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Partial-trace-free time-convolutionless equation of motion for the reduced density matrix
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Evolution of a system, coupled to its environment and influenced by external driving fields, is an old
problem that remains of interest. In this paper, we derive an equation of motion for the reduced system density
matrix, which is time convolutionless and free of the partial trace with respect to the environment states. This
new approach uses an extension of the projection-operator technique, which incorporates an isomorphism
between the system’s Liouville space and the unit eigenspace of the projection operator induced by the uniform
environment density matrix. Numerical application of the present approach is particularly useful in large
externally driven systems, as the partial-trace-free equation is given in terms of submatrices significantly
smaller than the matrices in the conventional time-convolutionless approaches, which alleviates the computa-
tional burden. We also show that all time-convolutionless approaches, conventional or partial-trace-free, are
based upon a hidden underlying assumption of time reversibility of the system’s evolution. This feature puts
significant constraints on applicability of time-convolutionless approaches when employing approximations
that yield time irreversibility. Also, we investigate the application of the approach in the description of far-
from-equilibrium systems.

DOI: 10.1103/PhysRevE.66.016131 PACS number~s!: 05.30.2d, 03.65.Yz, 05.60.Gg
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I. INTRODUCTION

Describing the evolution of a quantum-mechanical s
tem, coupled to its environment and influenced by exter
driving fields, is one of the oldest and most important pro
lems in quantum mechanics@1#. The problem actually lies in
attempting to describe the system’s time development, w
out necessarily having to collect too much information ab
the environment. A widely used approach to obtaining
equation of motion for the reduced system density mat
which contains full information about the system, is by usi
a projection-operator technique, introduced by Nakajima@2#,
Zwanzig @3#, and Mori @4#. Variants of the projection-
operator technique have successfully been used in m
fields. For example, Argyres and Kelley@5# presented a
theory of linear response in spin systems, Barker and F
@6# treated quantum transport in very small semiconduc
devices, Kassner@7# analyzed relaxation in systems with in
tial system-bath coupling, Sparpaglione and Mukamel@8#
presented a theory for electron transfer in polar media,
lowed by analyses of condensed-phase electron transfe
Hu and Mukamel@9#, and Romero-Rochin and Oppenhei
@10# addressed the relaxation of a two-level system wea
coupled to a bath. Essentially, all variations of the techniq
rely upon the use of two complementary projection opera
to generate the equations of motion for two mutually
thogonal projections of the total ‘‘system1 environment’’
density matrix. Equations of motion for the two projectio
are coupled, and the equation for the relevant projection,
the one yielding the reduced density matrix after a par
trace is taken over the environment states, can be obtaine
a closed form. This requires incorporating a formal solut
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of the equation for the orthogonal projection. The resulti
equation of motion for the reduced density matrix typica
exhibits non-Markovian~or time-convolution! behavior. The
non-Markovian nature and the need for full knowledge of t
system1environment~in order to take the partial trace ove
environmental states! are significant constraints on this ap
proach. An equation of motion containing a term with
memory kernel is particularly difficult to solve self
consistently, and one must often be satisfied with the fa
modulation~Markov! limit.

In response to the difficulties arising from memory ke
nels in nonequilibrium statistical mechanics, Tokuyama a
Mori @11# first proposed a time-convolutionless~also known
as ‘‘memoryless’’! equation of motion in the Heisenberg pic
ture. Soon afterwards, derivations of Shibata and co-work
@12,13# in the Schro¨dinger picture appeared, and this a
proach is the basis for much work that followed. This i
cludes Saeki’s analysis of linear response of an extern
driven system coupled to a heat bath@14# and work on sys-
tems coupled to a stochastic reservoir@15,16#. The latter was
extended by Ahn to formulate the quantum kinetic equatio
for semiconductors@17,18# and arrive at a theory of optica
gain in quantum-well lasers@19#. Chang and Skinner@20#
applied the time-convolutionless approach to analyze the
laxation of a two-level system strongly coupled to a h
monic bath. More recently, Ahnet al. treated noisy quantum
channels@21# and quantum information processing@22#, and
Golosov and Reichmann@23# analyzed condensed-phas
charge-transfer processes. Both the time-convolution
equation of motion@12–23# and the non-Markovian equa
tions described in the previous paragraph@2–10# are based
on projection-operator techniques. The difference is that
the time-convolutionless approach, the memory effects
taken into account by evaluating particular evolution ope
tors, which couple states of the system with the environm
states, rather than through a term with a memory ker
©2002 The American Physical Society31-1
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However, the entire approach is based on the assumptio
invertibility of one of the evolution operators, and this is
important issue that has not been addressed adequately
literature so far. Once a time-convolutionless equation for
relevant projection is obtained, a partial trace with respec
the environment states is performed, as before, to unc
the evolution of the reduced density matrix.

The resulting time-convolutionless equation of motion
the reduced density matrix still has two major shortcomin
First, it has an explicit dependence on the choice of the p
jection operator~or, on the environment density matrix th
induces the projection operator!. This is unphysical, as the
projection operator is just a tool, an external assumption,
in the end the equation of motion for the reduced den
matrix should not depend on such assumptions. This does
mean that the time-convolutionless approach is incorrec
just means that all the equations for different projection
erators eventually must reduce to one and the same equa
The second shortcoming is that the partial trace used to
tain the evolution of the reduced density matrix~from the
equation of motion for the relevant projection! requires one
to evaluate large and unpleasant evolution matrices, onl
extract significantly less information after the partial trace.
other words, one must obtain much more information th
actually necessary. With increasing size of the syst
1environment, and inclusion of a time dependence due
external forces, this obstacle becomes more serious.

