
PHYSICAL REVIEW E 66, 016208 ~2002!
Generalized synchronization of chaos in noninvertible maps
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The properties of functional relation between a noninvertible chaotic drive and a response map in the regime
of generalized synchronization of chaos are studied. It is shown that despite a very fuzzy image of the relation
between the current states of the maps, the functional relation becomes apparent when a sufficient interval of
driving trajectory is taken into account. This paper develops a theoretical framework of such functional relation
and illustrates the main theoretical conclusions using numerical simulations.
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I. INTRODUCTION

Since the first studies by Van der Pol the dynamical the
of forced synchronization relates the synchronization p
nomena to the onset of stable response behavior of dr
oscillator @1–3#. As a result of this stability, the beats in th
response oscillations disappear and a stable periodic mo
occurs in the phase space of the driven oscillator. After t
the oscillator becomes enslaved by the periodic forcing. T
main bifurcation scenarios that lead to the formation of
stable response behavior are the birth of stable limit cycle
a torus @2,4–7# and Andronov-Hopf bifurcation@2,8,9#.
Based on these theoretical frameworks recent studies of
chronization in the chaotic oscillators have led to the dev
opment of various notions of chaos synchronization. Th
notions include identical synchronization@10–12#, general-
ized synchronization@13–16#, and phase synchronizatio
@7,17,18#.

An extension of the stability approach towards the case
directionally coupled nonidentical chaotic oscillators is ca
tured by the notion of generalized synchronization. The te
generalized synchronization, was introduced in Ref.@14# and
used to describe the onset of synchronization in direction
coupled chaotic systems as the formation of a continu
mapping that transforms a trajectory on the attractor of
drive system into a trajectory of the response system. For
systems with invertible dynamics this is equivalent to t
formation of a continuous mapping that links the curre
states of the systems when they are settled down on the
chronous attractor.

In the case of invertible dynamics of the driving syste
the relation between attracting properties of the response
havior and some of the properties of the synchronizat
mapping has been reviled and proved@19–24#. In the case of
noninvertible dynamics the relation between the respo
stability and existence of the synchronization mapping w
indirectly observed with the auxiliary method@25,26#. How-
ever, the detailed and rigorous study of this relation has
been done.

This paper presents the results of theoretical and num
cal study of the onset of functional relation between the c
otic trajectories of driving noninvertible system and t
states of the response system. Some results about this ty
synchronization can also be found in Refs.@27,28#. To be
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specific we consider the systems in the form of the followi
maps:

xn115 f ~xn!, ~1!

yn115gc~xn ,yn!, ~2!

where Eq.~1! describes noninvertible driving system and E
~2! the response system. We assume for the sake of defi
ness, that in the systems~1! and ~2! xPX,Rm and y
PY,Rl , and thatf andgc are continuous. The subscriptc
stands for a coupling parameter. The global dynamics ge
ated by the systems~1! and ~2! can be written in the form
Fc(xn ,yn)5(xn11 ,yn11).

II. THEORETICAL RESULTS

The noninvertibility off implies that for anyx0PX, there
are possibly infinitely many different backward orbits ofx0
(x0 ,x21 , . . . ,x2n , . . . ). Let usdenote byP(x0) the union
of all these possible backward orbits. Denote byp one of
these orbits.

Assume that there exists a partition$X1 , . . . ,Xl% of X,
such that f uXj

is one-to-one to the image.1 We define the

backward symbolic sequenceaª(a0 ,a1 , . . . ,an , . . . ) as-
sociated to a backward sequence (x0 ,x21 , . . . ,x2n , . . . )
with a i5 j if x2 iPXj .

Since we study synchronization in dissipative systems
also assume that there exists a ball of dissipationB,Rm1l ,
i.e., Fc(B),Int(B) for any cPS, whereS is a region in the
coupling parameter space in which system~2! has stable re-
sponse behavior. Without loss of generality we assume
B5Bx3By , i.e., B is a rectangle, whereBx ~respectively
By) is a ball in thex space~respectively y space!. Denote by
Ac the maximal attractor inB, i.e., Ac5ùn50

` Fc
n(B). As-

suming that system~2! has stable response behavior, we ha

lim
n→`

uyn2 ỹnu50, ~3!

