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Generalized synchronization of chaos in noninvertible maps
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The properties of functional relation between a noninvertible chaotic drive and a response map in the regime
of generalized synchronization of chaos are studied. It is shown that despite a very fuzzy image of the relation
between the current states of the maps, the functional relation becomes apparent when a sufficient interval of
driving trajectory is taken into account. This paper develops a theoretical framework of such functional relation
and illustrates the main theoretical conclusions using numerical simulations.
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[. INTRODUCTION specific we consider the systems in the form of the following
maps:
Since the first studies by Van der Pol the dynamical theory
of forced synchronization relates the synchronization phe- Xn+1=F(Xn), 1)
nomena to the onset of stable response behavior of driven
oscillator[1-3]. As a result of this stability, the beats in the Yn+1=9c(Xn:Yn), 2

response oscillations disappear and a stable periodic motion
occurs in the phase space of the driven oscillator. After tha 1
the oscillator becomes enslaved by the periodic forcing. Twd2) the response system. We assume for the sanlfe of definite-
main bifurcation scenarios that lead to the formation of the'€SS: tDat in the systemd) and (_2) xe XCR" and y
stable response behavior are the birth of stable limit cycle orf Y © » and thatf andg. are continuous. The subscript

a torus [2,4—7 and Andronov-Hopf bifurcation[2,8,9. stands for a coupling parameter. The glot_)al dynam|cs gener-
Based on these theoretical frameworks recent studies of sy@i€d by the systemdl) and (2) can be written in the form
chronization in the chaotic oscillators have led to the develFc(Xn:¥n) =(Xn+1,Yn+1)-

opment of various notions of chaos synchronization. These

notions include identical synchronizati¢f0—12, general- [l. THEORETICAL RESULTS

ized synchronizatiof13-16, and phase synchronization
[7,17,18.

An extension of the stability approach towards the case o
directionally coupled nonidentical chaotic oscillators is cap-
tured by the notion of generalized synchronization. The term -
generalized synchronization, was introduced in Re4] and these orbits. . .
used to describe the onset of synchronization in directionally Assume thf.it there exists a part'.t"@(l’ o 'X'}. of X,
coupled chaotic systems as the formation of a continuou§uch thatf|xj is one-to-one to the imadewe define the
mapping that transforms a trajectory on the attractor of thdackward symbolic sequence=(ag,ay, ... ,a,, ...) as-
drive system into a trajectory of the response system. For thgociated to a backward sequenog &1, ... X_pn,...)
systems with invertible dynamics this is equivalent to thewith a;j=j if x_; e X;.
formation of a continuous mapping that links the current Since we study synchronization in dissipative systems we
states of the systems when they are settled down on the syAlso assume that there exists a ball of dissipaBari™”,
chronous attractor. i.e., F.(B)CInt(B) for anyce S, whereSis a region in the

In the case of invertible dynamics of the driving systemcoupling parameter space in which systénhas stable re-
the relation between attracting properties of the response béponse behavior. Without loss of generality we assume that
havior and some of the properties of the synchronizatioB=B,XB,, i.e., B is a rectangle, wher®, (respectively
mapping has been reviled and proj@@—24. In the case of By) is a ball in thex space(respectively y spageDenote by
noninvertible dynamics the relation between the responsel. the maximal attractor irB, i.e., A.=N;_,F(B). As-
stability and existence of the synchronization mapping wasuming that systerf®) has stable response behavior, we have
indirectly observed with the auxiliary meth¢a5,26. How-
ever, the detailed and rigorous study of this relation has not lim |yn—§/n|=0, 3)
been done. n—o

This paper presents the results of theoretical and numeri-
cal study of the onset of functional relation between the cha=—
otic trajectories of driving noninvertible system and the The expressiori\xj stands for the restriction of functidito the
states of the response system. Some results about this typepirtition elemeni; . This type of partition is standard in the Mar-
synchronization can also be found in Reff27,28. To be  kov maps of the interval, see for exampR9].

here Eq(1) describes noninvertible driving system and Eq.

The noninvertibility off implies that for anyk, e X, there
re possibly infinitely many different backward orbitsgf
?xo,x_l, ... X_p,...). Let usdenote byP(xy) the union
of all these possible backward orbits. Denote fopne of
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where  &,,yn) =Fd(Xo,Yo) [(Xn.¥n)=Fc(X0,Y0)] and
(X0.Yo), (Xo.Yo) are arbitrary points irB.

Let A =11, A, be the image of4. under the natural
projectionll, to X. The setA. , is the image of4. by I1,,
the natural projection te.