In this paper, two main results are presented. First,
introduce a very useful and simple isomorphism between
space of operators acting on the system’s Hilbert space
the unit eigenspace of the projection operator induced by
uniform density matrix of the environment. This allows us
derive a time-convolutionless equation of motion for the
duced density matrix, which is free of the partial trace w
respect to environment states. The isomorphism enables
effectively perform a partial trace with respect to the en
ronment states without actually performing it: what we pe
form instead is a well-defined basis transformation. Being
partial-trace-free, this equation successfully addresses on
the shortcomings mentioned in the previous paragraph
depends on submatrices considerably smaller than thos
the conventional time-convolutionless approach@12–23#,
which makes the present approach especially interesting
numerical application in those cases where evaluation
large evolution matrices is particularly undesirable. Seco
we point out that a time-convolutionless approach, conv
tional or partial-trace-free, is based on the assumption
invertibility of a particular ‘‘entanglement operator,’’ an
show that this assumption is equivalent to the assumptio
reversibility of the system’s evolution. This puts constrain
on the applicability of time-convolutionless approaches,
general. In particular, we investigate the application of
approach to the description of a steady state in far-fro
equilibrium situations.

In Sec. II, we first introduce some basic definitions a
notation~Sec. II A!, and then review the projection-operat
technique employed to obtain the conventional tim
convolutionless equation of motion~Sec. II B!. In Sec. III,
we first outline major steps in solving the eigenproblem
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the projection operator itself, and construct the desired
morphism, which effectively performs the partial trace~Sec.
III A !. This isomorphism enables us to derive our main
sult, the partial-trace-free equation of motion~34! for the
reduced density matrix~Sec. III B!. Numerical applicability
of the present approach is analyzed in detail in Sec. II
Section IV A addresses the second important issue of
work, the assumption of reversibility, which we prove is i
herent to any time-convolutionless approach. We illustr
how a time-convolutionless approach behaves when des
ing far-from-equilibrium situations. We also show how th
partial-trace-free equation is used for the case of no ini
coupling between the system and the environment~Sec.
IV B !. Finally, we conclude with a brief summary in Sec.

II. PROJECTION-OPERATOR TECHNIQUE

A. Basic definitions

Consider a systemS, interacting with its environmentE,
so that the system1 environment (S1E) is either closed, or
influenced by external driving fields that are assumed kno
and unaffected by the feedback fromS1E. The Hilbert
spaces of both the environment and the system,HE andHS ,
respectively, are assumed to be finite dimensional,dE
5dimHE , dS5dimHS . These two spaces form a tenso
product Hilbert space of the system1environment, H
5HE^ HS , with dimensionality d5dimH5dEdS . The
spaces of operators acting onHE , HS , andH will be de-
noted byHE

2, HS
2, and H2 @24#, respectively, whereas th

elements ofHE
2, HS

2, andH2 ~i.e., operators onHE , HS , and
H! will be denoted by lowercase letters, Greek or Rom
Moreover, operators acting onHE

2, HS
2, andH2, sometimes

calledsuperoperators, will be denoted by Roman capital let
ters. When there is no risk of confusion, we will simply ref
to them as operators.

Let us choose a basis$u i & u i 51, . . . ,dE% in HE and a
basis $ua& ua51, . . . ,dS% in HS , which induce a tensor-
product basis $u ia&[u i & ^ ua& u i 51, . . . ,dE ; a
51, . . . ,dS% in H. These naturally give rise to the followin
expanded bases:

$i i j &&[u i & ^ ^ j uu i , j 51, . . . ,dE% in HE
2,

$iab&&[ua& ^ ^buua,b51, . . . ,ds% in Hs
2, ~1!

and

$i ia, j b&&[u ia& ^ ^ j buu i , j 51, . . . ,dE ; a,b51, . . . ,ds%

in H2,

@we use the double keti . . . && for the Dirac notation of vec-
tors inHE

2, HS
2, andH2 ~double brâ^ . . . i for their adjoints!

to distinguish from single ket and bra, reserved for vectors
HE , HS , andH#. For an operatorx on H ~i.e., an element of
H2!, one can write
1-2
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whereas for an operatorA on H2, the following form is valid

A5 (
i , j ,p,q51

dE

(
a,b,s,g51

dS

Aps,qg
ia, j b i ia, j b&&^̂ ps,qgi . ~3!

Analogous expressions are easily obtained for element
HE

2,HS
2 @25#, and operators onHE

2,HS
2.

The total Hamiltonianh, acting onH, can be written as

h~ t !5hs~ t !1hE~ t !1hint~ t !, ~4!

wherehS is the system Hamiltonian,hE is the environment
Hamiltonian, andhint describes the system-environment i
teraction. It is important to note that driving fields, provid
by applied potentials, are included as part of the syst
These are assumed to arise fort.0, and provide an explicit
time dependence forh. SinceS1E is isolated, the total den
sity matrix r evolves according to the Liouville equatio
(\51),

dr~ t !

dt
52 i @h~ t !,r~ t !#[2 iL ~ t !r~ t !, ~5!

with L5LS1LE1L int being the Liouville superoperator, i
one-to-one correspondence with the Hamiltonian~4!. Equa-
tion ~5! actually represents a system ofdE

2dS
2 linear first-order

differential equations on the time intervaltP@0,̀ ). SinceL
is continuous throughout this entire interval, we are guar
teed to have a unique solution of Eq.~5! on tP@0,̀ ) for a
given initial conditionr~0! @26#.

The quantity that describes the evolution of the systemS
is the reduced density matrixrS , defined by

rs5TrE~r!, ~6!

where TrE( . . . ) denotes the partial trace over the enviro
ment states. The goal is to deduce howrS evolves, without
having to gather too much information about the enviro
ment.

