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Spatially “chaotic” solutions in reaction-convection models and their bifurcations to moving waves
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The emergence of stationary spatially multiperiodic or even spatially chaotic patterns is analyzed for a
simple model of convection, reaction, and conduction in a cross-flow reactor. Spatial patterns emerge much
like dynamic temporal patterns in a mixed system of the same kinetics. Moving waves are formed in an
unbounded system but they are transformed into stationary spatially inhomogeneous patterns in a bounded
system. The sequence of period doubling bifurcations is determined numerically. The incorporation of a slow
nondiffusing inhibitor leads to chaotic spatiotemporal patterns.
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[. INTRODUCTION appropriate transformations to the moving coordinate we can
convert one instability to another. The problem becomes
The increasing interest in reaction-convection-diffusiondefinite if we consider a boundegdr semiboundedsystem
systems was recently recognized by assigning it a new PAC®ith a boundary condition that is fixed at one end. Perturba-
number(82.40.Ck that distinguishes it from that of the well tions applied at the boundary can either penetrate the system,
studied reaction-diffusion systems. Reaction-convectionwhich then acts as a nonlinear filter and a spatial amplifier, or
diffusion systems are typically described by a system of thdbe damped. The pattern-formation mechanism suggested in
form: Ref. [5] is based on the amplification of the stationary per-
turbations in the convectively unstable systems. Such pertur-
LX{+ Vx,—Dx,,=f(x), (1)  bations can be introduced by the stationary boundary condi-
tions that differ from the steady state solution. This
where x is the vector of state variables,=diag{L;}, V mechanism accounts for stationary patterns in several recent
=diagV,}, D=diag/D;}, andL;, V;, andD; are the capaci- studies: “flow distributed oscillations{FDO) were exten-
ties, velocities, and diffusivities of the various state vari-Sively investigated in Ref6] for the Brusselator model, in
ables. Reactants can be fed to the reactor either through ofef.[7] for a Gray-Scott kinetics, in Ref8] for the CDIMA
port or may be distributed along the reactor via many portgeaction, and in Refl9] for the Oregonator models and in
(to which we refer as cross flowCross-flow conditions can our previous studies of cross-flow react¢id—-12 with a
also be achieved by feeding through a membrane or througsingle Arrhenius first order reaction.
a preceding reaction. In the cross-flow reactor we can find a The mechanisms above can also be classified according to
homogeneous solutidif(x.) =0]. The technological advan- the activator/inhibitor parameter ratiog; /V,, D,/D,, and
tages of such a reactor were argued in R&f. L,/L,, which define the emergence of stationary patterns. In
Stationary pattern formation mechanism in diffusive- the FDO stationary patterns emerge even widgr D, [6,8]
reactive systems was suggested in the pioneering work @&nd it is claimed therefore that these patterns are not due to
Turing [2]. The diffusive Turing instability applies to a two- the Turing mechanism. Diffusion is important for the station-
variable system when the inhibitor diffuses sufficiently fasterarity of these patterns and the stationary solution breaks
than the activator. This mechanism was able to account fo#own with D,=0. In recent work4 10,11 we showed that
certain patterns in chemistry and biolog,4], but largely  stationary spatially periodic patterns emerge in a bounded
was unable to induce patterns in liquid-phase oscillatory resystem even wheb,=0 provided that the activator capac-
action where the reactant diffusivities are usually of similarity L, is sufficiently large(for catalytic nonisothermal sys-
magnitudes, or in catalytic systems, in which the diffusivity temsx; is typically the temperature and the heat capacity is
of the activator is typically larger than the diffusivity of the large,L;>1).
inhibitor. Other studies have focused on spatiotemporal patterns of
In the presence of convection a stationary pattern formakEq. (1). Most notably the well studied differential flow in-
tion mechanism has been recently suggested by Kuznetssluced chemical instability mechanigih3,14] is connected
et al. [5]. The behavior of spatially distributed system cru- with the separation of variables due to different convection
cially depends on whether the instability is convective orrates §/;<V,).
absolute. An instability is calledonvectivef a small pertur- The studies above were devoted to formation of stationary
bation induces a local growth from the spatially uniform so-and moving spatially period-one patterns. In this work we
lution, but disturbances propagate as a wave packet and apgesent a general approach for designing stationary patterns
advected out of the system. An instability is termadabolute  of desired complexity. The steady state solutions of the sys-
if a localized initial perturbation gives rise to growing am- tem (1) are governed by a system of ordinary differential
plitudes at all points in space. The distinction between abscequations(ODES written in the dimensionless form as
lute and convective instabilities in unbounded systems de— Px,,=F(x), whereP=diag{Pe *,Pe=LV,/D;}, andL is
pends on the choice of the coordinate system and withhe reactor length. In the limit case ;Pex the spatially
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periodic solutiong x,=F(x)] can be predicted from known ventional. Note, that we used an arbitrary valyeas the
similar solutions of the temporal behavior of a mixed systemiength scale so that the reactor lengtk L/z, can be varied
governed by the same kinetifs,=F(x)]. We can construct as a free parameter.
spatially chaotic steady patterns using kinetics known to ex- While there is no general agreement on the source and
hibit temporal chaos. Let the dynamic system exhibit a seform of activation-deactivation steps, we adopt here a simple
quence of period-doubling bifurcations with a varying pa-linear expressioiisee Ref[16]),
rameter at p=p;,pP,,..-,pn- Then for the spatially
distributed system witlp= p, and other fixed parameters we K @ b y= 4
can expect to find spatially"2periodic solution in the limit 057~ e Pedmy=00y.¢), @
case Pe-oo. For finite Pe we expect to find a sequence of
bifurcations with increasing Pe from P& =, where Pgis  and typically se ,>1.
the bifurcation point to a period-one solution that can be
determined by linear analysfsee Ref[10]). The solution is I1l. ANALYSIS AND SIMULATIONS
stable for a sufficiently largé ;. The behavior at finitd?e . . -
and the stability of th)é stzgtiolnary solutions cannot be pre- We divide th‘? analys_s into a constant activity cag (
dicted by a simple transformation of temporal and spatial_ 1) and a varying actlv[ty case. For' each case we analyze
coordinates since the system is bounded. th_e system behawor by linear analysis and verify the results

