X(t|t— 1)) (Y,—y(t|t—1)T|¥], covariance is generated and propagated through théniuil

(13 approximated as with EKFstate space model. Unlike sto-
chastic approaches, e.g., rejection schemes, where large
where for linear models the expectations can be computegimounts of samples are needed, the idea of Julier and Uhl-
analytically. The correction step then updates the predictionghann was to use a set that is constructed in a deterministic
for the state and estimation error using the new observatioyay and therefore much smaller in size. This sample set
Yi: {A&;13" is given by the so-called sigma points

XD =X(t-1)+K(y—y(tft=1), (14 Ko(t—1|t—1)=X(t—1[t—1),

_ 1) — _ T ~
PAD=PEI=D=KPw =DK1y gt 1)=3t—1jt—1)+[Vint OPE—1[t- D,
Uncertainties given by the errors of the previous prediction a7

step are considered by th&lman gain matrix .
X o(t—1t—1)=X(t—1]t—1)

K =Pyy (t]t—1)Py(tt—1), 16
=Py (tlt= 1Py (tt—1) (16 e =
which acts as weight of the innovatigp— §/(t|t— 1), usedin
Eq. (14). Starting with initial guesses for the statgl|1) and
its covariance matri¥(1|1), the filter recursively improves
the estimationx(t—1|t—1) andP(t—1|t—1) tox(t|t) and
P(t|t) using information available by the measuremgnt

with i=1, ... n. The value ofx is fixed (see belowy, and
(\.); is theith row or column of the matrix square root. The
data se{ X;}3" is propagated through the full nonlinearities
andh using the prediction rules

The Kalman filter yields unbiased and consistent estimates X (t)t—1)=f(X (t—1|t—1)), (18)
for linear state space models only. In the case of nonlinear
models non-Gaussian densities are approximated by Gauss- Y (t|t—1)=h(X,(t|t—1)). (19)

ian distributions. The particular choice of mean and covari-
ance of these Gaussians leads both to the extended and ufje resulting sample set$2c'i(t|t—l)}§” and {Yi(t|t

scented Kalman filter. - 1)}(2)n may represent a density with higher order moments
but due to linearization only mean
B. Nonlinear extensions to the Kalman filter
2
The most widely used approach for filtering nonlinear .

state space models is to approximate the nonlinear functions X(t|t— 1)226 W X (t]t—1), (20)

f andh of Egs.(6) and(7) by their Taylor series expansions

in terms of the prediction erroX,—x(t|t) [12,13. This is R 2n

realized by the extended Kalman filtéEKF) of first and y(tlt—1)=zO W, Yi(t]t—1) (21
=

second order. The first-order EKF assumes that the state

space model is linear within the scale of errors. Therefore, it .
. ) A and covariance

suffers from second and higher-order linearization errors, the

need for Jacobian matrices, and implementation difficulties. 2n

If nonlinearities cannot be approximated well by linearized pYY(t|t_1):2 W{Vi(t[t—1)—y(t|t—1)H{W(t]t—1)

terms(like in dry friction systems, for examplemost EKF i=0

estimates are biased and inconsistent. The second-order EKF -

demands extensive implementation efforts due to the need —y(tlt—=1)}7, (22)

for Hessian matrices. Another way for filtering is to treat the

filter density directly by means of a representative set of -

samples. Applying the state space equations to these samplng(m_l):izo Wi{ X (tt—1) —x(t[t— 1) {Wi(t|t— 1)

sets yields new prediction statistics, i.e., mean and covari-

2n

ance, that can be used with the Kalman filter update equa- —y(tjt—1)}, (23
tions.
2n
C. Unscented Kalman filtering P(tt—1)=> W{X(t[t—1)—x(t|t— 1) (t|t—1)
i=0
A novel procedure for dealing with estimation in nonlin- .
ear state space models has been proposed recently by Julier —x(tjt=1)}7 (29

and Uhlmann[5]. This procedure belongs to the class of
statistical linearization schemg43,14 in which densities are used. The weights are defined as
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The predicted mear(t|t—1) and covarianc®(t|t—1) are ; . :
updated by the Kalman equatiofis})—(16) to yield the state I i j s

3

estimationx(t|t) and its estimation erraP(t|t) for the non-
linear state space model. The set of H39)—(25) is called < -2r
unscented transformation

