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We introduce a generalized ensemble of non-Hermitian matrices interpolating between the Gaussian Unitary
Ensemble, the Ginibre ensemble, and the Poisson ensemble. The joint eigenvalue distribution of this model is
obtained by means of an extension of the ltzykson-Zuber formula to general complex matrices. Its correlation
functions are studied both in the case of weak non-Hermiticity and in the case of strong non-Hermiticity. In the
weak non-Hermiticity limit we show that the spectral correlations in the bulk of the spectrum display critical
statistics: the asymptotic linear behavior of the number variance is already approached for energy differences
of the order of the eigenvalue spacing. To lowest order, its slope does not depend on the degree of non-
Hermiticity. Close the edge, the spectral correlations are similar to the Hermitian case. In the strong non-
Hermiticity limit the crossover behavior from the Ginibre ensemble to the Poisson ensemble first appears close
to the surface of the spectrum. Our model may be relevant for the description of the spectral correlations of an
open disordered system close to an Anderson transition.
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I. INTRODUCTION ary of the support of the complex spectrum of a non-
Hermitian random matrix theor{25,2€. Finally, we point
Non-Hermitian random matrix models were first intro- out that there are interesting relations between the eigenval-
duced by Ginibre in 196FL1]. His motivation was to describe ues of complex matrices and the positions of particles in
the statistical properties of nuclear resonances with a finiteertain two dimensional physical systefi®&y—29. For ex-
width in complete analogy with the description of the posi-ample, the Ginibre model is equivalent to a Coulomb prob-
tion of resonances by means of Hermitian random matrixem in two dimension$1].
ensembles as introduced by Wigner and Dy$dh Since Based on the magnitude of the imaginary part of the ei-
then, eigenvalues of non-Hermitian operators occurring irgenvalues we distinguish two types of non-Hermiticity: weak
many different fields have been analyzed in terms of nonnon-Hermiticity and strong non-Hermiticity. Weak non-
Hermitian random matrix models, usually with additional in- Hermiticity is the limit of large matrices when the imaginary
gredients. We mention several examples. The statistical progart of the eigenvalues remains comparable with the mean
erties of the poles o6 matrices have been analyzed in greatseparation of eigenvalues along the real axis. This limit was
detail in [3-5]. In QCD, the Euclidean Dirac operator in identified in[30—32, but was used earlier in the statistical
QCD at nonzero chemical potenti@vhich can be inter- theory of S matrices[3]. Strong non-Hermiticity refers to
preted as an imaginary vector potentiad non-Hermitian, cases for which the real and imaginary parts of the eigenval-
resulting in the failure of the quenched approximat|@ ues remain of the same order of magnitude in the thermody-
Both this failure and the generic properties of the complexnamic limit. In this paper we consider both types of non-
Dirac spectrum have been explained fully in terms of a nonHermiticities.
Hermitian random matrix model with the global symmetries An important concept in the understanding of disordered
of QCD [7-11]. Recently, a delocalization transition was systems is the Thouless energy. We will define this energy
found in a one-dimensional lattice model with an imaginaryscale as the energy difference below which the eigenvalues
vector potentia[12,13. Statistical correlations predicted by are correlated according to random matrix theory. In diffu-
the Ginibre ensemble have been found in dissipative quarsive disordered systems, in the thermodynamic limit, both
tum mapg14-16. Eigenvalue spacings of the Floquet ma- the eigenvalue spacing and the Thouless energy approach
trix of a Fokker-Planck equation have been described irzero, whereas the number of eigenvalues in between them
terms of Ginibre statistic§17]. In [18,19 an ensemble of approaches infinity. In this paper we will consider critical
asymmetric real matrices, closely related to the Ginibre enstatistics33—36, which refers to the case when the ratio of
semble, was utilized to model the dynamics of a neural netthe Thouless energy and the eigenvalue spacing remains fi-
work. nite in the thermodynamic limit. A Hermitian random matrix
Among more mathematically oriented works we mentionmodel for critical statistics was proposed [i7]. In that
the exact calculation of the correlation functions of an en-model the correlations of the eigenvalues decay exponen-
semble of normal random matrices with an arbitrary polyno-ially beyond a Thouless energy, resulting in an asymptoti-
mial probability potentia[20,21]. Non-Hermitian ensembles cally linear behavior of the number variance with slope
have been analyzed in terms of associated Hermitian er{tevel compressibility less than 1. In this paper we general-
sembles[22,23. Correlations of eigenfunctions have beenize this model to complex eigenvalues and analyze its prop-
studied in the Ginibre ensemhbl24]. Another intriguing ap- erties. In the Ginibre model the two-point correlation func-
plication is the description of an analytic curve by the bound-tion of eigenvalues in the bulk of the spectrum drops off
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exponentially on the scale of the distance between the eigeitwo-point correlation function of the eigenvalues of a Gauss-
values. It is therefore no surprise that we will find the sameaan ensemble of random matrices with complex entries.
bulk correlations in such a generalized Ginibre model. How- An ensemble that interpolates between the Ginibre en-
ever, we find nontrivial long range surface correlations, charsemble and the Wigner-Dyson ensemble of Hermitian matri-
acteristic of a two-dimensional Coulomb liquid. In the caseces was introduced if81,32]
of weak non-Hermiticity we expect to find critical statistics
similar to the Hermitian model. The analysis of this case is 1
the main objective of this paper. P(C)dC~dCexp{ T ;Trc’c+ 12