B. Projection-operator technique

Let us now choosean arbitrary density matrixrD ~sub-
scriptD stands for dummy, asrD is a test object for the time
being!, which acts onHE and is constant in time. We intro
duce time-independent projection operatorsPD and QD ,
which are associated withrD and act onH2, as

PDx5rD ^ TrE x, QD512PD ~xPH2!. ~7!

In particular, since TrE(rD)51 ~rD is a proper density ma
trix!, it follows that
01613
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TrE~PDr!5TrE~rD!TrE r5TrE r5rs . ~8!

Therefore, the evolution of TrE(PDr) should be described by
an equation that is independent ofrD ~or, equivalently,PD!.

Since PD and QD are time independent, they commu
with the time derivative. Therefore, for the equations of m
tion of PDr andQDr, we obtain from Eq.~5!

dPDr~ t !

dt
52 iPDL~ t !r~ t !

52 iPDL~ t !PDr~ t !2 iPDL~ t !QDr~ t !, ~9a!

dQDr~ t !

dt
52 iQDL~ t !r~ t !

52 iQDL~ t !QDr~ t !2 iQDL~ t !PDr~ t !. ~9b!

A formal solution of Eq.~9b! is of the form

QDr~ t !52 i E
0

t

dt8 H~ t,t8!QDL~ t8!PDG~ t8,t !r~ t !

1H~ t,0!QDr~0!, ~10!

where fort.t8,

H~ t,t8!5Tc expS 2 i E
t8

t

ds QDL~s!QDD ,

G~ t8,t !5Ta expS i E
t8

t

ds L~s! D , ~11!

and Tc and Ta denote the time-ordering and the anti-tim
ordering operators, respectively. Upon introducing

K~ t !511 i E
0

t

dt8 H~ t,t8!QDL~ t8!PDG~ t8,t !, ~12!

Eq. ~10! can be rearranged to give

K~ t !QDr~ t !5@12K~ t !#PDr~ t !1H~ t,0!QDr~0!.
~13!

If K(t) is invertible, which is an important question to whic
we will return, Eq.~13! becomes

QDr~ t !5@K~ t !2121#PDr~ t !1K~ t !21H~ t,0!QDr~0!,
~14!

and Eq.~9a! can be rewritten as
1-3
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dPDr~ t !

dt
5 iPDL~ t !K~ t !21PDr~ t !

2 iPDL~ t !K~ t !21H~ t,0!QDr~0!. ~15!

After taking a partial trace with respect to the environme
states, Eq.~15! will give us the equation of motion forrS as

drs~ t !

dt
52 i TrE@PDL~ t !K~ t !21PDr~ t !#

2 i TrE@PDL~ t !K~ t !21H~ t,0!QDr~0!#

52 i TrE@L~ t !K~ t !21rD ^ rs~ t !#

2 i TrE@L~ t !K~ t !21H~ t,0!QDr~0!#

52 i ^L~ t !K~ t !21&Drs~ t !

2 i TrE@L~ t !K~ t !21H~ t,0!QDr~0!#. ~16!

The last line was obtained by introducing^¯&D , which
maps operators acting onH2 onto operators acting onHS

2:
for any given A, ^A&D is defined as (̂A&D)sg

ab

5( i ,p,q51
dE Aps,qg

ia,ib (rD)pq @see Eq.~3!#. Equation~16! is what
we have, so far, referred to asthe conventional time-
convolutionless equation of motion forrS(t) @12–23#.

As already mentioned in the Introduction, there are t
features of Eq.~16! that need attention. First, within the pa
tial trace in both terms on the right-hand side of Eq.~16!,
there is an explicit dependence on the choice of the pro
tion operatorPD ~or, equivalently, on the environment de
sity matrix rD that induces the projection operator!, so one
must make a choice ofrD to actually be able to use Eq.~16!.
As rD is just an external arbitrary tool, in the end the equ
tion of motion forrS(t) should not depend on it. This doe
not mean that the time-convolutionless approach is incorr
it just means that all the equations for different projecti
operators ought to, eventually, reduce to one and the s
equation. What that equation should be, or how to rigorou
prove mutual equivalence of all the equations with differe
PD’s, is not presently known.

The second important issue is that, due to the partial tr
one must evaluate generally large and unpleasant evolu
matricesH, G, andK, only to extract significantly less infor
mation after the partial trace. Much more information th
actually necessary has to be obtained. With increasing siz
the system1 environment and inclusion of a time depe
dence due to external driving, this obstacle becomes incr
ingly serious when numerical implementation of Eq.~16! is
considered.

III. PARTIAL-TRACE-FREE DIFFERENTIAL EQUATION
OF MOTION FOR THE REDUCED DENSITY

MATRIX

In the preceding section, we realized that a serious c
straint on the application of the conventional tim
convolutionless approach~16! in large systems is evaluatio
of large matrices, when not all the information contained
them is needed. In this section, we derive a partial-trace-
01613
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equation of motion forrS , which successfully addresses th
issue.

A. Choice of P̄D

Some features of the eigenvalue problem ofPD are virtu-
ally obvious:PD is Hermitian, and it is easily verified tha
PD is idempotent, i.e.,PD

2 5PD . Hence, the eigenvalues ar
0 and 1. On the other hand, by construction~7!, the image
space ofPD corresponds withHS

2, so one seesthat the
eigenspace of PD , corresponding to the eigenvalue 1, oug
to be isomorphic toHS

2. A formal solution of the eigenprob
lem of PD is given in the Appendix. An important and usef
point that we need to recognize is the decomposition ofH2

into a direct sum of eigenspaces ofPD ,

H25~H2!PD51% ~H2!PD50 , ~17!

where (H2)PD51 is the dS
2-dimensional unit eigenspace an

(H2)PD50 is thedS
2(dE

221)-dimensional zero eigenspace.