In the present work we demonstrate the mechanism opith simulations.
multiperiodic pattern formation for a model of a catalytic o
cross-flow reactor with two consecutive reactions governed A. Constant activity case
by three state variables using parameters that are known to |et us review the behavior of several simplified and re-
yield chaotic temporal behavior in the systege f(x) [15]. lated systems:

While oscillatory temporal kinetics is not necessary for (a) If we ignore the heat-dispersion term then the steady
obtaining stationary patterns, we also consider the fourthstate system
order system formed by the system above coupled with a
slow nondiffusive inhibitorL 4x4,= f4(x) in @ domain where dxq dx; dy

Lx,=f(x) undergoes the Hopf bifurcation. d_ng(xl'xz’y’l):fl’ de v g

hy (5

is exactly the model describing the temporal dynamics of a

mixed reactor(with ¢ replaced byr). Temporally chaotic
As stated we consider the pseudohomogeneous oneolutions are known to exist for this model.

dimensional model of a catalytic cross-flow reactor with two  (b) With incorporation of the dispersion term the system

consecutive reaction\—B—C. The appropriate math- may be written as

ematical model may be written in the following dimension-

less form: %_ %_ d_y_ @_ _

Il. MATHEMATICAL MODEL

L &y+&y ! azy—B +B =h ©
© 92 111 #Bolo = Sr=h(xa. %y, ), The asymptotic solutions of this system are identical to those

of Eq. (5) but the new term affects the stability. The Jacobian
matrix of the linearized systelti®) is

e s Ty, @
or o0& 1 flxl 0 fly 0
91 91
%4—{Z—ngrl—rz—sczzg(xl,xz,y,@, J= OXl OXZ g;y 01 , (7)
~ Yy —Pd11X1 _Pmlxz _Pmly Pe
20 X=X, ¥=¥ini =L, 07_520' ® and the characteristic equation of the eigenvalueg (s the

fourth-order polynomial:
Herex; (i=1,2) andy are dimensionless concentrations and
temperaturer;(X; ,y, ®) = Da ¢x,exply) are the chemical re-
action rates for very large activation energies and first-order
kinetics (Da are the Damkohler numbers anflis the re-
versible catalytic activity;, Le is the Lewis number—the ra- wjith a;=a; o+ a; 1Pe. The bifurcation to a periodic solution
tio of solid- to fluid-phase heat capacities, aﬁgi= ac(X (m=ik,) occurs at Pe Pg, that satisfies
—X;w) and Sy=a1(y—vy,) are mass supply through the
wall and heat loss due to cooling. Other notations are con- aPe+bPe+c=0, 9