Critical statistics is associated with the multifractal behav- o7 (1=7)
ior of the eigenfunction$36,38,39. The critical Hermitian
model introduced ir{37] has the unitary invariance of the X Tr[C?+(C")?]
Gaussian Unitary Ensemble with eigenvectors that are dis-
tributed according to the measure of the unitary group. This . ) . .
is no contradiction: multifractality of wave functions occurs Here, C is an arbitrarynxn complex matrix with the inte-
in a specific basis in which disorder competes with a hoppin@'ation measure given by the product of the real and imagi-
term. Indeed, if40,41 it was found that the fractal dimen- Nary parts of the differentials of the matrix elementsGf

sion of the wave function determines the asymptotic slope of O 7=0 this model reduces to the Ginibre ensemble,
the number variance. whereas forr=1 (—1) it reduces to a Gaussian ensemble of

Among others, critical statistics have been utilized to de-(@nti-) Hermitian matrices. The eigenvalues of this ensemble
scribe the spectral correlations of a disordered system at tHf€_Scattered inside an ellipse with eccentricity given by
Anderson transition in three dimensiorf83,42, two-  2V7/(1+7).
dimensional Dirac fermions in a random potenfi4s], the The joint eigenvalue distribution can be obtained by using
quantum Hall transitiofi44], and a QCD Dirac operator in a tWwo alternative decompositions
liquid of instantons[45,46. The scope of universality of _
c?itical statistics is s[till uneiljer debate.p g C=UTU" and C=VAV™, &)

Our random matrix model is introduced in Sec. Il. The

: @

o ... ..~ whereU is a unitary matrixV is a similarity transformation,
cases of strong non-Hermiticity and weak non-Herm|t|C|tyT is a upper-triangular matrix, andl is a diagonal matrix,

are anglyzed in Secs. lll anq IV, respectively. Among Othfersl'he diagonal matrix elements df coincide with the com-
we derive a closed expression for the two-point correlation . - . . :

S o ! plex eigenvalues\ = z,. The invariant measure factorizes
function in both limits. Results for the number variance are

discussed in Sec. V and concluding remarks are given ir?s[z]
sec. VI dC~dUdTA({Awh A{ALD (4)

Il INTRODUCTION OF THE MODEL with the Vandermonde determinant defined by
Recently, a Hermitian random matrix model for critical n
statistics was introduced by Moshe, Neuberger, and Shapiro A({Zk}):g (z—2)). ®
[37]. This model, which interpolates between Wigner-Dyson
statistics and Poisson statistics, is defined by the joint eigersince the Gaussian integral over the off-diagonal matrix el-
value probability distribution ements ofT factorizes, it can be performed trivially. The
integral overU is equal to the group volume. The joint prob-
5 ot ability distribution of the eigenvalues is thus given by
P(H)dH=dHJ dUe (1D TrH*+b TrUHUTH ,
n

>

7'2 i=0

|z|?

P(A)dA~dA|A(A)|2exp{ I

whereH is a Hermitiann X n matrix. The integral is over the 1-

unitary group with invariant measure denoteddly. Criti-

cal statistic§36] is obtained in the thermodynamic limit with —I[z<2+(z*)2]} 6)

b scaling ash=h?n? at fixedh. In that case, the two-point 2= '

correlation function decays exponentially at large distances

and the number variance has an asymptotic linear behavidrhis model has been analyzed in two domains: weak non-

with slope less than 1. In the thermodynamic limit, Wigner- Hermiticity and strong non-Hermiticity. In the first case the

Dyson statistics is obtained for a weakedependence df,  thermodynamic limit is taken at fixed(1— 7), whereas in

and Poisson statistics is found for a strongedependence the case of strong non-Hermiticity 1<7<<1 remains fixed

of b. for n—oo. The two-point correlation function of this model
In this paper we are interested in ensembles of nonwas derived in31,32.

Hermitian random matrices. The study of random matrices In this paper, we analyze a model that interpolates in be-

with no restrictions imposed was initiated by the classicatween the models defined in Eq4) and (6). Our random

work of Ginibre [1]. He found closed expressions for the matrix model is defined by
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P(C)dC~dCe a1 ctc—(ay12)Tr[Cc2+(chH? AT A a2
a2: - + 3
- 1-7 7(1-a?
deuea3TrUCUC, (7)
where isC an arbitrary complex X n matrix anddU is the agz)‘—a_ (12)
Haar measure of the unitary group)( In the special case 7(1—a?)

of C being a normal matrix[(C,C']=0), a unitary transfor-
mation bringsC to a diagonal form and the integral ovdris

the standard ltzykson-Zuber integfdl7] given by After a rescaling of the matrix elements @f by a factor

1/J\ the joint eigenvalue distribution of the modél) re-
Az duces to
dete®s%?

A{zhH Az}

where thez; are the eigenvalues &@. One thus finds the
joint eigenvalue distribution

J- dUeds Trucu’c’ (8)

P(A)dA~dAexp{—E{ ! |zi|?