If we choose an orthonormal eigenbasis ofPD

$inD&&u nD51, . . . ,dE
2dS

2% so that, according to decompos
tion ~17!, the firstdS

2 basis vectors span (H2)PD51 , we will
be able to write

PD5 (
nD51

dS
2

inD&&^̂ nDi . ~18!

The crucial question that we ask is:is it possible not to mix
original basis vectorsi ia, j b&& with differenta, b to obtain a
given inD&&? The answer is:yes, only if the density matrix
inducing the projection operator is the uniform density m
trix @27#, i.e.,

r̄D[dE
211dE3dE

, ~19!

with the associated projection operator denoted byP̄D ~see
the Appendix for a formal proof of this statement!. One in-
deed finds that the vectors defined as

iab&&[
1

AdE
(
i 51

dE

i ia,ib&& ~20!

constitute an orthonormal basis within the unit eigenspac
P̄D @28#, namely,

P̄Diab&&5iab&&, ^̂ abisg&&5dasdbg ~; a,b,s,g!.
~21!

P̄D can therefore be written as

P̄D5 (
a,b51

dS

iab&&^̂ abi , ~22!

and it follows that
1-4
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P̄Dx5 (
a,b51

dS

~ P̄Dx!abiab&&, ~23!

where

~ P̄Dx!ab5 ^̂ abix&&5
1

AdE
(
i 51

dE

^̂ ia,ibix&&5
1

AdE
(
i 51

dE

xia,ib

~24!

~we identifiedx5ix&& to take advantage of the compactne
of the Dirac notation!. Using the fact that TrE x, being a
vector onHS

2, is written in terms of the basis$iab&&% as

TrE x5 (
a,b51

dS

~TrE x!abiab&&5 (
a,b51

dS S (
i 51

dE

xia,ibD iab&&,

~25!

from Eq. ~24! we obtain the crucial equation for the rest
this work,

~ P̄Dx!ab5
~TrE x!ab

AdE

. ~26!

Equation~26! represents a very useful isomorphism betwe
(H2)PD51 ~the unit eigenspace ofP̄D! and HS

2, which is
depicted in Fig. 1. We have managed to ‘‘preserve’’ the id
tity of basis vectors$iab&&% from HS

2 when mapping to
(H2)PD51 . This isomorphism is basis induced, and enab
us to effectively perform a partial trace with respect to th
environment states without actually performing it: instea

FIG. 1. The isomorphism~26! between the unit eigenspace

P̄D and the system’s Liouville spaceHS
2. This isomorphism enable

us to effectively perform a partial trace over the environmen

states by remaining inH2 and working in the eigenbasis ofP̄D .
01613
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what we do perform is a basis transformation inH2. This is
the basis for the derivation of a partial-trace-free equation
motion for the reduced density matrix.

B. Partial-trace-free differential equation of motion for rS

According to Eq.~26!, there is a very simple correspon
dence between howP̄Dr looks in terms of the eigenbasi
$iab&&%, Eq. ~20!, and howrS looks in terms of the basis
$iab&&% in HS

2, namely,

~rS!ab5AdE~ P̄Dr!ab. ~27!

Using this result, we conclude that the evolution of the re
resentation matrix ofrS can be tracked in (H2)PD51 directly,

by following the evolutionP̄Dr without taking the partial
trace with respect to the environment states~which would
mean going back toHS

2!. The price is, however, that every

thing must be written in the eigenbasis ofP̄D , whose firstdS
2

vectors are$iab&&%, Eq. ~20!, and the rest can be straightfo
wardly constructed~for details, see Sec. III C and the Appe
dix!. In this basis, the projection operators are represen
according to~boldface characters denote the representa
matrices!

P̄D5F 1d
S
23d

S
2 0d

S
23d

S
2~d

E
221!

0d
S
2~d

E
221!3d

S
2 0d

S
2~d

E
221!3d

S
2~d

E
221!

G ,

Q̄D5F 0d
S
23d

S
2 0d

S
23d

S
2~d

E
221!

0d
S
2~d

E
221!3d

S
2 1d

S
2~d

E
221!3d

N
2 ~d

E
221!

G , ~28!

where we have explicitly written out the dimensions of ea
submatrix for clarity. Also, the density matrix is represent
by

r5Fr1

r2
G , P̄Dr5Fr1

0 G , ~29!

where r1 is a dS
2 column andr2 is a dS

2(dE
221) column.

According to Eq.~27!,

rS5AdEr1 , ~30!

with rS being the column that representsrS in the basis
$iab&&% of HS

2. The block forms of other operators involve
in Eqs.~5!–~16! are readily written as

l

L~ t !5FL11~ t ! L12~ t !

L21~ t ! L22~ t !
G , ~31a!

G~ t8,t !5Ta expS i E
t8

t

dsL~s! D 5FG11~ t8,t ! G12~ t8,t !

G21~ t8,t ! G22~ t8,t !
G , t8,t. ~31b!
1-5
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H~ t,t8!5Tc expS 2 i E
t8

t

dsQ̄DL~s!Q̄DD 5F 1 0

0 Tc expS 2 i E
t8

t

dsL22~s! D G5F1 0

0 H22~ t,t8!
G , ~31c!

K~ t !511 i E
0

t

dt8F1 0

0 H22~ t,t8!
GF 0 0

L21 0GFG11~ t8,t ! G12~ t8,t !

G21~ t8,t ! G22~ t8,t !
G

5F 1 0

i E
0

t

dt8 H22~ t,t8!L21~ t8!G11~ t8,t ! 11 i E
0

t

dt8 H22~ t,t8!L21~ t8!G12~ t8,t !G
5F 1 0

K21~ t ! K22~ t !
G . ~31d!
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We see thatK(t) is invertible if

detK~ t !5detK22~ t !