In order to control estimation properties, a constant scal- 3 0 I
ing parametek is introduced. Problems with scaling arise if o m w F v M
k<0, because then the predicted covariance may not be 959 960 970
positive definite any longer, and the filter would yield incon-
sistent estimates. This disadvantage can be overcome with FIG. 1. (8) Limit cycle of the Lotka-Volterra system with pa-
the scaled unscented transformatidrb] or a square root rameters\=(1,1.5,2Y for t e [900,100Q. (b) Estimated limit cycle
implementation approacfL6]. In our applicationsk=0 is  for te[900,100Q. (c) Clean (x), noisy (- - -), and estimated—)
used to keep things simple. time series fort e [950,100Q.

The advantages of the UKF can be summarized as fol-
lows: (i) higher order accuracy as compared with the oftertioned here that measurement disturbances often have to be
used EKF of first ordeii) derivative-free optimizationjii ) described in terms of correlated noise components; the func-
easy computational implementatigmatrix algebra opera- tion h” then differs from the identity, e.g., it becomes a non-
tions only. More details and investigations related to thediagonal matrix. Note that the filter implementation must as-
UKF and some recently published improvement and theoretsure not to alter the noises by the incoming observagion

=

1t

B

¢ 980 990 1000

ical framework are given in Ref§15-17. during the update step, because the noises are by definition
independent of this observation. Detailed information con-
D. Joint state estimation cerning this issue within the UKF framework can be found in
Ref.[5].

A possible way to encounter with parameter estimation is
to treat the parameter vector as a dynamical variable itself. It
is important to note that even if the state space modek{for IV. PARAMETER ESTIMATION FOR NONLINEAR
and\, is linear, i.e.f andh are matrices, the joint-model is DETERMINISTIC SYSTEMS

bilinear in state and parameters. To this end, the parameter \ye demonstrate the potentials of the UKF for two para-
vectorA, is modeled by the evolution equation digmatic models in nonlinear science, the Lotka-Volterra sys-
A=A (26) tem[18] and the chaotic Lorenz systerh9,23.
t— M-1-

Although the parameter is constant within the state dynam- A. Lotka-Volterra system
ics, it is modified in each recursion step by the measurement
update equation&l4)—(16), as long as the current value de-
viates from the true parameter. In order to deal with the nois
realizatio_nSGt and #; in a simple way, they are treated as D=\ Dy(D)_ )\ @y Dy (2)

state variables as well3]. A new, joint state is constructed '

by merging the signak; with the parametei; and noise .

realizationse, and #, into the joint state vectof, with the X =)\ @xDx2)— )\ ()x(2), (29)
time evolution

First we estimate the state and parameters for the Lotka-
é/olterra system,

Superscripts denote the component of the state
Xt -1 M)+ €1 =(x®) x)T and the parametex,= (A, A ACHT Data
) N ) V) o of lengthN= 10000 are generated by numerically integrating
Jt= = =f(i-1) 27 Eq. (29 with the parametera =1, A\®@=1.5and\®
=2, using an embedded Runge-Kutta meth2d| with au-
L -1 tomatic step size control and subsequent sampling with in-
terval At=0.1 (note that the integration step size may differ
from the sampling interval This yields nonlinear periodic
—hiG)=h(x)+h"(n). 28 oscillations represented by a limit cycle in state spldcig.
W= () =hix)+h7(m) o 1(a)]. The observations are generated by corrupgffgwith
For our case of additive and uncorrelated measurement noisglditive Gaussian noisg,~MN(0,P,).
the functionh” reduces to the identity. But it should be men-  Using the state space formalism, the system

and the observation function
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Xt frv(Xe—at  At—at)

3
ZL (a) ALMN
A = AM-at * (30 5;1| RLOI N T
0 M
7 - At
_ 0.9
10 250 500 ¢ 750 1000 %00 600 ¢ 800 1000
— (M (1) 4
V=X my (3D ®)| LS

g2 %1.45%
is obtained, wherd,,, denotes the integral equatidb) for ©
the Lotka-Volterra system witidt=0.1 and 7{*) the first 00 250 500 (750 1000 ‘40 &0 ¢ 800 1000
component ofy, with ("~ A{0,62). The amount of obser- 8
vation noise is characterized by the percental signal-to-nois¢_ 6 © 2%
ratio of the standard deviations of the clean sitéand the <4 ]
noise. In this case is 10%. Next, we estimate the param- 2 19 ®
eters and the clean state, under the assumption that the ur 0 250 500 ¢ 750 1000 400 600 ¢ 800 1000

derlying dynamical model and statistics of the measurement

noise is known. Initial guesses for parameters are chosen to F!G- 2. (@—(C) Estimated parameters vs time for the Lotka-
be twice the true vaIue§;§”= 2, X(12)23r andx(l3)=4. The Volterra system(d)—(f) Enlargements taken froi®)—(c) show es-