=1(1-7°

2

r
. o, A2 5 2 o _—z(zi2+zi*2)+—2
P({z)~exp, — > | ai|z] + o (Z'+Z?) | [ det[e ). 2(1-1) 27(1-a%)
I=n
9 x
X (22+72+?) | det[el "1~z (13)
In the following paragraph we will show that this result is

valid even if C is an arbitrary complex matrix that can be

decomposed according to E@). N We will analyze this model in two limits. The case when 1
~We start from the triangular decompositi®=UTU".  _; remains finite in the thermodynamic limit will be re-
Since T is an upper-triangular matrix, the exponent in theferred to as strong non-Hermiticity. In this class of models

integral overU in Eq. (7) is then given by we will consider the limiting case of zero eccentricity,
Trucu’c’=2, U,T UkTs. (10) o
=k a0, 70 with —=b fixed, (14)

After performing a trivial U(1) integration, the integral over

U in Eqg. (8) is over SUf). The generating function for such which reduces to the Ginibre model in the limit in which the

integrals is given by parameteb is taken to zero. On the other hand, the case of
weak non-Hermiticity{31,32 is defined by the limit

f dUe™ U 'V — F(detd, detd { T ITI]4),
UeSum)

7—1, n—w, (1-7)n=a? fixed. (15
(1)

whereldis a Comp|emx n matrix and the functional form of FinaIIy, let us mention that the wave functions of our model
the right-hand side, witk running over all positive integers, are distributed according to the invariant Haar measure of
follows from the invariance of the group integral. In the ex- U(n). It could be that for diagonal in Eg. (7) the wave
pansion of the exponemO) all terms have the same number functions show a multifractal behavior, but that this property
of factorsU andU* . By differentiating Eq(11) with respect IS obscured by averaging over &l| whereas eigenvalue cor-
to J and J* at J=0, we find that such terms can be only relations remain unaffected.

nonvanishing if the sum of the indices bf is equal to the
sum of the indices ofJ* (for the terms that enter in the
expansion of the determinant, the sum of the first indices is
equal to to sum of the second indige¥/e thus find that in In this section we consider the case of strong non-
the expansion of Eq(10) all terms with off-diagonal ele- Hermiticity Eq. (14). In order to rewrite the ltzykson-Zuber
ments of T or TT vanish after integration. We conclude that determinant in Eq(13) in terms of an expectation value of
the result(8) for the Itzykson-Zuber integral is also valid for two Slater determinants, we expand the exponential as

an arbitrary complex matri with eigenvalueg, .

IIl. STRONG NON-HERMITICITY

For convenience, the constants in the joint eigenvalue dis- = pm
tribution of Eq.(7) will be parametrized as ebzz’ — S mzx)m (16)
TSR
=5 m!
A
a;= ,
-2 By a series of elementary manipulations we find
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o o

bml+~--+m

* 1 n
deteP#s = > ... > —— > (—1)°™ p(2)=5 D S g Blmyt ety

m;=0 mo=0 My!---mpl 75 nmp<my<-.-<mpi=1

X 2y (Za )™ - 20 (Z )™ X i (2) m (), (26)
zimj zm or in an occupation number representation
= > bt - M det det——.
my<my<---<m, \/mj! vmy! : 1 E )
Z)= ex n
a” D=z 2 APy
Including the other factors of the joint probability distribu- ©
tion, we thus find szo NkPK(2) pu(Z*), (27)
P(z)dz~ > pmat ey where the occupation numbeg runs over{0,1}. The parti-
mp<mp<---<mj tion functionZ,, is defined in the usual way,
X det¢mj(zi)det¢ml(z,’§ ) (18

Z,= exp( B2 pnp) (28)

where the normalized wave functions given by ”1”‘2*

Such sums can be easily evaluated in the grand canonical
2|22 (19) ensemble

(z)= ! Ze™
¢k _\/_k

k!

1 o A2 () 1
satisfy the orthogonality relation p(2)=3 ; {”ann(z)zgl 1t —k(z2),

(29
d’z¢pt (2)h)(2)= 6y . 20
f P (2) (D)= 04 20 where we have introduced the prekernel
They are the single-particle wave functions of the lowest O (lez)k
Landau level of a particle with unit mass in a constant mag- k(zy,z,)=€ %1% Z —_— (30

netic field perpendicular to the plane. The Hamiltonian of Ki(1+¢ tef)

this system is given byz=x+1y) The fugacity ¢ is determined by the normalization of the

one-particle density

=3 (i0,—y)*+ 3 (i9,+%)? (21
and the corresponding Scliiager equation reads n= 2 — (31)
k=0 + g eﬁ
H ()= dw(2). (22)
For B<1 the sum can be converted into an integral resulting
If we write in
b=e 7, (23 (=e"B—1. (32

the joint probability distribution is equal to the diagonal el-  Similarly, the two-point correlation function is obtained
ement of then-body density matrix of the lowest Landau by integrating over all eigenvalues except two. Again by go-
level fermions at temperature @/ with an additional ing to the grand canonical ensemble one easily derives that
degeneracy-breaking Hamiltonian given by the absolutéhe connected two-point correlation can be factorized in the
value of the angular momentum result for the Ginibre ensemble and the preke(36),

=iyr?x—iX(9y, (24) 1 7|z —z ‘2 2
Ry(21,25) = — —e 1 %21 k(z1,2) [ (33
or equivalently of ™