1The expressionf uXj
stands for the restriction of functionf to the

partition elementXj . This type of partition is standard in the Ma
kov maps of the interval, see for example@29#.
©2002 The American Physical Society08-1
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where (xn ,yn)5Fc
n(x0 ,y0) @(xn ,ỹn)5Fc

n(x0 ,ỹ0)# and

(x0 ,y0), (x0 ,ỹ0) are arbitrary points inB.
Let Ac,xªPxAc be the image ofAc under the natura

projectionPx to X. The setAc,y is the image ofAc by Py ,
the natural projection toY.

Theorem 1. Under assumption of stable response given
Eq. ~3! the attractorAc is the union of graphs of infinitely
many functions. Each functionha is determined by a sym
bolic backward orbita. Moreover eachha is continuous.

Scheme of the proof.The main point of the proof is to
note that x0 and a determine all the backward orbitp
ª(x0 ,x21 , . . . ,x2n , . . . ).From here the proof is similar to
the one for the invertible case@23#. Givenp, one can define
ha(x0) as the following limit:

ha~x0!:5 lim
n→`

PyFc
n~x2n ,y!

independently ofyPBy . This limit exists because of as
sumption~3!.

Continuity is proved in the same way that in the invertib
case taking into account thata is the same forx and x̃, two
close points inX ~see@23# for details!. j

Assume that the driving system is generated by a mapf of
the interval I. Then we can say more about regularity
branches provided thatuyn2 ỹnu goes to zero exponentiall
fast. Indeed the following proposition holds.

Proposition 1. Assume that

uyn2 ỹnu<Aln, ~4!

whereA.0 and 0,l,1 are constants depending onc. As-
sume also that the one-dimensional driving systemf is ‘‘hy-
perbolic,’’ i.e., there existsn0 such that (f n)8(x)>1/g2.1
for all n>n0 and for anyx for which the derivative exists
Then each branchha is Lipschitz continuous.

Scheme of the proof.The proof is basically the same a
the one of theorem 7 in Ref.@23#. The point is to replace the
space of Lipschitz functionsHL,M by HL,M ,a with the restric-
tion that the domain forhaPHL,M ,a consist of values ofx
compatible witha.

Remark that by assumption, one hasg2,1. The condi-
tion ~16! in theorem 7 in Ref.@23# can be replaced by

0,Aln,
1

g2
, ~5!

which is always true ifn is large enough. j

Taking into account details of the proof of this propositi
~which are omitted here and can be found elsewhere@23#!
one might expect that iff is not hyperbolic then continuou
synchronization functionsha could be not the Lipschitz-
continuous functions. In this case the picture of individu
branchesha might contain wrinkles and cups, and as t
result, might appear fuzzy in numerical simulation due
finite resolution.

From now on we denote byh the union of all graphsha.
Each branchha is only defined for the values ofx compatible
01620
y

l

with a. That is, if there is no backward orbit for the valuex
with the symbolic itinerarya, then ha is not defined atx.
Thus, in general, the number of branches ofh is not neces-
sarily the same for allx.

Corollary to Theorem 1. If $Xi% is a Markov partition then
for any admissiblea, the domain ofha contains an elemen
of $Xi%, i.e., if a5(a0 , . . . ,an , . . . ) thenD(ha)$Xa0

.
One may ask when two different branches ofh are close.

The next theorem shows that two branches that have sim
recent history, are close to each other. Branches with dif
ent recent symbols could be either close or far from e
other. As numerical simulations discussed in Sec. III
show that branches with different recent symbols may e
intersect each other.