N . timates with associated 95%-confidence intervals.
initial state estimationx(1|1)=x,; is chosen to bex;

2@

=(y;,y1)". As with every estimation, the error for the esti- L) — _y (D (1) 1y (1)y(2)

7 e X == N N
mated quantities is required in order to state the reliability of

the results. This information is provided by the covariance K=\ @D 4@ (D3,

matrix. If the estimation errorjst—f(t|t) are assumed to be
Gaussian, then with probability the true value of the pa-
rameter lies within the respective confidence interval around

j(t[t). The confidence interval for each parametél is it parametera V=10, \@ =46, and\ (¥ =8/3. We add a

given by difficulty here by generating unevenly sampled data of
lengthN=10000 by integrating these equations with sam-

[ND—c(p)VP;i, N +c(p) VP ], (32  pling time intervalsAt that vary in a random manner, uni-

formly distributed within the rangg0.01,0.03. Figure 3a)

with P;; being theith diagonal element of the associated shows a projection of the three-dimensional clean chaotic

estimated covariance matrix aegp) a distribution depen- attractor into a two-dimensional subspace spannedby

dent value[21]. For non-Gaussian estimation errors, theand x§2>. The observation is constructed by corrupting the

value ofc(p) cannot necessarily be determined exactly and:omponenugl) with Gaussian noisay~A\{(0P,).

therefore is approximated by making the assumption of Again, in order to estimate states and parameters simulta-

Gaussianity. neously, the problem is written in the state space form as
The result is

X3 = _\@)x(3) £ ¢y (@) 33)

A1=1.0024, /P,;=0.0057,

A(?=1.4870, /P,,=0.0119,

A3)=1.9844, \/P;3=0.0160.

All estimated parameters differ from the true values by less 20
than 1%. The estimated parameters with 95%-confidence in_ h.
tervals calculated from the covariance matrix are given in=,~0r3.
Fig. 2, the state estimate$?) andx® in Fig. 1. The differ-
ences between estimated and clean states are negligible smi =207
if related to the difference between clean states and nois)

data. 92 293 294 295, 296 297 298

FIG. 3. (a) Projection of the clean attractor of the Lorenz system
with parametera = (10,46,8/3] into the two-dimensional subspace

Now we treat the, more complicated case with respect tgor t[268,300. (b) Projection of the estimated attractor for
convergence, of chaotic dynamics. A well known example iSe[268,304. (c) Clean (X), noisy (- - -), and estimated—) time
the Lorenz systerfi23] series fort €[292,300Q.

B. Lorenz system
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we treat the more general case of systems with additive dy-

3
2| 1.04 d ; e s .
R 2| @) _ N namical noise, i.e., systems described by Langevin equa-
v&é ! RLOL™ e T tions.
’A’MW
- 0.9
19250 s 70 1o o a0 w0 o

A. General setup

We consider systems of the form

X(t)=F(X(t),N) + €(t), (36)

1.
250 500 ¢ 750 1000 4‘1‘00 600 t 800 1000

(©) P WU gy with constant parametex and e~A\{0,P,). Again, due to
time discrete observations, one needs to integrate(Egj.
19 @ over the sampling time intervalt. Then the functiorf in
Eq. (3) reads

}\'(3)