For B<1 butnB>1, a partial resummation of the prekernel

0 _ 1 20 Liia _\\2

H=H+2L=3 (id,+y)+ 3 (idy—x)". (25 (30) results in
The average spectral denspy(z), which can be interpreted T(k+12,2%)
as the one-particle density, is obtained by integrating the K(zy,2,)= 2 172 B ,
joint eigenvalue density over all coordinates except one. By k! 4 cosB[ B(k—n)/2]
using the orthogonality relationd9) one easily finds (39
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whereT'(k,x) = [t le~'dt is the incomplete function.
For 8—0 it is justified to make the approximation

1 1
14+efkn g yehliion

B

4 cosB[B(k—n)/2]
(35

PHYSICAL REVIEW B66, 016132 (2002
the prekernel simplifies fon— to
2 ©
— | dt
V)=

To the leading order i, this expression can be simplified
further,

Erfc V2(s—ht)]

41
4 coshft 4

k(z1,25)=

In the remainder of this section we will evaluate the preker-

nel in several limiting situations.
If the distance ofz; andz, (both inside the disk of eigen-
values to the surface of the disk is much larger th@nthe

numerator attains its maximum value when the Fermi-Dirac
factor is close to unity. In that case the Fermi-Dirac distribu-
tion can be replaced by a sharp cutoff and the two-point

correlation function is given by
1 2
R2(21 ,22) = - —267|21722‘ . (36)
v

Inside the disk the average spectral density 8. IThe un-

folded two-point spectral correlation function thus coincides

with the Ginibre result.
A more interesting situation arises in case bptlandz,

are close to the surface of the disk of eigenvalues. A non-
trivial thermodynamic limit of the surface correlations is ob-

tained for

1

Jﬁ’

|22Z5]~n,

1
argz,z5 )~ ﬁ (37

Using the asymptotic expansion for the incomplEtéunc-
tion we find

i Erfd (2125 — K)/\2K]
k=0 4 cosR[B(k—n)/2]

tErfc[(zlz§ —n—1t)/y2(n+1)]
4 cosi(Bt/2)

k(Zl-Zz):%

(38)

where Erfck) = [ e ~dt. We parametrize the vicinity of the
surface of the domain of eigenvalues as
+s5

s
z=\n+s,, k=12, ands= 12 ,

(39

wheren>1 and|s,|</n. Introducing the scaled tempera-
ture h by

(40)

0 eZ V2yht

2
k(z,,2,)=—= f dye™Y f dt
(21.22) Jmlsz Y ~= 4 cosht

e 2’
—N_f dy oo

sin(2myh)

(42

For s>1, the above integral is dominated by the lower end
point and is approximated by

\/; r1872S2
k21,20~ \ Z ginzash)

Accordingly, the spectral density near the edge to the leading
order inh is given by

(43

L 23 yhe
p(z=n+s)= —k(z2)= \/;L dySi”(27Tyh)
1 he—2s2
~2m sin2@sh)’ “@

At zero temperatureh— 0, it reduces to the spectral density
for the Ginibre ensemble close to the edge given[BY

p(s)=e 25/(2m)%%. Likewise, the two-point function
given by Eq.(33) simplifies to

Ro(z1=n+s;,2,=\n+sy)
1 h2e l(s1+s])?+(sp+53)%12

27 |sin{m(sy+5)h]|?

(49

for |s;+s5|>1. As a consistency check, we find that the
zero-temperature limit foy; —y,>x, (with s,.=x,+1y,) ,

1 e—2(x§+x§)
Ry(2y,2)=———, (46)
2m? (Y1_Y2)2

is in agreement with the result i8] although different
prefactors have appeared in the literat[46,28. We men-
tion that at zero temperature the asymptotic behavior of the
prekernel can be obtained directly from its definiti(80)
and agrees with Eq46).

On the other hand, in the high-temperature limit the
Fermi-Dirac distribution in Eq(30) can be replaced by a
Boltzmann distribution. The prekernel is thus given by

K
kK(z1,25)=e ZlZZE (= 2) e k. (47)
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In this limit the fugacity{= Bn, resulting in
K(z1,22)=pn.

This requires us to define the scaled temperature by

(48)

1

B= %! (49)

as opposed to the low-temperature c&@). The spectral
density is thus given by

1
p(D)= 5, (50)

and the two-point correlation function has the exponentia

form

R2(21,22)= - 87‘21722|2. (51)

2h?

Since the average spectral density decreaseshagh® un-
folded eigenvalues become uncorrelat@wisson statistigs
in the high-temperature limit.

IV. WEAK NON-HERMITICITY

In the case of weak non-Hermiticity, we start from the

identity

elalr(1-a?)zzf _ me[a2/27(1—a2)](zi2+z}‘ %

zZ z¥
_ Hm

N TT)' 52

* m
o
X >, —H
m=om! ™M

whereH,(z) are the Hermite polynomials. Performing ex-

actly the same manipulations as in Efj7) we obtain

dete[a/T(liaz)]ZiZT:( \ 1_a2)n E a/m1+~»-+mn
my<m,<--.<m,
e[a2/27(la2)]zj2Hmi(i)
’
X det
\/mi!
217%2 zr
*
e[a/ZT(l*a )]zk Hml \/_k_)
’
X det . (53)
\ m|!