Theorem 1Under assumption of stable response given b)f

Eqg. (3) the attractorA, is the union of graphs of infinitely
many functions. Each function® is determined by a sym-
bolic backward orbitw. Moreover eacth® is continuous.

Scheme of the prooffThe main point of the proof is to
note thatx, and a determine all the backward orbj
=(Xg,X_1, - - - X_p, - . . ). From here the proof is similar to
the one for the invertible cag@3]. Givenp, one can define
h“(x,) as the following limit:

he(xg):= lim II,F2(X_y,y)
n—oo

—

independently ofye B, . This limit exists because of as-
sumption(3).

Continuity is proved in the same way that in the invertible

case taking into account thatis the same fox andx, two
close points inX (see[23] for details. [ |

Assume that the driving system is generated by a fridp

the intervall. Then we can say more about regularity of

branches provided thay,—Yy,| goes to zero exponentially
fast. Indeed the following proposition holds.

Proposition 1 Assume that

|yn_yn|$A)\n’ (4)
whereA>0 and 0<\ <1 are constants depending crAs-
sume also that the one-dimensional driving sysfam“hy-
perbolic,” i.e., there exist® such that ")’ (x)=1/y_>1
for all n=ny and for anyx for which the derivative exists.
Then each branch® is Lipschitz continuous.

Scheme of the prooThe proof is basically the same as
the one of theorem 7 in Rei23]. The point is to replace the
space of Lipschitz functiond| , by H, y , with the restric-
tion that the domain foh*eH_ \ , consist of values ok
compatible witha.

Remark that by assumption, one has<<1. The condi-
tion (16) in theorem 7 in Ref[23] can be replaced by

1
O<AN"<—,

©)

which is always true ih is large enough. [ |
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with «. That is, if there is no backward orbit for the value
with the symbolic itinerarya, thenh® is not defined ak.
Thus, in general, the number of brancheshaé not neces-
sarily the same for alk.

Corollary to Theorem 1If {X;} is a Markov partition then
or any admissiblex, the domain oh® contains an element
of {Xi}, i.e., ifa=(ag, ... ,an, ...) thenD(h*) DX,

One may ask when two different brancheshadre close.
The next theorem shows that two branches that have similar
recent history, are close to each other. Branches with differ-
ent recent symbols could be either close or far from each
other. As numerical simulations discussed in Sec. Ill we
show that branches with different recent symbols may even
intersect each other.

Theorem 2 Let {a'} be a series of infinitely long sym-
bolic sequences' e{1,...J}" such that lim a'=a in
the standard product topolog29]. Then,

lim|he' —he|=0,
i—oo
where|h#|:=sup,. pz)|h?P(X)|.

Proof. From Egq.(3), there exists arN such that forn
=N and for anyy, andy,

(6)

|yn_’§/n| Se.

This is, of course, true also fof, %EAC,y-
Now, choose big enough in such a way that the fifst

symbols ofa and a' coincide. This means thax,h¥(x))
and (x,h“'(x)] have the same firstN x preimages

(X_1, ... X_n). Then one can apply E¢6) for these points
obtaining

Ihe'(x) — he(x)| <e.

This is true for any compatible witha anda'. The theorem
is proven. |

If one assumes monotonicity in assumpti@, that is, |y"
—§/”|S|Y|c“, then a stronger result holds: Letand @ have
the same firsh symbols, therth*—h*|<|Y|c".

Let us remark that there are three logical possibilities for
the structure of the sdi(x): it could be finite, it could be
countable, and it could contain a Cantor set.

The first possibility trivially occurs in the case of identical
synchronization, that can exist even for noninvertib(see,
for instance[23)).

The second possibility can be justified by construction of

Taking into account details of the proof of this proposition a special pairf,g.. We believe that it could be done. It is

(which are omitted here and can be found elsewh2B3)
one might expect that if is not hyperbolic then continuous
synchronization functionf® could be not the Lipschitz-

definitely true for the case whehnhas zero topological en-
tropy, i.e., the number of admissible worflg,, . . . ,@,_1
grows subexponentially asgoes to infinity. For example, if

continuous functions. In this case the picture of individualthe topological Markov chain corresponding to a Markov
branchesh® might contain wrinkles and cups, and as thepartition{X;} has zero topological entropy then the number
result, might appear fuzzy in numerical simulation due to

finite resolution.