N AN O

|

0
| 15
=2 k 145 W
0
0

250 500 ¢ 750 1000 400 600 t 800 1000

FIG. 4. (a)—(c) Estimated parameters vs time for the chaotic
Lorenz system. Enlargements taken frgax—(c) show estimates f(Xi_at ,}\,et)zxt,Aﬁ—f
with associated 95%-confidence interved$—(f). t

t N F(X(T),N)+&(T),dT.
t

(37)
Xt fL(Xe— atcry M- atee) L . .
Contrary to deterministic systems, for a numerical integra-
A | = SN ' (34 tion of this equation only low order integration methods, like
7 M- At(t) the explicit Euler scheme, can be appligd21,24. This is
due to intractable stochastic integrals that would occur on the
ye=xB+ 5. (35  right-hand side of Eq(37) when constructing higher order

integration schemes like the Runge-Kutta method of fourth
The signal-to-noise ratio is set to 50% of the standard devia?'der- Using a low order scheme enforces an integration step
tion of the clean signal. The integréil in Eq. (34) is solved ot that often is considerably smaller than a reasonable sam-
numerically by the same method as in the previous examplé?”ng time intervalAt. Therefore, several integration steps

Initial guesses for the joint state are chosen to be half the trufo™M timet—At onwards are needed in order to predict the
- - statistics of the state at the update tim@&he Euler scheme
values. All components of the initial statig are set to the

only observed valuey,y,.y.)T. for Langevin equations of the type E@7) reads
Figure 4 shows the parameter estimation, as it develops in

time, with associated confidence bands. Convergence is Xi—atsst=Xi—ar T OtF(XiZat M)+ \/ﬁq_M. (38
reached for times larger tham-275. The final estimate@t

t=300) are Since a random variable like the statg_,, is completely
. characterized by its probability density, it is sufficient to look
\(D=10.2588, \Py;=0.1574, for the evolution of this density. This can be done using the
respective discrete Fokker-Planck equation or simulations
A@=456972, \P,,=0.4811, utilizing a discretization of the density by a finite, but repre-

sentative, set of samplgs; ;—}. The discrete density at
time t—At+ 6t then is obtained by propagating the samples

A®=2.6399, \/Pz=0.0437. according to

These estimates differ from the true valued)=10, \(?)
=46, and\(®)=2.6666 by a few percent only. The true val- Xi it o= 1 att OF(X; t-at, M)+ Vote - (39)
ues are located all within the estimated 95%-confidence
bounds given b)f\(‘)il.%\/P—“. The reconstructed attractor Here, € 5, denotes théth sample of the stationary Gauss-
is shown in Fig. 8), and a visual comparison of noisy, ian white noisee;_,;. With respect to the UKF, the sets
estimated, and clean state variakf® is given in Fig. 3c).  {Xi«—at} and {€_,; are chosen as the sigma points
One observes that the measurement disturbances have bde¥ (t— At|t—At)}2", and{&;(t— At|t—At)}2", of the re-
compensated considerably. spective state and noise density. Thus, only information pro-
vided by the mean and covariance of the full state density is
V. PARAMETER ESTIMATION FOR LANGEVIN qtilized during eagh integration step. The numerical in.tegra-
SYSTEMS tion step overdt is performed by propagatmg_the sigma
points through the Euler scheme of the respective stochastic
In the preceding section the UKF was used for state andifferential equation given by E¢39), in shorthand notation
parameter estimation of deterministic state equations. Nowvritten as
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X (t—At+ 5t|t—At)=fEULER(5t)(?€'i(t—At|t—At),7\,5i(t computed. Using this mean and covariance, a new set of
sigma points{ X (t— At+ 8t|t—At+ 6t)}2", is constructed
—At|t—At)). (40)  for the next Euler step to be performedtatAt+ ot. Since
the dynamical noise is stationary, the predictions for the
sigma points, which represent the density of the noise read
From the predicted point§X;(t—At+dt|t—At)}0, the  £(t—At+ dt|t—At)=E (t—At|t—At) for everyi. It fol-
mean and covariance according to E¢&0) and (24) are  lows the joint state space representation

X (t—At+ St|t—At) feuLer@en (X (t—At[t—At),N(t— At[t— At), & (t— At]t—At))

Ni(t—At+ t]t—At) Ni(t—At[t—At)
E(t—At+5tlt—At) | E(t—At|t—At) ’ 4D
7(t—At+ St|t—At) 7(t—At[t—At)

where a constant parametkrand stationary measurement starting guessefs(lll):(yl,yl)T, i(l)(1|1)=6, and the

noise 7 is assumed. _ unscented Euler scheme we obtain for the parameter at
Repeating this unscented transformation for all subse- 1000,

guent integration steps until the sampling titis reached,

gives a predicted mean and covariance for the joint state that

is updated finally by the observatigpaccording to the UKF

rules Eqs(14) and(15). Next this “unscented Euler integra-

tion scheme” is used within the UKF framework in order to

estimate states and the parameter of the stochastic van

A(D=2.9600,/P, =0.0432. (46)