5detF11 i E
0

t

dt8 H22~ t,t8!L21~ t8!G12~ t8,t !G
Þ0. ~32!

If Eq. ~32! is fulfilled, from Eq. ~31d! we obtain

K21~ t !5F 1 0

2K22
21~ t !K21~ t ! K22

21~ t !G . ~33!

Using the block forms~29!–~33!, the equation of motion for
P̄Dr, Eq. ~15!, and the isomorphism~27!, we obtain

drS~ t !

dt
52 i @L11~ t !2L12~ t !K22

21~ t !K21~ t !#rS~ t !

1 iAdEL12~ t !K22
21~ t !H22~ t,0!r2~0!. ~34!

Equation ~34! is the partial-trace-free time-convolutionles
equation of motion forrS . It actually describes the evolutio
of the representation matrix ofrS in the basis$iab&&%. Deal-
ing with representation matrices in a given basis, rather t
a representation-independent form, is not a downside in
self, particularly if one has numerical implementation
mind. In this partial-trace-free form, multiplication of gene
ally nonsquare submatrices~e.g.,L12K22

21! is what mimics the
partial trace. Moreover, since no explicit dependence on
projection operator used is present, the partial-trace-
equation~34! offers a clearer picture as to what elements
the Hamiltonianh, through the evolution of submatrices, a
tually come into play. This increased transparency should
useful when choosing and employing different approxim
tions.
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C. Numerical applicability of the partial-trace-free
equation „34…

The present approach, which culminates in Eq.~34!, has
interesting features as far as numerical applicability is c
cerned. As already mentioned, in order to solve a conv
tional time-convolutionless equation of motion~16!, which
contains a partial trace and, within it, an assumption on
environment density matrix used, one needs to first evalu
the full evolution matrices~H,G,K!, only to extract the re-
quired information by the partial trace. With increasing si
of the systems analyzed, the task of evaluating the en
evolution matrices becomes increasingly cumbersome. If
Liouville operatorL, Eq. ~5!, is time independent, this prob
lem is less difficult, as, after initially having solved th
eigenproblems ofL and QDLQD , the evolution matrices a
any point in time are readily evaluated by exponentiation
these operators in their respective eigenbases, and then g
back to the initial basis. However, in cases of externa
driven systems, for whichL is generally time dependent, th
problem of evaluation of evolution matrices becomes m
computationally demanding: namely,L(t)’s at different
points in time do not commute with each other@the same
holds forQDL(t)QD’s#, and the time-ordered products in th
evolution operators~11!,~12! need to be evaluated for ever
order in the exponential series, and for each point in tim

Having this in mind, the biggest numerical advantage
Eq. ~34! over the conventional time-convolutionless equati
~16! is its dependence on submatrices that are appreci
smaller than the full evolution matrices used in the conv
tional approach. In small time-independent systems, this
vantage is less important, but with increasing size and
time dependence, any reduction in the dimension of the
trices is very welcome. Therefore, the present approac
especially adequate for large externally driven syste
~However, there is the issue of irreversibility, which is a
important one when it comes to implementation, and is
dressed in Sec. IV A.!

The actual implementation should follow the sequen
given below.

~1! Usually, start from the matrix elements of the Liou
ville operator~5! in a tensor-product basisi ia, j b&&.
1-6
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~2! According to Eq.~20!, first the vectorsiab&& and then
the rest of the eigenvectors ofP̄D are constructed~see Ap-
pendix for details!. We will just note that all the vectors o
the initial basisi ia, j b&&, such thatiÞ j , are already both
mutually orthogonal, and orthogonal to alliab&&, and that
leaves, for everya,b, only dE21 vectors to construct, fol-
lowing the standard Gram-Schmidt orthogonalization pro
dure. Of course, any other basis in (H2)PD50 may be chosen
Eq. ~34! will remain the same; however, the basis
(H2)PD51 must beiab&&.

~3! The matrix elements of the Liouville operator are r
written in the new total basis ofH2, and then the evolution
operators, i.e., their submatrices~31a!–~31d!, are found.

~4! Equation~34! is set up and solved.

IV. DISCUSSION

A. Irreversibility and breakdown of time-convolutionless
approaches. Far-from-equilibrium situations

It was already mentioned that the existence of a tim
convolutionless approach relies upon the assumption thK
is invertible. However, this cannot be taken for grante
Namely, if we were capable of using the exact form of t
Hamiltonians ~4! and the exact initial stater~0!, and the
system1environment were indeed closed except for the
ternal driving force, then, as already mentioned, since Eq.~5!
is a linear equation, there always exists a unique solu
r(t) fixed by r~0!. Consequently, there exists a unique so
tion for rS(t). Unfortunately, we are most often not quite
lucky. We are forced to make approximations, for instan
about the initial state~e.g., assume that the environment is
thermal equilibrium, or perform some type of averaging! or
about the dynamics~e.g., Markov approximation, retardatio
effects, local approximations!. Also, very often the system
1environment that we consider is not actually closed,
coupled to some outer environment, and we might wan
include some information about that coupling. The botto
line is that introducing approximations may lead to irreve
ible behavior. This has been well known for non-Markovi
approaches, which, due to the robustness of the memory
nel’s integral form, seem to tolerate such approximatio
fairly well. However, the same does not hold for tim
convolutionless approaches.

The assumption of invertibility ofK is actually the as-
sumption of time reversibility ofrS’ s evolution. Namely, let
us introduce shorthand notation

Z~ t !5L11~ t !2L12~ t !K22
21~ t !K21~ t !,

Y~ t,0!5 iAdEL12~ t !K22
21~ t !H22~ t,0!r2~0!. ~35!