From now on we denote bly the union of all graph&“.
Each brancin“ is only defined for the values afcompatible

2This means in particular that the greater ithe greatem first
symbols ina anda' coincide.
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of admissible words grows not faster than polynomially. If It can be shown with the analysis based on contraction
topological entropy is positive then the construction of suchmapping[30] that stable identical oscillations in response
an example is rather difficult, we are going to study thisand auxiliary systems are guaranteed when the values of cou-
problem elsewhere. pling parameter are within the interval -1l/a;<e<1

The third possibility seems to be generic in a space of+1/a,, where aj=a(1—2y'"), a,=a(l—2yp'®), and
pairs of functionsf,g. provided thatf has positive topologi- y™" and y["®* are the leftmost and rightmost points of the
cal entropy. It seems natural to believe that different drivingattractor in the response system. This indicates that if for the

signals correspond to different outputs in the regime of synselected parameter values of the maps the coupling is stron-
chronization. Numerical simulations considered in Sec. lliger than e=0.7, then synchronization is monotonically

confirm this conjecturésee also Fig. 3 in Ref27] and Fig.  staple.

2(d) in Ref.[28]). However, we do not have a rigorous proof  More precise evaluation of the synchronization threshold
of this statement right now. can be done with the analysis of conditional Lyapunov ex-
The statements made above give a clear picture of thgonentgsee, Fig. 1a)] and with the analysis of deviation of
underlying structure of generalized synchronization of chaogesponse-auxiliary system from manifojg,=z,. The de-
in the case when the dynamics of drive system is noninvertpendance of maximal,,,, and rmsd, s values of deviation

ible. d,=z,—y, on the values of coupling parameter are pre-
sented in Fig. (b).

I1l. SYNCHRONIZATION FUNCTION IN Based upon the plots in Fig. 1 one would expect that the

NONINVERTIBLE MAPS: EXAMPLE regime of generalized synchronization takes place for the

coupling parameter values>0.3. This regime assumes ex-

~ Tolllustrate the properties of generalized synchronizationstence of a continuous functional relation between the tra-
in noninvertible maps consider the synchronization of |°g'sjectoriesxn andy,. However, when one plots the states of

tic map driven by tent map. In this case functiix,,) in the e one-dimensionallD) phase spacg, on the synchro-

driving system(1) is of the form nized attractor vs the corresponding states of one-
. dimensional phase spaxg, the image of such relation looks
F(x) = x/b if x<b fuzzy, see Fig. 2. It is clear that point to point mappig
(x—=1)/(b—1) if x=b, —Y, cannot be interpreted as a continuous function.

In order to unveil the synchronization function in the nu-

whereb is a control parameter,9b<1. We will consider merical  analysis ~we  consider the  mapping

the case when the dynamics of the response system is givé¥n:[ @1, - - . .@m]) —Yn, Whereay are symbolic representa-

by the following map: tion of prehistory of the trajectory,. These symbols are
generated by the tent map) that is partitioned into two

Yn+1=(1—€)ayn(1—yn) +ef(xy), () o

wherea is the control parameter of the map and[0,1] is

a coupling parameter. Note that upper bound of the contrac- N
tion rate in they direction denoted by in preceding section

is, in this case¢c=(1— €)a. In the numerical simulation con-

sidered in this section the values of control parameters are 05 |
fixedb=0.677 anda=3.7.

Since the dynamics of the maps are different, the gener-
alized synchronization is the only possible regime of syn-
chronization, except to the trivial case whes 1. The onset
of generalized synchronization is detected with auxiliary sys-

tem approach. In this analysis we study the stability of the %050 05 X 1.0

chaotic response attractor in the manifold=2z,, where "

variablez, is described by an exact replica of the syst@én FIG. 2. Synchronized chaotic attractor computed &t 0.6
that is called auxiliary syster25]. plotted in the phase plane,y,).
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FIG. 5. The dependence of the convergence Aatm the value

FIG. 3. Points of the synchronized chaotic attractor shown in ;
f coupling parametee.

Fig. 2 generated by the trajectories which symbolic sequence o
length m=8, preceding the final poink,, fits to the mask
[L,L,RL,L,RRR]. €=0.6. Eps(m)~erm, ®)

regions:ay =L if X,_<b anda,=R if x,_,=b. The points

of the synchronous attractor whose preceding symbolic se- find the rate of hich is in th
quence of the driving trajectory has a specific sequdace one can find the rate of convergence, which is in the ease
mask were selected and analyzed separately. This analysis 0-6 égualsi~—1.05.