Theorem 2. Let $ã i% be a series of infinitely long sym
bolic sequencesã iP$1, . . . ,l %: such that lim

i→`
ã i5a in

the standard product topology2 @29#. Then,

lim
i→`

uhã i
2hau50,

whereuhbuªsupxPD(b)uhb(x)u.
Proof. From Eq. ~3!, there exists anN such that forn

>N and for anyy0 and ỹ0

uyn2 ỹnu<e. ~6!

This is, of course, true also fory0 , ỹ0PAc,y .
Now, choosei big enough in such a way that the firstN

symbols ofa and ã i coincide. This means that@x,ha(x))
and (x,hã i

(x)# have the same firstN x preimages
(x21 , . . . ,x2N). Then one can apply Eq.~6! for these points
obtaining

uhã i
~x!2ha~x!u<e.

This is true for anyx compatible witha andã i . The theorem
is proven. j

If one assumes monotonicity in assumption~3!, that is, uyn

2 ỹnu<uYucn, then a stronger result holds: Leta andã have
the same firstn symbols, thenuha2hãu<uYucn.

Let us remark that there are three logical possibilities
the structure of the seth(x): it could be finite, it could be
countable, and it could contain a Cantor set.

The first possibility trivially occurs in the case of identic
synchronization, that can exist even for noninvertiblef ~see,
for instance,@23#!.

The second possibility can be justified by construction
a special pairf ,gc . We believe that it could be done. It i
definitely true for the case whenf has zero topological en
tropy, i.e., the number of admissible words$a0 , . . . ,an21%
grows subexponentially asn goes to infinity. For example, if
the topological Markov chain corresponding to a Mark
partition $Xj% has zero topological entropy then the numb

2This means in particular that the greater isi the greaterN first

symbols ina and ã i coincide.
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FIG. 1. The dependance o
conditional Lyapunov exponentl
on the value of coupling param
etere ~a!, and the values of maxi-
mal and rms deviations ofdn

computed as a function ofe ~b!.
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of admissible words grows not faster than polynomially.
topological entropy is positive then the construction of su
an example is rather difficult, we are going to study th
problem elsewhere.

The third possibility seems to be generic in a space
pairs of functionsf ,gc provided thatf has positive topologi-
cal entropy. It seems natural to believe that different driv
signals correspond to different outputs in the regime of s
chronization. Numerical simulations considered in Sec.
confirm this conjecture~see also Fig. 3 in Ref.@27# and Fig.
2~d! in Ref. @28#!. However, we do not have a rigorous pro
of this statement right now.

The statements made above give a clear picture of
underlying structure of generalized synchronization of ch
in the case when the dynamics of drive system is noninv
ible.

III. SYNCHRONIZATION FUNCTION IN
NONINVERTIBLE MAPS: EXAMPLE

To illustrate the properties of generalized synchronizat
in noninvertible maps consider the synchronization of log
tic map driven by tent map. In this case functionf (xn) in the
driving system~1! is of the form

f ~x!5H x/b if x,b

~x21!/~b21! if x>b,

whereb is a control parameter, 0,b,1. We will consider
the case when the dynamics of the response system is g
by the following map:

yn115~12e!ayn~12yn!1e f ~xn!, ~7!

wherea is the control parameter of the map andeP@0,1# is
a coupling parameter. Note that upper bound of the cont
tion rate in they direction denoted byc in preceding section
is, in this case,c5(12e)a. In the numerical simulation con
sidered in this section the values of control parameters
fixed b50.677 anda53.7.

Since the dynamics of the maps are different, the ge
alized synchronization is the only possible regime of s
chronization, except to the trivial case whene51. The onset
of generalized synchronization is detected with auxiliary s
tem approach. In this analysis we study the stability of
chaotic response attractor in the manifoldyn5zn , where
variablezn is described by an exact replica of the system~7!
that is called auxiliary system@25#.
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It can be shown with the analysis based on contract
mapping @30# that stable identical oscillations in respon
and auxiliary systems are guaranteed when the values of
pling parameter are within the interval 121/al,e,1
11/ar , where al5a(122yn

min), ar5a(122yn
max), and

yn
min and yn

max are the leftmost and rightmost points of th
attractor in the response system. This indicates that if for
selected parameter values of the maps the coupling is st
ger than e50.7, then synchronization is monotonical
stable.

