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Partial-trace-free time-convolutionless equation of motion for the reduced density matrix
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Evolution of a system, coupled to its environment and influenced by external driving fields, is an old
problem that remains of interest. In this paper, we derive an equation of motion for the reduced system density
matrix, which is time convolutionless and free of the partial trace with respect to the environment states. This
new approach uses an extension of the projection-operator technique, which incorporates an isomorphism
between the system’s Liouville space and the unit eigenspace of the projection operator induced by the uniform
environment density matrix. Numerical application of the present approach is particularly useful in large
externally driven systems, as the partial-trace-free equation is given in terms of submatrices significantly
smaller than the matrices in the conventional time-convolutionless approaches, which alleviates the computa-
tional burden. We also show that all time-convolutionless approaches, conventional or partial-trace-free, are
based upon a hidden underlying assumption of time reversibility of the system’s evolution. This feature puts
significant constraints on applicability of time-convolutionless approaches when employing approximations
that yield time irreversibility. Also, we investigate the application of the approach in the description of far-
from-equilibrium systems.

DOI: 10.1103/PhysReVvE.66.016131 PACS nuni$)er05.30—-d, 03.65.Yz, 05.60.Gg

[. INTRODUCTION of the equation for the orthogonal projection. The resulting
equation of motion for the reduced density matrix typically
Describing the evolution of a quantum-mechanical sys-exhibits non-Markoviarior time-convolution behavior. The
tem, coupled to its environment and influenced by externahon-Markovian nature and the need for full knowledge of the
driving fields, is one of the oldest and most important prob-system+ environment(in order to take the partial trace over
lems in quantum mechani¢s]. The problem actually lies in  environmental statésare significant constraints on this ap-
attempting to describe the system’s time development, withproach. An equation of motion containing a term with a
out necessarily having to collect too much information aboutmemory kernel is particularly difficult to solve self-
the environment. A widely used approach to obtaining theconsistently, and one must often be satisfied with the fast-
equation of motion for the reduced system density matrixmodulation(Markov) limit.
which contains full information about the system, is by using In response to the difficulties arising from memory ker-
aprojection-operator techniquéntroduced by Nakajimg2],  nels in nonequilibrium statistical mechanics, Tokuyama and
Zwanzig [3], and Mori [4]. Variants of the projection- Mori [11] first proposed a time-convolutionle&sso known
operator technique have successfully been used in margs “memoryless) equation of motion in the Heisenberg pic-
fields. For example, Argyres and Kelldp] presented a ture. Soon afterwards, derivations of Shibata and co-workers
theory of linear response in spin systems, Barker and Ferrj12,13 in the Schrdinger picture appeared, and this ap-
[6] treated quantum transport in very small semiconductoproach is the basis for much work that followed. This in-
devices, Kassndi7] analyzed relaxation in systems with ini- cludes Saeki's analysis of linear response of an externally
tial system-bath coupling, Sparpaglione and Mukaf@l driven system coupled to a heat bafl#] and work on sys-
presented a theory for electron transfer in polar media, foltems coupled to a stochastic resenidis,1€. The latter was
lowed by analyses of condensed-phase electron transfer lextended by Ahn to formulate the quantum kinetic equations
Hu and Mukamel9], and Romero-Rochin and Oppenheim for semiconductor$17,18 and arrive at a theory of optical
[10] addressed the relaxation of a two-level system weaklhgain in quantum-well lasergl9]. Chang and Skinnef20]
coupled to a bath. Essentially, all variations of the techniquepplied the time-convolutionless approach to analyze the re-
rely upon the use of two complementary projection operatorgaxation of a two-level system strongly coupled to a har-
to generate the equations of motion for two mutually or-monic bath. More recently, Ahat al. treated noisy quantum
thogonal projections of the total “system environment” channel§21] and quantum information processif2g], and
density matrix. Equations of motion for the two projections Golosov and Reichmanf23] analyzed condensed-phase
are coupled, and the equation for the relevant projection, i.echarge-transfer processes. Both the time-convolutionless
the one yielding the reduced density matrix after a partiaequation of motio12—23 and the non-Markovian equa-
trace is taken over the environment states, can be obtained fions described in the previous paragrd@h-10] are based
a closed form. This requires incorporating a formal solutionon projection-operator techniques. The difference is that, in
the time-convolutionless approach, the memory effects are
taken into account by evaluating particular evolution opera-
*Email address: irenak@asu.edu tors, which couple states of the system with the environment
"Email address: ferry@asu.edu states, rather than through a term with a memory kernel.
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However, the entire approach is based on the assumption tifie projection operator itself, and construct the desired iso-
invertibility of one of the evolution operators, and this is an morphism, which effectively performs the partial tra&ec.
important issue that has not been addressed adequately in theA ). This isomorphism enables us to derive our main re-
literature so far. Once a time-convolutionless equation for théult, the partial-trace-free equation of moti¢d4) for the
relevant projection is obtained, a partial trace with respect téeduced density matrixSec. 111 B). Numerical applicability