The joint probability distribution(13) can thus be written as
P(Z)N']Tn(l— aZ)nIZ(l_ 7_2)n/2

o\ Mt +my
X

mi<mp<---<m, ( T

X dete, (7)) detdn, (Z), (54)

where the wave functions defined by

PHYSICAL REVIEW E66, 016132 (2002

Tk/2 z
NN HK(TT)

1 1 ) )
X ex _51—7'2[|Z|_TZ] (55)

satisfy the orthogonality relatiorj&0]

J A2z (Z*) y(2) = 8y - (56)

The above wave function(®5) also span the set of the single
article wave functions in the lowest Landau level obeying
he Schrdinger equatior{21),(22), which, in terms of prop-

erly rescaled coordinates, reads

2
%(1_7'2)<i(9x_ 1 ! 2)

- T

X 2
i0-'y+— dm=dm- (57)

1 2
+§(1_'T) 1_72

If we write

; (58)

the joint eigenvalue distribution may be interpreted as the
diagonal element of the-body density matrix of the lowest
Landau level fermions at temperaturg1The Schrdinger
equation corresponding to E5) now reads
2
X
“

(59

2
, y 1 :
|@+———)+§u—ﬂb@—l

1
5(14'7') 1_72

T

12

(x+iy)?

dm=(2m+1) dp,.

Although, this relation is physically appealing we do not rely
on it to obtain our results.

Now we turn to the calculation of correlation functions.
The p-particle correlation function is obtained by integrating
P(zy, ....Zy) overzy,q, ...,z,. Using the orthogonality
of the wave functions and expressing Ef4) as a single
determinant, one easily finds

n! ) 5
Zp)= WJ dzpsq---dZ,P(2)

1

= >

n mp<my<-..<my

Ry(Zy, ...

X X, e P (z) b (Z)).  (60)
k=1
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Here, the overall normalization constaits have been cho- *° m

sen such that the joint probability integrates to unity. In an K(z,z))= E Z d(z) ¢ (7))
occupation number representation this correlator can be writ- m=0 k=0

ten as

" 1 1
1+, tefm 1477 tefMD)

2 % 2)

1 1
X J—
1+ tePm 14 tefmtD)

1
Rz .. z)=5 2 defjy

], (69
XE Ned(zi) di(Z) ), (61)

where the occupation numbeg runs over{0,1}. Such sums where the zero-temperature kernel is defined by
are easily calculated in the grand canonical ensemble

1 o m
Ro(za, - 29)=5 2 L"ZoRi(z1, ... 2,). (62 m(z:2)= 2, &z duZ). (70)

where( is the fugacity and is the grand canonical partition
function given by A. Correlations in the bulk

o The bulk scaling limit of the zero-temperature ker(iéd)
7= H (1+ e~ P%). (63 Was analyzed in detail ip32]. We will recall their method
k=0 for the sake of completeness. Using an integral representa-

o ] tion of the Hermite polynomials, it can be rewritten as
In the thermodynamic limit the correlators obtained by

means of the grand canonical ensemble coincide with those 1
from the canonical ensemble. The sum of thecan now be  Kp(21,2,) = 2 2 [' iz
performed easily. The result is given by Tyl 2(1

—det . 1

Rp(Z1, . ...zp)=det -1, ,K(z,7), (64) ——(Zl+22+2’{2+232) +—(21+Zz 2)

with the kernel defined by

w " —r2/2+irzy—s?/2—isZ5)Ir+rs

(Z') (ij) Xf drdsé
K(z 2= 3 P20 (69 B

K=o 1+ P

><I“(m+ 1rs)
The average spectral density, obtained by integrating over all m!
eigenvalues except one, is thus given by
1 p( 1 [ ,
== ol | [
z z 2 — _ 2
o(2)=K(z2)= 3, HDHE) (66 w2\ 2(1-7)

k=0 1+ tefk
1
+_(21""22 %)

T2, 2, k2, k2
The fugacity follows from the normalization integral and is ST+t + 57

given by

% X J dudv

k= +§ eﬁk 2 2 : * . *

x gU (1-1Un)—v(1+1n)+iu(zg—25) r+iv(z1+25)/ 7

Similarly, the two-point correlation function is obtained by )
: : ; : I'(m+21u—v9)
integrating over all eigenvalues except two. Subtracting « (71)
p(z1)p(z,) results in the connected two-point correlation m! ’

function given by

Ry(21,2,)=—|K(z1,2,)|?. (68) Wherer=u+v and s=u—v. The v integral can be per-
formed by a saddle-point approximation. To the leading or-
As in the case of strong non-Hermiticity, the kernel can beder, the argumeni in the incompletel’ function can be
simplified by means of a partial resummation, replaced by its saddle-point value given by
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— i(z1+2) - w @ (1/ad)(y5+y5)+ (i12)x(y1 - y2)
S 2(1+7)
Foru?—v2~m andm— =, the incompletd™ function can be :wa\/z_ . d pl+e(p2,1+x2/4)/h

approximated by a step function

, x @~ (@%PP12)giplar +i(y1+yp)]
X

1 _
202\ 2 2 _
o F'(m+1u—v°)~1 for u<m+v-=m 1117 ><e*(llaz)(yfwg)+(i/2)><(yryz), 77

(73

and zero otherwise, depending on whether its integration doyhere the combination
main contains the saddle point or not. We thus find the kernel

K?n(zlyzz)

=l )

= — np (78)
™ Vm+uv

_ duéJ2(1—1/7)+iu(zl—z§)/r
w2 r1— 721+ 17 —Jm+o

1 is kept fixed in the thermodynamic limit. Finally, we derive

exo — —{|21|2+|z§|—z(zf+z§+z’{2 the smallh limit of the kernel forx in the center of the
2(1—72) 2 spectrum k~0). The second integral in EGZ7) is rewritten

by expressing the Gaussian term as

(z1+25)?