More precise evaluation of the synchronization thresh
can be done with the analysis of conditional Lyapunov e
ponents@see, Fig. 1~a!# and with the analysis of deviation o
response-auxiliary system from manifoldyn5zn . The de-
pendance of maximaldmax and rmsdrms values of deviation
dn5zn2yn on the values of coupling parameter are p
sented in Fig. 1~b!.

Based upon the plots in Fig. 1 one would expect that
regime of generalized synchronization takes place for
coupling parameter valuese.0.3. This regime assumes ex
istence of a continuous functional relation between the
jectoriesxn and yn . However, when one plots the states
the one-dimensional~1D! phase spaceyn on the synchro-
nized attractor vs the corresponding states of o
dimensional phase spacexn , the image of such relation look
fuzzy, see Fig. 2. It is clear that point to point mappingxn
→yn cannot be interpreted as a continuous function.

In order to unveil the synchronization function in the n
merical analysis we consider the mappin
(xn ,@a1 , . . . ,am#)→yn , whereak are symbolic representa
tion of prehistory of the trajectoryxn . These symbols are
generated by the tent map~1! that is partitioned into two

FIG. 2. Synchronized chaotic attractor computed fore50.6
plotted in the phase plane (xn ,yn).
8-3
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regions:ak5L if xn2k,b andak5R if xn2k>b. The points
of the synchronous attractor whose preceding symbolic
quence of the driving trajectory has a specific sequenc~a
mask! were selected and analyzed separately. This ana
shows that as the length of the sequence increases the
of points shrinks into a curve. An example of such conv
gence is illustrated in Fig. 3, where the mask of eight sy
bols @L,L,R,L,L,R,R,R# is studied. Similar behavior is ob
served for the other sequences of the same length. In
sequences of this length the shape of the curve varies a
symbolic sequence changes. All together these curves f
the fuzzy shape of the synchronized attractor as show
Fig. 2.

To evaluate the convergence of the image of synchron
attractor to a continuous functionha(x) we analyzed the set
of attractor points conditioned by all possible symbo
masksa of various lengthm. For each mask of precedin
symbolsSm

i 5@a1 , . . . ,am# we computed the best polyno
mial fitting functionfS

m
i (x) of order six using singular value

decomposition algorithm, and studied the dependance
mean squared error~MSE!, averaged over all masks o
lengthm, vs m. This dependence computed for the values
coupling parametere50.6 ande50.4 are shown in Fig. 4.

One can see from the Fig. 4 that MSE,EMS decreases
exponentially fast whenm increases. Approximating this de
pendence with exponent

FIG. 3. Points of the synchronized chaotic attractor shown
Fig. 2 generated by the trajectories which symbolic sequenc
length m58, preceding the final pointxn , fits to the mask
@L,L,R,L,L,R,R,R#. e50.6.

FIG. 4. The dependence of MSE of best polynomial fitting fun
tion for the attractor pointsyn ,xn on the lengthm of the preceding
masksSm

i .
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EMS~m!;eLm, ~8!

one can find the rate of convergence, which is in the case
50.6 equalsL'21.05.

Figure 5 shows how the convergence rateL depends on
the value of coupling parametere. Comparing this plot with
the plot of conditional Lyapunov exponent vse one can
clearly see the similarity in these plots. This is indicative
the fact that in the generalized synchronization regime in
case the convergence rateL is related to the contraction rat
of response system given by conditional Lyapunov expon
l. This relation was defined for the case of monotonic s
bility of the response behavior, see Sec. II.