Then, Eq.~34! can then be rewritten as

drS~ t !

dt
52 iZ~ t !rS~ t !1Y~ t,0!. ~36!
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In order for Eq.~36! to have a unique solution, fixed by th
initial r~0!, for all tP@0,̀ ), Z andY must be continuous in
this time interval@26#. This requirement is fulfilled ifK22 is
invertible for all tP@0,̀ ), in which case the evolution of the
reduced density matrixrS is described by

rS~ t !5U~ t,0!H rS~0!1E
0

t

dt@U~t,0!#21Y~t,0!J ,

U~ t,0!5Tc expS 2 i E
0

t

dt Z~t! D . ~37!

Apparently, the assumption of invertibility ofK, which led us
to the differential equation~34! in the first place, also guar
antees the existence and uniqueness of the solution~37!.
Therefore,time-irreversible processes cannot be describ
by a time-convolutionless approach, as that implies that the
inverse ofK vanishes. This statement holds for both the co
ventional and the partial-trace-free approach, although
above equations are given for only the latter.

There is another way of grasping the true meaning beh
the vanishing inverse ofK. Namely, by using the block forms
~28!–~33!, Eq. ~13! can be written as

F 1 0

K21~ t ! K22~ t !
G Fr1~ t !

r2~ t !G5Fr1~ t !
0 G1F1 0

0 H22~ t !
G F 0

r2~0!G ,
~38a!

which yields

K22~ t !r2~ t !52K21~ t !r1~ t !1H22~ t,0!r2~0!. ~38b!

If detK22( t̃ )50 at some point in timet̃ , there actually is a
constraint on the right-hand side of Eq.~38b!, since we re-
quire that the solutionr2( t̃ ) exists. Namely, the right-hand
side of Eq.~38b! must be orthogonal to all solutionsy of the
equationK22

1 ( t̃ )y50 @29#, i.e.,

^2K21~ t !r1~ t !1H22~ t,0!r2~0!uy&50

~; y, K22
1 ~ t̃ !y50!, ~39!

where^••u••& is the standard scalar product of two column
Therefore, any approximation made for the dynamics~i.e., to
L,K,H! and the initial stater2(0) must be such that, if the
evolution becomes irreversible, i.e., detK22( t̃ )50, then Eq.
~39! must also hold. If this requirement is fulfilled@for in-
stance, if the right-hand side of Eq.~38b! is zero#, the van-
ishing determinant simply means that the number of mu
ally independent equations in this system is less thandS

2(dE
2

21). There will be ‘‘free elements’’ in the solution colum
r2( t̃ ), in terms of which all other elements will be given
This appears as a degree of arbitrariness, or insufficienc
the information contained in the evolution submatrices a
the initial condition. Simply, this is another way of statin
that irreversibility occurs. In order to reset the tim
1-7
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convolutionless approach after breakdown, a new initial c
dition r( t̃ 1) needs to be obtained from an external assum
tion, and that is the crucial obstacle for the application
time-convolutionless approaches. Again, although the for
steps were given for the partial-trace-free approach, they
easily be generalized for the conventional approach.

A typical situation for which one encounters time irreve
ibility is far from equilibrium, in externally driven systems
In this case, one actually requires that a steady-state valu
rS be independent of the initial stater~0!. The independence
of the final state from the initial state is another way
stating that there is no unique connection between them
that the evolution isnot reversible @26,30#. Rather, the
steady-state value is achieved by a balance between dr
forces and decay forces~from the system to the environ
ment!, namely, by

bL11~ t !2L12~ t !K22
21~ t,t!K21~ t,t!crS~ t !50,

t.t last, rS~ t !5const, ~40!

where K(t,t) is a natural extension of the definition o
K(t)[K(t,0), Eqs.~12! and ~31d!, with the lower limit of
integration equalingt ; t last is the last moment in time, pre
cedingt, for which the determinant ofK(t) vanished@as all
functions involved inK are continuous, and the determina
is a continuous function, there may be either isolated po
in time or entire time intervals for which detK(t) vanishes#.
n

e
ac
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In order for the steady state to be achieved, the follow
must hold simultaneously with Eq.~40!:

Y~ t,t!50, t.t last. ~41!

This condition represents the vanishing of the so-called ‘‘r
dom force,’’ and is presently not fully understood@31#, but
should hold for an arbitraryr2(t). We believe that further
investigation of the properties of the operat
L12(t)K22

21(t,t)H22(t,t), Eq. ~35!, will reveal that its ap-
proximately null subspace increases in dimension, as t
increases, which enables Eq.~41! to hold for an arbitrary
r2(t).

B. Application of Eq. „34… to the case of
initially decoupled system and environment

The case of no initial coupling is important for sever
reasons. First, it serves as a reality check, to test the cor
ness of the present approach. Furthermore, it is a good s
ing point in many essentially nonequilibrium situations,
which the coupling builds up in time. And third, if one i
interested in cases with initial coupling, the no-initia
coupling limit marks just the opposite end of the spectrum

Let us assume that att50 the system and the environ
ment are uncoupled, soru(0)5rE(0)^ rS(0) ~the extra sub-
script u stands foruncoupled!. A very common approach in
this case is to chooserD,u5rE(0) for the projection-
operator technique, so that the free term in Eq.~16! would
vanish. Then, Eq.~16! can be rewritten as
~42!
en-
,

itary

s,
The solution of Eq.~42! is given by

rS~ t !5Tc expS 2 i E
0

t

dt^L~t!Ku~t!21&D,uD rS~0!.

~43!

However, in the partial-trace-free equation~34! the rightmost
term survives, asQ̄Dru(0)Þ0, and it has no counterpart i
Eq. ~42!. This leads us to question whether from Eq.~34! we
will also obtain the solution of the form

rS~ t !5E~ t,0!rS~0!, ~44!

as we did from Eq.~42!.
To answer this problem we should remember that, as s

in Sec. III A, every projection operator has a unit-eigensp
isomorphic toHS

2. In the eigenbasis ofPD,u ,ru(0) can be
written as
en
e

@ru~0!#u5Fr1,u~0!