the environment states is performed, as before, to uncovél the present approach is analyzed in detail in Sec. IIl C.
the evolution of the reduced density matrix. Section IV A addresses the second important issue of this

The resulting time-convolutionless equation of motion for WOrK, the assumption of reversibility, which we prove is in-

the reduced density matrix still has two major shortcomingsherent to any time-convolutionless approach. We illustrate
First, it has an explicit dependence on the choice of the prooW & time-convolutionless approach behaves when describ-
jection operator(or, on the environment density matrix that N9 far-from-equilibrium situations. We also show how the
induces the projection operalofhis is unphysical, as the partlgl—trace—free equation is used for the case of no initial
projection operator is just a tool, an external assumption, an§0UPling between the system and the environmesec.

in the end the equation of motion for the reduced densityV B)- Finally, we conclude with a brief summary in Sec. V.

matrix should not depend on such assumptions. This does not

mean that the tlme—convolutlpnless ap_proach is incorrect, it Il. PROJECTION-OPERATOR TECHNIQUE
just means that all the equations for different projection op-
erators eventually must reduce to one and the same equation. A. Basic definitions

The second shortcoming is that the partial trace used to ob-
tain the evolution of the reduced density matffrom the
equation of motion for the relevant projectjorequires one
to evaluate large and unpleasant evolution matrices, only t
extract significantly less information after the partial trace. 'nspaces of both the environment and the systegmand
other words, one must obtain much more information thar}espectively are assumed to be finite dimensior%
actually necessary. With increasing size of the system ' '

. . . . =dimHg, ds=dimHg. These two spaces form a tensor-
+environment, and inclusion of a time dependence due t?)roduct Hilbert space of the systenenvironment,
external forces, this obstacle becomes more serious. i

In this paper, two main results are presented. First, we. E>/tS! with * dimensionality d=dim7{=deds. The
introduce gv?er 'useful and simple isomgr hism bétweer,1 thegpaces of operators acting Gt 7is, and* will be de-
Y P P ted byH2, H2, and H? [24], respectively, whereas the

space of operators acting on the system’s Hilbert space a . 2 5
the unit eigenspace of the projection operator induced by thE'€Ments of g, s, and?* (i.e., operators ofite, Hs, and
‘H) will be denoted by lowercase letters, Greek or Roman.

uniform density matrix of the environment. This allows us to - > 5 p k
derive a time-convolutionless equation of motion for the re-Moreover, operators acting dig, Hs, and*, sometimes

duced density matrix, which is free of the partial trace withcalledsuperoperatorswill be denoted by Roman capital let-
respect to environment states. The isomorphism enables us @S- When there is no risk of confusion, we will simply refer
effectively perform a partial trace with respect to the envi-t0 them as operators. _

ronment states without actually performing it: what we per- Let us choose a basigi) [i=1,... de} in He and a
form instead is a well-defined basis transformati@eing  Pasis{|a) [a=1,... dg} in Hs, which induce a tensor-
partial-trace-free, this equation successfully addresses one Bfoduct  basis  {lie)=|i)®|a) |i=1,... dg; @
the shortcomings mentioned in the previous paragraph. IE L. ... ds} in M. These naturally give rise to the following
depends on submatrices considerably smaller than those fixpanded bases:

the conventional time-convolutionless approat?—23,

which makes the present approach especially interesting for flify=relli,ji=1,... dg} in H2,

numerical application in those cases where evaluation of

large evolution matrices is particularly undesirable. Second,

we point out that a time-convolutionless approach, conven- {laB)=lay®(B|la,8=1,... d in H2, (1)
tional or partial-trace-free, is based on the assumption of

invertibility of a particular “entanglement operator,” and

show that this assumption is equivalent to the assumption o

reversibility of the system’s evolution. This puts constraints

on the applicability of time-convolutionless approaches, in {|ie,jB)=|ia)®{(jpl|i,j=1,...de; «,8=1,...d¢
general. In particular, we investigate the application of the in H2,
approach to the description of a steady state in far-from-

equilibrium situations.