Figure 5 shows the convergence behavior of the estimated
O%z?rameter over time. The final estimated parametet at
=1000 differs from the true one by less than 2%. Finally we

Pol system. ; . ; ;
y can state that the UKF in conjunction with the unscented
Euler scheme enables reliable parameter estimation from in-
B. Stochastic van der Pol system complete and noise corrupted data of the stochastic van der
The stochastic van der Pol system in first order writing isP©! System.
given by

) VI. DISCUSSION
XD =x(2), (42)
We have demonstrated that the technique of unscented
] Kalman filtering enables simultaneous state and parameter
X@ = \D((1-XDXDYXP) - X D))+ ¢, (43

10 3.2
where the second component is driven stochastically by un- 8 3.1 _N/”M
correlated noise. This system has been studied extensively, ~ 6 s 3
- | o~ M
and for the sake of comparability we use the setup proposec< <
in Ref. [2] by fixing e~A(0,1), \("=3, and taking an in- 2 Z-QW
tegration step width obt=0.001 for the respective explicit 0 . 2.8
Euler schemégy gr(s) - This is given by -2 0 2 400 600 ; 800 1000
107 o9t 10 t
1 1 2 3
XE—)AH— st X§—)At7L 5tX§—)m , (44) ol
it
2 _ (2 1 1 2 1 e
XAy =Xy i+ SND((L—xBy xBy )xPy —xBy) SR
1t
+ €—at- (45) D e

The sampling time is set tat=0.1. Applying the Euler 880 985 990 ¢ 9 1000

Scheme_ to_ the St_OCh_aSt'C van de_r Pol Sy_stem yields a nonlin- FIG. 5. (a) Estimated parameter vs time for the stochastic van
ear periodic oscillation that |sl?)lolghtly disturbed by the dy- yer poj system. Due to rapid convergence, a logarithmic axis is used
namical noise. Observatiotig,};-o ; are generated by taking for the time.(b) A zoom of the estimated parameter with associated
the first state component only and corrupting it with 10%95% confidence intervals taken frofa). (c) Clean (x), noisy

measurement noise;~f\/(0,af7). Applying the UKF with  (.-.), and estimated-) time series fott  [980,1000.
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estimation from incomplete data of a variety of nonlinearform of the model. This is possible so far only if all compo-
dynamical systems with relatively large amounts of measurenents of the model are observed, and only for small amounts
ment noise. Contrary to methods that yield similar estimatiorof noise[26—-28, problems of much less complexity than
results for deterministic systenia4], the unscented Kalman those considered heréThese approaches differ from other
filter has smaller inplementational efforts and can be use@onparametric approaches of nonlinear time series analysis
with stochastic systems as well. Unlike in many other aphased on reconstruction methd@®,30, in that the former
proaches, the model nonlinearities are taken as they are agb|d estimates of equations of motiprOur future research
arenot approximated by a Taylor series expansion. Furtheryj| concentrate on a combination of parametric modeling
more, time expensive stochastic simulations are not necegmd nonparametric approacHe].
sary. This makes this approach very ﬂEXible, and it can also We consider the approach proposed here to be promising
be applied to systems where the explicit form of the nonlin-in particular for the analysis of physical experiments in
earities are not known or derivatives are difficult to Computewhich the parametrization cannot be derived from first prin-
Therefore the numerical solver of the model can be usediples, like in many problems of pattern formation in liquids
identically also in the model estimation procedure, thereforeang granular medig27,32—34, in the modeling of severely
We note that the choice of the initial covariance matriceshonstationary data that are abundant in life sciefi8gs 37,
may be crucial for the convergence rate of the filter. Thepr in materials sciencf88,39. Finally, we mention that the
estimation of the variances, especially of the dynamical noisgccurate estimation of a model can help in estimating invari-

term, for the case that they are unknown, is an ongoing topignt quantities like Lyapunov exponents from observations
of research. The ability to tune the scaling parameter and theyo 41,

absence of derivatives in the unscented Kalman filter allows
for parameter estimation in discontinuous models as well,
but also this needs some further treatn{@ﬁ]_. ACKNOWLEDGMENTS
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