* 2 _ s T
+7°) A7(7+1)

+ —(z1+ z?) (74)

e @ u2/2+|u[wr+|(yl+y2)]
In the limit of weak non-Hermiticity we magnify the bulk of

the spectrum according to _ 1 * dse [s- mr—i(yy +y )1 22a2 +isu
a\2mJ-=
zl—x\/—+ \/_ \/_ (79
G After performing the integral oveu we obtain
Zzzx\/ﬁ_ —_ +| k, p g g
Vnoyn
2 n
a 21242
P?=1-—, 75 K(z1,25)=
- (75 2]
—2<x<2. i i o V
where —2<x<2. Forn—ce this results in » sm(s 1+t) (1/a2)(y§+y§)_ 0
—l
KO\(21,2) = — WT_ - @ad) 2 +yd) + (12x(v1- ) cosf 2h
a2
fv(m” )’“ ue (uA2)+iufar +i(y;+y))] The integral ovet can be performed to leading orderhnin
—V(m+v?m that caseyl+t can be expanded to first order irand the

(76) resulting integral ovet, after extending its lower limit to

—o, is known analytically. We finally obtain
For B—0 the sum ovem can be replaced by an integral.

In this limit the kernel(69) is given by

nh o :
” BKn+y(Z1:22) K(z1,25)= Ze—(y§+y§)/a2f dse [s-mittyal?2a®
K(z1,25)= ndt——————— 27 o
~1+x%4 4 cosR(Bnt/2)
y sins 81
_ g P SNt 7shi2) 8D
may2m) -1+x%4 4 cosR(Bnt/2)
> JVlH*XZ"‘due—azuZ/z cosu[ 7t +i(y;+Y,)] Sometimes it is useful to explicitly display the=0 contri-
0

bution to the kernel. From the second integral in E&y) at
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In Fig. 1, we show the normalized kerriE(zl,zz) defined
R\ — h=0,a=0 i by
| \ s=- h=015a=1

\ — —h=0.15,a=2

Kzz,)| R — K(z;,25)
oal W - K(zy,25)= L2

\ Vp(Z1)p(Z)

(89

y ) for h=0.15 and different values of the non-Hermiticity pa-
\ o rameter. We find that the spectral correlations weaken for
y | increasing values af and approach the result for the Ginibre
I , ensemble fom~2. Although not shown in the picture, it was
verified numerically that the exact res(f7) is almost indis-

T tinguishable from the smali result(82) for values ofh up to

h~0.3, and significant differences are only found for values

FIG. 1. K(z;,2,) [Eq. (85)] atx=y;=y,=0. of h as large ash~1. The normalized critical kernel for
Hermitian ensemblg87] is easily reproduced from the ratio

(85) starting from the expressio(81) and taking the limit
h=0 one can explicitly find the zero-temperature result req—0,

ported in[31]. By subtracting and adding this term to Eq.

(81) we find
E( ) wh  sin(ar) (86)
21,2) > —————.
K(ze,20)= 20 L g-02es3iad fldue— (au?/2 2 sinh(m?rh/2)
Ta |24 0
) h If we consider thea— 0 limit of the kernel(82) or the spec-
XCOS{U[”“'(YﬁYz)]Hﬁ tral density(83), & functions of the imaginary part of the
™ eigenvalues have to be taken into account carefully. For ex-
% sins sins ample, thea— 0 limit of the spectral densit{83) is given by
” f_x s(sini‘(q-rhs/Z) _whSIZ)
n
x @~ (U2 {s=[rmtiyr+y2)l}?| (82) p(2)=—3(y). (87)

where the first and third integrals cancel each other.

The spectral density at the center of the band is given b¥)r Finally, let us mention that foa>-1 we recover the Gini-

e’s kernel for general complex matrices.

p(y)=K(z=iy/\n,z=iy/\n)

B. Correlations at the edge

2n 1 - 2y2/a2 ! —a?t?)2 77
~ 7 on ,daee cosh2ty) + al2n Next we consider a microscopic scaling limit at the vicin-
ity of either edge of the band of eigenvalues for =2./n,
o sint sint as an extension of the edge correlation of the Hermitian ran-
fo t sinh(7ht/2) T aht2 dom matrix ensembles.

We shall need a more refined asymptotic formula for the
incompletel” function than Eq(73). For x=m and m>1,
, (83 the incompletd” function is dominated by the contribution
from the lower end point, so th§1,27

x e 122 cog 2y t/a?)

wherey,=y,=Yy. The integral over Inf) of the spectral
density is given by

Xm+l

F'm+1x)=e™*

1+0

(88)