4
de‘(‘]—ml)=z0 am'=0, (8

016204-2



SPATIALLY “CHAOTIC” SOLUTIONS IN REACTION - . .. PHYSICAL REVIEW E 66, 016204 (2002

0.2
@) (b) 0.2 @ 02— 4, ©
0.15
= -
0.1 b T T e O I At IR I
0.05
0 500 Pe 0 500 Pe % s P 02 % 02
FIG. 1. Bifurcation diagram of systert6) showing period- 02 02 02
doubling transitions.(a) ¢=1, system convergence to chaos,
period-16 solution was obtained at@80, and the sequence was 0.1 0.1 0.1 (@)
not traced furthery(b) varying ¢, a,=100 ending with theP,
solution; @t=9, Dg=0.26, Dg=0.13, B;=57.77, andB,= 0 0 0
—24.61; computed byuTo [18]. 0 5 0 0 02 0 0.2
0.2 0.2 0.2
with k3=a, /a;. The derivation of Eq(9) will be presented  _
elsewhere. <01 01 0 @
(c) We can conduct a linear stability analysis of un-
bounded systert®) in an infinitely long region. Denoting the % 5 . 10 % Y % , 02
deviation from the basic steady state solutiom,
={X15.X2s,Ys} @S U;={Xy,Xp,y1}, and assumingu, FIG. 2. Bifurcation of spatial patterns in a bounded system for

~ek* o7 we can derive the dispersion relatiftfo,k)=0.  Pe=45 (row 1), 500 (row 2), and 1000row 3) showing the spatial
The bifurcation condition Ref)=0 defines the neutral pattern[column(a), ¢=1] and “spatial”’ phase planes witgp=1
curve, which may be calculated numerically. We used Pe alsolumn(b)] or varying¢ [a,= 100, column(c)]; (other parameters
the bifurcation parameter as it does not influence the steadss in Fig. 1, Le=100).

state solutions and as we intend to employ the results ob-

tained in the limit Pe-«. The neutral curve typically ac- o) iows the bifurcation diagrams of the ODE systé@). Be-

quires a minimum corresponding to the convective instabilityj,,, pg the homogeneous solution is established practically
:h[_esho;d (Pe. ktc) anlql cros_;sr:ngf!%iorredsponds :O atln excg in the whole domain with some adjustment in the inlet sec-
ation otwaves fraveling with a finfleand a constant Speed. 5, qye to the boundary conditions; (, ,y;i, were adjusted

In a bounded system above PBg, the waves are trans- to shorten this inlet effegt Just above the critical values the

formed intostationary patterngsee Refs[5—10]). For such - X ) :
patterns to emerge, we impose a condition of zero frequenc?ry.sl[em exhibits stationary sp:.;mal period-orf&; X pr?ltterns
Fig. 2(a), row 1]. The regular single-loop structure is clearly

»=0 in addition to the relation Re()=0. If both of these : . o .
conditions are matched, we may determine a threshold valuRE€n in the “spatial” phase planes constructed by plotting
for amplification of the stationary perturbation. Its coordi- X1(£) Vs X,(¢) profiles from the data in 0.25<¢<L [Fig.
nates correspond to the Hopf bifurcation point for Eg), 2(b), row 1]. The difference between the “numerical” and
defined by Eq(9), butk, is now the spatial wave number. exact values ok, is about 0.1%. With increasing Pe numeri-

We chose for our study the set of parameters used in Regal simulations reveal a sequence of period-doubling bifur-
[17] for exothermic-endothermic consecutive reactions in aations[a period-four solution is shown for R&00, Figs.
mixed reactor since its domain of multiperiodic and chaotic(a) and 2b), row 2]. The exact classification of patterns for
solutions is relatively wide, and the corresponding criticalnigh Pe is dubious due to the finite size of the
parameters (Reand the period o= 2/k;) allow us to sug-
gest observations of these motions in a distributed system
with physically reasonable and Pe values. According to the
bifurcation analysis conducted in RgfL7], increasingay
yields a Hopf bifurcation atvy=8.9408 followed by a se-
guence of period-doubling bifurcations that converge to cha-
otic solutions that exist for 8.965¢1<9.041.(To be con-
sistent with that study, we set;=46+1, x;,,=1, X,=0,
yW=0.)