shows that as the length of the sequence increases the cloydF19uré 5 shows how the convergence rateiepends on

of points shrinks into a curve. An example of such conver-tN€ value of coupling parameter Comparing this plot with

gence is illustrated in Fig. 3, where the mask of eight sym{he Plot of conditional Lyapunov exponent s one can
bols[L,L,R,L,L,R,R,R] is studied. Similar behavior is ob- clearly see the similarity in these plots. This is indicative of

served for the other sequences of the same length. In tHhe fact that in the generalized synchronization regime in our
sequences of this length the shape of the curve varies as th@S€ the convergence rateis related to the contraction rate
symbolic sequence changes. All together these curves for@ r€SPonse system given by conditional Lyapunov exponent

the fuzzy shape of the synchronized attractor as shown ift- This relation was defined for the case of monotonic sta-
Fig. 2. bility of the response behavior, see Sec. Il. _
To evaluate the convergence of the image of synchronized ©Ne can see from Fig. 2 that synchronization mapping for

attractor to a continuous functidif(x) we analyzed the sets e current states of the drive and response system has a
of attractor points conditioned by all possible symbolic_comp'ex structure of branches. The appearance of Cantor set

masksa of various lengthm. For each mask of preceding M the synchronized attractor caused by noninvertible driving
symbolsS, =[ay, . .. ] we computed the best polyno- system was reported before in RE28]. The formation of

- : : : : ; the fractal structure can be explained by the analysis of de-
mial fitting function ¢Sm(x) of order six using singular value viations of the branch caused by the change of Sy |

decomposition algorithm, and studied the dependance Ocippeared in the symbolic sequentéterations before. For
mean squared errofMSE), averaged over all masks of the most of the driving trajectories, the stability of the re-
lengthm, vs m. This dependence computed for the values ofsponse behavior acts in a such way that the deviation will be
coupling parametee=0.6 ande=0.4 are shown in Fig. 4. reduced with the increasing value of As the result the
One can see from the Fig. 4 that MSEys decreases deviations of different scales for different values rfare
exponentially fast whem increases. Approximating this de- responsible the formation of the complete structure of the

pendence with exponent synchronized attractor. This explains the formation of fractal
10% | , , structure in the synchronization mapping that consists of in-
MSE finite number of the branches.

0o | This mechanics behind the formation of Cantor set is il-
lustrated in Figs. 6 and 7. Figure 6 shows the set of points of
the synchronized attractor corresponding to the trajectories

L whose eight most recent symbols are fixed. One can see that
branches with the same most recent symbols remain rela-

10° +—ec=06 tively close to each other, while the branches with different

see=04 most recent symbols can get apart significantly. The similar
10° situation takes place for the alternation of the more remote
0 2 4 6 8 symbols, see Fig. 7. However the scale of the deviation in

m this case is less then in Fig. 6. Further increase of the length

FIG. 4. The dependence of MSE of best polynomial fitting func-Of alternating symbols by one in considered mask of symbols
tion for the attractor pointg,, ,x, on the lengttm of the preceding the number of branches doubles. The additional branches
masksS;, . appear close to the branches with the same most recent sym-
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FIG. 6. Branches of the synchronized chaotic attractor shown in  FIG. 7. Branches of the synchronized attractor for the sequences
Fig. 2 computed for symbolic sequences of length=8, [L,a5,a3,L,L,R,R,R]. The values of three most recent symbols
[a1,2,,R,L,L,R,R,R]. The values of three most recent symbols L,a,, a3 are shown next to the corresponding branch.

aq,a,,R are shown next to the corresponding branch. .
according to the papefd9-24], one would expect that®

i would become nondifferentiable, ler continuous function
as the contraction rate in the response system becomes lower
than some critical value. However, this critical value is given
by a contraction rate towards the chaotic attractor in the driv-
IV. CONCLUSIONS ing system. In our case the driving trajectories of the 1D map

The results of the theoretical analysis of synchronizatioﬁ'v ith the specified symbolic sequenaedo not have contract-

presented in Sec. Il and the numerical analysis of particula'rng direction. They havg only unstable direction. As the re-
example considered in Sec. Il allow one to draw a numbe ult the contraction rate in the response system for any given

of important conclusions on typical properties of synchroni- ranchh is always stronger than in the driving system.

zation mapping that characterize generalized synchronization This fgature_ Is typical for t.he driving systems in the form
of chaos in the case of noninvertible driving system. of one-dimensional hyperbolic map. In the case of nonhyper-

The synchronization mapping, in this case, can be interp_OIIC 1D driving map f_unctmm“ may become nonqllfferen-_
preted as a continuous function only when all backward it_t|able_and contain wrinkles and_ cusps. Another Interesting
erationsx_,, of the driving trajectoryx, are included in the quesftlon arses when one consperg a system without expo-
vector of the function arguments. We have shown that Mar—nentlal stability or Markov partition’ It could be expected
kov partition of the driving map can be used to describe théhat b'ran(':hes become nondifferentiable. For the moment the
backward iterations in a compact symbolic way. The set ofluestion is open.
points of synchronization mapping plotted for the trajecto- ACKNOWLEDGMENTS
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