"
(x—m)?) |

X—m

© 1 © \/ﬁ
f ooK(z,z)d Imz—ﬁf_wp(y)dy— . (84

Accordingly, the kernel at zero temperature Effl) reads
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1 2 2.2 2 2 %2, %2 2 %2
Ko(z z )Z—e—[1/2(1—7)1[|z1| 25| = (rl2) (2] + 25+ 2 T+ 25 )]+ (L27) (21 +25 )
moh 2 2w ryl—7°
% fw foo drds e(—r2/2+irzl—szlz—isz’z*)/r+(m+1)|n rs—Inmt (89)
o) wlfS—m '
|
For z;,z,~2n, m~n, andr~1, the two saddle points of 1
ther () integral merge at=iyn (s=—in). In order to B=—1a (95
obtain a nontrivial result, we magnify this region according n=*h
to the scaling . . .
in contrast to the bulk scalin(y8). After replacing the sum
overmby an integral ovet, the low-temperature limit of the
Xi Y kernel (69) is given b
Z; :2\/ﬁ+ — 1 —, g y
n1/6 n1/2
13 2y
=/ ———@i(yi—y2)—(1/a’)(y;+y
m=n+n%3, K(z1.22) rac P
) a? * d 1
r=1-—, (90 X dtKa b X gy Talh
and change the integration variables as _ \En_ei(ylyz)(l/az)(yfwg)
T a
r=iyn+np, s=-iJn—nq. (92)
. . e = Ai(x1—DAI(xp—1)
The subleading terms in E488) are of orderO(n™°) in X dt e (96)
this scaling limit and can be ignored. To the leading order in o 1+e
n we obtain . . .
Due to the different orders of the level spacings in real and
2 s , imaginary directions, the zero-temperature kernel is factor-
K9(21,25)= 1Ty - (1R YY) ized, unlike the bulk kernel, E452) of [32], or our Eq.(76).
o

a Namely, the dependence &ﬁ on the ordem is merely to
= (= dp dq P33 +ip(x ) +ig%3+iq(x—1) dilate the eigenvalue support, which can be compensated by
Xf f — i a change of the real part of the eigenvalue coordinate,
—ee ) w2 27 —i(p+q) —x—t. Accordingly, the effects of non-Hermiticity and fi-
> e nite temperature are factorized. The former is reflected in the
= \ﬁ_ei(yl—yz)—(llaz)(y§+y§) scaled kernel as a Gaussian blurring in thedirection
™ a whereas, as the temperatirancreases, the oscillation of the
¢ scaled spectral density along tkelirection is weakened to-
xf dt’Ai(x;—t")Ai(x,—t"), (92 ward the Poissonian limit. This is shown in Fig. 2 where we
- plot the spectral density in the Hermitian limit given by
p(x)=[dtAi(x—t)2/(1+e'M).

where Ai(x) is the Airy function
V. NUMBER VARIANCE
. (93

=dp 5. =d 3
Ai(x)=f 2P ginrsipne —pcos(%+px

2 o The number variance in an arbitrary domaiof the com-

plex plane is given by
The integral in Eq.(92) is called the Airy kernelK a;(x;
—t,x,—1t) (see Ref[2], Sec. 18, describing the edge corre- L) = L_J d2z J d22.Y (2, 2
lations of the Gaussian Unitary Ensemble. By partial integra- (L) A A P 221.22)
tions one may express it in an alternative and more familiar

form with L= J d?zp(z), (97
A

_AI(X) A (Xp) — AT (X)) AT(Xo)
Kai(X1,X2) = X1— X - 9% \where p(2)=K(z2,2), Yi(z1,2,)=|K(z1,2,)|?, and
K(z1,z,) is the spectral kernel defined in E/7). Apart
The scaling ofm in Eg. (90) requires the introduction of a from edge correlations we have found that in the strong non-
finite temperature paramethrby Hermiticity case the two-point correlations decay exponen-
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. . FIG. 3. The smallh behavior of the number variancg?(L)
FIG. 2. The spectral density at the edge for different values OR/ersusL given in Eq.(99) for h=0.1 and values of the non-

the temperature parameter, at zero non-Hermiticity. Hermiticity parameter as given in the legend of the figure.

tially on a scale of one level spacing or less, which results in L

an asymptotic linear dependence of the number variance on S2(L)= L_zf dr(L—r)
A with unit slope. Below we focus our analysis on the more 0
interesting weak non-Hermiticity limit.

As will be seen in the figures below, the fluctuations of -
the eigenvalues increase with both increasing temperéture 4 am)-=-
and increasing degree of weak non-HermiticityThe rea-
sons for such behavior are the following: For larger values of siré(t) )e(l,az)(tmzl

sir?(arr) e—a2r2/L2

772I'2

m2h? 1 (= ( sirA(t)
d -
sink?(7ht/2)

h, the correlations of distant eigenvalues are suppressed re- (wht/2)2
sulting in stronger fluctuations and the slope of the asymp-

totically linear number variance increases WwittBy increas- ) o .
We observe that in this limit the finite temperature effects

ing the degree of non-Hermiticity, eigenvalues have more

room to avoid each other along the imaginary axis. As adecouple from the weak non-Hermiticity corrections. Eor

consequence, spectral fluctuations are stronger and devia. 1h anda<L it can be shown from Eq99) that the num-
tions from Wigner statistics are observed.
In the limith<1 we calculate the number variance for the
areaA=[—L,/2L,/2] X (—o,%). Because of the normaliza- a y h
tion integral (84) we choose.,=L#/+/n so that the areé SA(L)=—5— 5+ 5L+0(1L), (100
. . 2
containsL eigenvalues on average. The dependence of the m ™