The bifurcation diagrams of the ODE systdi®) show
that, as expected, the homogeneous solutions become un-
stable at Pe Pg, [Eq. (9)] and increasing Pe leads to se-
guences of period-doubling bifurcations that form spatially
oscillatory solutions of the same type as the related mixed
reactor(see Fig. 1L &

Numerical smlulatlons of systeme) and (3) in the FIG. 3. Spatiotemporal patterns in the varyiggcase:x; is
bounded domainl(=10) revealed that there exists a steadyplotted in (a) using a gray scaleb),(c) fragments of thex,(&)
solution that is transformed with increasing Pe in a way thaprofile at7=7;; a7=9, a,=10, Pe=1000, andK ,=5000.

©
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system(for Pe= 700 a period-eight pattern is expected with ation for Pe>Pg=74.8) presents a pattern composed of sev-

period Tg=3.234, so that obviousil =10 is not sufficiently ~ €ral stationary waves near the inlet and a rather aperiodic

long for period recognition For this reason we cannot claim Wave packet that moves upstream. The aperiodic nature of

that the patterns converge into a fully chaotic solution. Yetthe spatial signal was verified from its power spedmat

we note that stationary solutions become practically insensiPresentefi showing several leading frequencies. With in-

tive to Pe for large PEFigs. 2a) and 2b), row 3] and coin- creasing Pe o_K¢ the Wid_th of the stationary wave packet

cide with corresponding solutions of the mixed system withdiminishes while the moving packet broadens.

fixed initial conditions. In the power spectrum of the temporal signal around the
Numerical simulations were conducted by an implicit Poundary between the stationary and moving waese at

finite-difference scheme based on the method of fractiona=0.25_) we cannot distinguish any leading frequefEjg.

steps with 40 000 spatial grid points. 4(a)].
The solution becomes more regular with increasihg
B. The variable catalytic activity case [Figs. 4b) and 4c)]. With increasing Pe and/d¢, the spec-

) tral characteristics become more complicated. Similar results
We repeat the steady state analysis presented above Qygre obtained for smallew;, but the region where stable
adding the algebraic relation stationary patterns exist is shifted to a range of larger Pe and
K, values.

= (10
IV. CONCLUSIONS

to system(6). The critical parameters Pg, can be deter- Finally we comment about the interaction of the system

mined from Eq.(9) as well, using the gain differentiating |engthT and the period of oscillations. We observed sta-
rule for functionsf,g,h while accounting for Eq(10). To  tionary period-one, period-two or period-four patterns, and
simplify the following analysis we usedl, as a free param- \ve can expect the emergence of more complicated structures

eter and defined,,=a,—ys in order to ensure that changes it increasingl. On the other hand the effect of the inlet

in a, do not affect the steady state solutiond, Xas, s poundary conditions cannot propagate for an infinitely long
Obviously asa,—, ¢—1. For very largea, the bifurca-  gistance and this case requires further study.

tion diagrams preserve the same form as for the constant 14 symmarize our results, we presented a mechanism for
activity case. With decreasing,, the number of period- e emergence of spatially chaotic or spatially multiperiodic
doubling transitions in the domain fePe<c decreases. giationary patterns in a convection-diffusion-reaction system
(Thus, for ar=9.0 anda,=1000 we still find a spatially 5nq demonstrated it on a system with two consecutive reac-
chaotic behavior, witla, =100 the sequence of bifurcations tjons in a cross-flow reactor. The results apply to any system
converges td®, solution[see Fig. 1b), and witha,=10 @  of the form of Eq.(1) when its ODE analogx,=f, exhibits
period-one solution is stable for all P&g]. temporally chaotic solutions. The interaction of this system

We start now to study the dynamics. For sufficiently highyyith a slow, nondiffusing, and localized inhibitor may lead to
a4 and moderaté,, the system is stable and its behavior is gpatiotemporal patterns.

quite similar to the case =1 [see Fig. Z)]. The effect of
decreasing,, or increasingK, is to destabilize the system
by inducing a front motion as in a typical activator-inhibitor
system.¢ is the slow variable and its response is more slug- This work was supported by the Volkswagen-Stiftung
gish asK, increases. Beyond a certain threshold, determinaFoundation. M.S. acknowledges the Minerva Center of Non-
tion of which is out of the scope of this paper, the systemlinear Dynamics for support. O.N. was partially supported by
undergoes a transition to spatiotemporal motion; Figa3 ( the Center for Absorption in Science, Ministry of Immigrant
=9, a,=10; the analysis predicts a simple period-one solu-Absorption, State of Israel.
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