0 G , ~45!

where@¯#u denotes the representation column in the eig
basis ofPD,u . In the eigenbasis ofP̄D , on the other hand
ru(0) is written as

ru~0!5Fr1~0!

r2~0!G . ~46!

Since both eigenbases are orthonormal, there exists a un
matrix

M5FM11 M12

M21 M22
G , ~47!

which relates the representation columns in the two base
1-8
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Fr1,u~0!

0 G5FM11 M12

M21 M22
G Fr1~0!

r2~0!G . ~48!

As detMÞ0 ~M is unitary!, one can solve uniquely fo
r1(0),r2(0), if r1,u(0) is given. From the second row in Eq
~48!, we obtain

r2~0!52M22
21M21r1~0!52dE

21/2M22
21M21rS~0!, ~49!

and consequently,Y, Eq. ~35!, becomes

Y~ t,0!52 iL12~ t !K22
21~ t !H22~ t,0!M22

21M21rS~0!, ~50!

yielding

rS~ t !5H U~ t,0!2 i E
0

t

dt U~ t,t!L12~t!K22
21~t!

3H22~t,0!M22
21M21J rS~0! ~51!

~note that theAdE factors have canceled out!. Obviously, Eq.
~51! is of the form~44!, as ought to be expected for the ca
of no initial coupling.

V. SUMMARY

In this paper, evolution of an externally driven syste
coupled to its environment, was investigated. First, a part
trace-free time-convolutionless equation of motion for t
reduced density matrix of the system was derived, Eq.~34!.
This result was obtained by implementing an extension
the projection-operator technique, which is based on an
morphism, introduced in this paper, between the sys
Liouville space~space of operators acting on the system
Hilbert space! and the unit eigenspace of the projection o
erator induced by the uniform density matrix of the enviro
ment. Being partial-trace-free, this equation depends on
matrices considerably smaller than those in the conventio
time-convolutionless approach. As a result, numerical ap
cation of our partial-trace-free equation~34!, rather than of
the conventional time-convolutionless equation~16!, be-
comes more advantageous with increasing size and in t
dependent systems, as in these cases any reduction i
dimension of the matrices is desirable.

Second, we showed that any time-convolutionless
proach, either a conventional or a partial-trace-free one
actually based on an inherent assumption of reversibility
the system evolution. Namely, we have demonstrated tha
vanishing inverse of a particular operator~whose invertibility
is not a priori guaranteed when approximations are ma
but is the underlying assumption of time-convolutionless
proaches! actually means the onset of time irreversibilit
i.e., the available information is insufficient to uniquely sol
the system’s equation of motion. Furthermore, we inve
gated the description of far-from-equilibrium situation
when a steady state that is independent of initial condition
01613
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achieved. Lastly, we illustrated the application of the parti
trace-free equation to the case of no initial coupling betwe
the system and the environment.
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APPENDIX: EIGENPROBLEM OF THE PROJECTION
OPERATOR AND THE CHOICE OF P̄D

In this appendix, we first solve the eigenvalue problem
a projection operatorPD , which is induced by a given envi
ronment density matrixrD . This solution enables us to jus
tify the choice ofP̄D , made in Sec. III A. We conclude with
a detailed construction of an eigenbasis ofP̄D .

If we choose$u i &% to be an orthonormal eigenbasis ofrD
~rD being considered as an operator onHE!, it follows that

rD5(
i 51

dE

rDi i i ,i &&, where rDi>0, (
i 51

dE

rDi51.

~A1!

The action ofPD on x is then given by

PDx5rD ^ TrE x5(
i

rDi i i ,i &&^ (
k,a,b

xka,kbia,b&&

5 (
i ,k,a,b

rDix
ka,kbi ia,ib&&. ~A2!

From the above expression, one can see that the action oPD
on linear combinations of basis vectorsi ia, j b&&, such that
iÞ j , gives zero~since the environment partial trace ov
such vectors is zero!. Consequently, the zero-eigenvalue su
space ofPD is at leastdS

2dE(dE21) dimensional. The re-
maining (dS

2dE)-dimensional subspace contains vectors
the formS i ,a,bxia,ibi ia,ib&&. In this subspace, according t
Eq. ~A2!, solving the eigenvalue problem ofPD , namely, the
equationPDx5lx, can be written as

rDi(
k

xka,kb2lxia,ib50 ~; a,b,i !, ~A3!

which, for an arbitrary paira,b, becomes a matrix equatio
1-9
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F rD12l rD1 rD1 ¯

rD2 rD22l rD2 ¯

rD3 rD3 rD32l ¯

¯ ¯ ¯ ¯

G F x1a,1b

x2a,2b

x3a,3b

¯

G50.

~A4!

There is a nontrivial solution to Eq.~A4! only if the deter-
minant of the system matrix vanishes, namely, if

det~R2lI !5detF rD12l rD1 rD1 ¯

rD2 rD22l rD2 ¯

rD3 rD3 rD32l ¯

¯ ¯ ¯ ¯

G50,

~A5!
01613
whereR is defined as

R5F rD1 rD1 rD1 ¯

rD2 rD2 rD2 ¯

rD3 rD3 rD3 ¯

¯ ¯ ¯ ¯

G . ~A6!

We will now prove that Eq.~A5! has exactly one nonzer
solution, l51, whereas the solutionl50 is (dE21)-fold
degenerate.