kernel onx is subleading in the thermodynamic limit. This

allows us to rewrite the number variance as where y is the Euler constant. The term linear ancan be
calculated in then—0 limit and was obtained if32],
whereas the term linear imcan be calculated fax—0 and
L was derived if37]. In Fig. 3, we show the smah limit of
dr(wL/\n—mr/n) the number varianc€9) for h=0.1 and different values of
0 the non-Hermiticity parameter. We observe that the
o e asymptotic linear behavior given by E@LO0 is already
xf J dY1dY2|K(21,Zz)|2. (98) reached well below the expected scale dfi.1\We remark
ot - that for values oh as large as 0.3, the smdlresult(97) is
still very close to the exact result obtained with the kernel
(77).
where the prefactor includes a contribution from the Jaco- The smallh result for the number variano@®9) is also
bian of the transformatio(i75). The integrals ovey, andy,  valid for large values of the non-Hermiticity parameter. Plots
are easily performed in terms of the variablesy,;+y, and  of Eq. (99 for a>1 are shown in Fig. 4. We find that the
v=Yy;—Y,. The final result for the smah limit of the num-  asymptotic result for the slope is still approximately given by
ber variance is thus given by h/2 and depends only weakly an For L<a we find that

(99

Ber variance is given by

2
32

SXL)=L-
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-

FIG. 4. The number variand®9) is computed for large values

of the non-Hermiticity parametex.

32(L)—L, which is the result for strong non-Hermiticity.
This crossover behavior was first found in the lirhit-0

[32].

The imaginary part of the eigenvalues is of ordefThis
is shown in Fig. 5, where we plgi(y)/p(0) [with p(y)

15

20
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.-
S
. —
— -

FIG. 6. The number variance given by the general fornt@m.
The domain of integration is a rectangle in the complex plane con-
taining L eigenvalues and with a width given by<Om z<Ay.
The non-Hermiticity parameter is equal &o=0.4 and the value
of his equal to 0.1 for all curves. The number variance is almost
Poissonian foAy=a.

Gaussian Unitary Ensemble, the Ginibre ensemble, and the
Poisson ensemble. Using methods from statistical mechanics
and properties of orthogonal polynomials, we have analyzed

given in Eq.(83)] versusy. Since the imaginary part of the this ensemble in two different limits: weak non-Hermiticity
eigenvalues is of the same order as the spacing of the reghd strong non-Hermiticity.

part of the eigenvalues, the number variance computed for a We have shown that the joint eigenvalue distribution of
rectangle G<Imz<Ay<a is expected to be given by our random matrix model coincides with the diagonal ele-
3?(L)—L, whereL is the total number of eigenvalues in the ment of the density matrix of a two-dimensional gas of spin-

rectangle. This is shown in Fig. 6, where we plot the numbefess fermions in the lowest Landau level at finite tempera-
variance obtained from E¢97) using the kerne(82).

VI. CONCLUSIONS

ture. The two parameters of our model have been interpreted
in terms of a shape parameter of the two-dimensional domain
of eigenvaluegor particles and a temperature.

In the strong non-Hermiticity limit, in the bulk of the

In this paper we have introduced a two-parameter enspectrum, the correlations of the eigenvalues are given by
semble of complex random matrices with no Hermiticity Ginibre statistics and decrease exponentially on the scale of
conditions imposed. This ensemble interpolates between th@e average level spacing. The situation is different near the

1

0.8}

0.6

P | 1)

0.4

02

FIG. 5. The renormalized spectral denspy(y)=p(y)/p(0)
[with p(y) defined in Eq(83)] in the center of the band is shown

for different values of the non-Hermiticity parameter.

surface of the spectrum, where, at zero temperature, the cor-
relations decrease as an inverse square law in the direction of
the surface. At finite temperature this power-law behavior
changes into an exponential behavior. At very high tempera-
tures the surface and the bulk are no longer distinguishable.
In that case the two-point correlation function of the un-
folded eigenvalues still decays exponentially but with an ex-
ponent that is proportional to the temperature. In this way the
Poisson limit is recovered at high temperatures.

In the weak non-Hermiticity limit there is no clear distinc-
tion between the bulk and the surface, and the temperature
affects the correlation functions of the eigenvalues. In the
low-temperature limit we have obtained a closed analytical
expression for the two-point correlation function, which re-
produces critical statistics. We have found that, although
level repulsion is still present, the number variance is asymp-
totically linear with a slope depending on the temperature
parameter but not on the non-Hermiticity parameter. A re-
markable feature is that the temperature and weak non-
Hermiticity effects decouple in this region. Thus critical sta-
tistics is not modified by a weak non-Hermitian perturbation.
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Finally, let us explain a physical prediction of the presentimpurities and with several leads attached to it. We thus ex-
model. Since for critical statistics the slope of the numbemect that in the weak non-Hermiticity domain the leads do
variance is related to the multifractal dimension of the wavenot affect the multifractal dimension of the wave functions.
function and, in our model, the slope does not depend on the
non-Hermiticity parameter, we predict that the multifractal
dimension of a physical system does not depend on the non- ACKNOWLEDGMENTS
Hermiticity parameter either. We thus predict the same mul-
tifractal dimensions for open and dissipative systems. A This work was partially supported by the Department of
simple model for which this prediction may be tested is aEnergy Grants Nos. DE-FG88ER40383.M.G.-G. and
three-dimensional disordered system at the critical density a§.J.M.V) and DE-FG02-92-ER407165.M.N.).
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