One can see from Fig. 2 that synchronization mapping
the current states of the drive and response system h
complex structure of branches. The appearance of Canto
in the synchronized attractor caused by noninvertible driv
system was reported before in Ref.@28#. The formation of
the fractal structure can be explained by the analysis of
viations of the branch caused by the change of symbolan
appeared in the symbolic sequencen iterations before. For
the most of the driving trajectories, the stability of the r
sponse behavior acts in a such way that the deviation wil
reduced with the increasing value ofn. As the result the
deviations of different scales for different values ofn are
responsible the formation of the complete structure of
synchronized attractor. This explains the formation of frac
structure in the synchronization mapping that consists of
finite number of the branches.

This mechanics behind the formation of Cantor set is
lustrated in Figs. 6 and 7. Figure 6 shows the set of point
the synchronized attractor corresponding to the trajecto
whose eight most recent symbols are fixed. One can see
branches with the same most recent symbols remain r
tively close to each other, while the branches with differe
most recent symbols can get apart significantly. The sim
situation takes place for the alternation of the more rem
symbols, see Fig. 7. However the scale of the deviation
this case is less then in Fig. 6. Further increase of the len
of alternating symbols by one in considered mask of symb
the number of branches doubles. The additional branc
appear close to the branches with the same most recent

n
of

-

FIG. 5. The dependence of the convergence rateL on the value
of coupling parametere.
8-4
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GENERALIZED SYNCHRONIZATION OF CHAOS IN . . . PHYSICAL REVIEW E66, 016208 ~2002!
bols. Continuation of this process with infinitely long ma
n→` leads to the formation of a fractal, Cantor-type set

IV. CONCLUSIONS

The results of the theoretical analysis of synchronizat
presented in Sec. II and the numerical analysis of partic
example considered in Sec. III allow one to draw a num
of important conclusions on typical properties of synchro
zation mapping that characterize generalized synchroniza
of chaos in the case of noninvertible driving system.

The synchronization mapping, in this case, can be in
preted as a continuous function only when all backward
erationsx2n of the driving trajectoryx0 are included in the
vector of the function arguments. We have shown that M
kov partition of the driving map can be used to describe
backward iterations in a compact symbolic way. The se
points of synchronization mapping plotted for the trajec
ries, which prehistory is conditioned by a selected seque
of symbols, asymptotically approach the graph of a conti
ous function as the length of the sequence increases.

The set of these graphs given by all possible symb
sequences of infinite length form the complex fuzzy obj
which is typically observed in the joint phase space of
one-dimensional chaotic maps synchronized in the gene
ized sense.

An interesting feature of the considered example with
maps is that branchesha remain smooth functions eve
when the rate of conditional stability is rather weak. Inde

FIG. 6. Branches of the synchronized chaotic attractor show
Fig. 2 computed for symbolic sequences of lengthm58,
@a1 ,a2 ,R,L,L,R,R,R#. The values of three most recent symbo
a1 ,a2 ,R are shown next to the corresponding branch.
cs
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according to the papers@19–24#, one would expect thatha

would become nondifferentiable, Ho¨lder continuous function
as the contraction rate in the response system becomes l
than some critical value. However, this critical value is giv
by a contraction rate towards the chaotic attractor in the d
ing system. In our case the driving trajectories of the 1D m
with the specified symbolic sequencea do not have contract-
ing direction. They have only unstable direction. As the
sult the contraction rate in the response system for any g
branchh is always stronger than in the driving system.

This feature is typical for the driving systems in the for
of one-dimensional hyperbolic map. In the case of nonhyp
bolic 1D driving map functionha may become nondifferen
tiable and contain wrinkles and cusps. Another interest
question arises when one considers a system without e
nential stability or Markov partition? It could be expecte
that branches become nondifferentiable. For the moment
question is open.
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FIG. 7. Branches of the synchronized attractor for the sequen
@L,a2 ,a3 ,L,L,R,R,R#. The values of three most recent symbo
L,a2 ,a3 are shown next to the corresponding branch.
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