Say there aren nonzeror i . We may always perform a
simple permutation of basis vectors, or effectively transpo
tions of rows and columns, such that from Eq.~A5! we in-
deed obtain
~A7!
whererD1 ,...,rDn are now then nonzerorD1 . Let us now
define

An~x1 ,...,xn![F x12l x1 ¯ x1

x2 x22l ¯ x2

¯ ¯ ¯ ¯

xn xn ¯ xn2l

G ,

~A8!

where allxi are nonzero. Then we may write
detAn~x1 ,...,xn!

5detF x12l x1 ¯ x1

x2 x22l ¯ x2

¯ ¯ ¯ ¯

xn xn ¯ xn2l

G
5x1x2¯xn det3

12
l

x1
1 ¯ 1

1 12
l

x2
¯ 1

¯ ¯ ¯ ¯

1 1 ¯ 12
l

xn

4 . ~A9!
1-10
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Since a determinant does not change if we subtract one
from another, we first subtract the second row from the fi
then the third from the second, and so on, finishing with
subtraction of thenth row from the (n21)th row. The result
can be displayed as

detAn~x1 ,...,xn!5x1x2¯xn detÃn~x1 ,...,xn!,
~A10!

where we have introduced

Ãn~x1 ,...,xn!

[3
2

l

x1

l

x2
0 ¯ 0 0

0 2
l

x2

l

x3
¯ 0 0

0 0 2
l

x3
¯ 0 0

] ] ] ¯ ] ]

0 0 0 ¯ 2
l

xn21

l

xn

1 1 1 ¯ 1 12
l

xn

4 .

~A11!

If we expand the determinant of the above matrix in ter
of the first column, we obtain the equation

detÃn~x1 ,...,xn!52
l

x1
detÃn21~x2 ,...,xn!

1~21!n11)
i 52

n
l

xi
. ~A12!

For n51 andn52,

detÃ1~x1!512
l

x1
, detÃ2~x1 ,x2!5

l

x1x2
@l2~x11x2!#.

~A13!

Let us assume that

detÃn~x1 ,...,xn!5
~21!nln21

x1¯xn
Fl2(

i 51

n

xi G . ~A14!

We will use mathematical induction to justify our gue
~A14!, based on the forms of Eq.~A13!. Obviously, Eq.
~A14! is true forn51 andn52. Suppose it is true for som
n. According to Eq.~A14!, for n11 we obtain
01613
w
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e
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detÃn11~x1 ,...,xn11!

52
l

x1
detÃn~x2 ,...,xn11!1~21!n12)

i 52

n11
l

xi

52
l

x1

~21!nln21

x2¯xn11
Fl2 (

i 52

n11

xi G1~21!n12)
i 52

n11
l

xi

5
~21!n11ln

x1x2¯xn11
Fl2 (

i 52

n11

xi G1~21!n12)
i 52

n11
l

xi

5
~21!n11ln

x1x2¯xn11
Fl2 (

i 52

n11

xi2x1G
5

~21!n11ln

x1x2¯xn11
Fl2 (

i 51

n11

xi G , ~A15!

which proves our assumption~A14!. Consequently, after Eq
~A10!, we obtain

detAn~x1 ,...,xn!5x1¯xn detÃn~x1 ,...,xn!

5~21!nln21Fl2(
i 51

n

xi G . ~A16!

Finally, according to Eqs.~A7!–~A10! and ~A16!

det~R2lI !5~2l!dE2n detAn~rD1 ,...,rDn!

5~2l!dE2n~21!nln21S l2(
i 51

n

rD1D
5~21!dEldE21~l21!. ~A17!

The above determinant vanishes forl50 @(dE21)-fold de-
generate solution# and l51 ~nondegenerate!. As Eqs.~A3!

FIG. 2. An eigenbasis ofP̄D that enables use of the partia
trace-free equation~34!.
1-11
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and ~A4! are defined for any given paira, b, we conclude
that the total eigenspace ofPD , corresponding to the uni
eigenvalue, isdS

2 dimensional.
So, in principle, we are now able to find eigenvectors

PD , by solving Eq.~A3! for l50 andl51. We will not
find the eigenvectors, in general, but will rather try to answ
the following question, first asked in Sec. III A:is it possible
not to mix original basis vectorsi ia, j b&& with differenta,b
to obtain any given eigenvector?The answer is: yes,if the
matrix R, Eq. ~A6!, is normal, so that it can be diagonalized
It can be easily checked that this requirement is fulfilled o
if the density matrix inducing the projection operator is t
uniform environment density matrix~19!, i.e.,

r̄D[dE
211dE3dE

. ~A18!

When matrix elements ofR correspond tor̄D , the eigenvec-
tor of R associated with the unit eigenvalue is of the fo
const3(1,1, . . . ,1)T, meaning that allxia,ib are equal for the
given a,b. This implies that the vectors of the form~20!,
repeated here,
-

01613
f
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iab&&5
1

AdE
(
i 51

dE

i ia,ib&& ~; a,b!, ~A19!

constitute an orthonormal eigenbasis in the unit eigensp
of P̄D @Eq. ~21! in Sec. III A!, i.e.,

P̄Diab&&5iab&&, ^̂ abisg&&5dasdbg ~; a,b,s,g!.

~A20!

When constructing the rest of the eigenbasis ofP̄D , it is
noteworthy that all the vectors of the initial basisi ia, j b&&,
such thatiÞ j , are already both mutually orthogonal an
orthogonal to alliab&&. This leaves, for everya,b, only dE
21 vectors to construct ~we will call them
ie1

ab&&,...,iedE21

ab &&!, and once they have been constructed

one paira,b, the same construction procedure holds for e
ery other pair~and the expansion coefficients are also t
same!, and follows the standard Gram-Schmidt orthogon
ization procedure outlined below,
. 2.
~A21!

The decomposition of the subspaces (H2)PD51 and (H2)PD50 , induced by the outlined procedure, looks as shown in Fig
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