In Sec. I, we first introduce some basic definitions and[we use the double kéf. . .)) for the Dirac notation of vec-
notation(Sec. 1l A), and then review the projection-operator tors inHZ, Hé, and™? (double bra{ . . .| for their adjoint3
technigue employed to obtain the conventional time-to distinguish from single ket and bra, reserved for vectors in
convolutionless equation of motiofBec. 11B. In Sec. lll, Hg, Hs, andH]. For an operatox onH (i.e., an element of
we first outline major steps in solving the eigenproblem of??), one can write

Consider a systerfy, interacting with its environmert,

so that the system environment §+ E) is either closed, or
influenced by external driving fields that are assumed known
8nd unaffected by the feedback fro8w+E. The Hilbert
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dg dg dp dg
x=lxh= > > Xlia)ipl= 2 X iy, xg=x'P,
thl a,B=1 , L,jzl a,B=1 ,

as operator on H as vector in HZ (2)

whereas for an operatdron 2, the following form is valid Tre(Ppp)=Tre(pp) Tre p=Treg p=ps. (8)

z Alip lice ” 3 Therefore, the evolution of E(Ppp) should be described by
1 apSloy Py fa,jB)(po.ayl. () an equation that is independentmf (or, equivalentlyPp).
Since Pp and Qp are time independent, they commute
Analogous expressions are easily obtained for elements &fith the time derivative. Therefore, for the equations of mo-
H2,HZ [25], and operators of(2, H2. tion of Ppp andQpp, we obtain from Eq(5)
The total Hamiltoniarh, acting on’, can be written as

de ds
A:

1,1,p.q

9Por®) _ o Lty
h(t)=hy(t) + he(t) + (1), @ gt~ 'Potbet
wherehg is the system Hamiltoniarhg is the environment =—iPpL(t)Ppp(t)—iPpL(t)Qpp(t), (93
Hamiltonian, andh;,; describes the system-environment in-
teraction. It is important to note that driving fields, provided dQpp(t) )
by applied potentials, are included as part of the system. dt =~1QoL(1)p(t)
These are assumed to arise for0, and provide an explicit _ .
time dependence fdr. SinceS+E is isolated, the total den- =—iQpL(1)Qpp(t) —iQpL(t)Ppp(t). (9b)
sity matrix p evolves according to the Liouville equation
(h=1), A formal solution of Eq.(9b) is of the form
dp(t) . . 1 t ! 1A 1 12
—gr = ~ih®.p(t]==iL(Dp(D), (5) Qop(t)=—1 | dt"H(t,t") QoL (t")PpG (", D)p(t)
with L=Lg+Lg+L;, being the Liouville superoperator, in +H(t,0Qpp(0), (10

one-to-one correspondence with the Hamiltonidn Equa- .

tion (5) actually represents a systemd$? linear first-order ~ Where fort>t’,

differential equations on the time interviat [ 0,0). SincelL .

is continuous throughout this entire interval, we are guaran- H(t,t')=T¢ exr{ _iJ ds QDL(S)QD>1
teed to have a unique solution of E®) onte[0,») for a t/

given initial conditionp(0) [26].

The quantity that describes the evolution of the sysg&m , a [t
is the reduced density matrixs, defined by G(t',t)=T"ex 'ft,ds L(s) |, (11
ps=Tre(p), (6)

and T¢ and T? denote the time-ordering and the anti-time-

where Tg( . ..) denotes the partial trace over the environ-Orderlng operators, respectively. Upon introducing

ment states. The goal is to deduce hpwevolves, without ¢
having to gather too much information about the environ- K(t):1+if dt’ H(t,t")QpL(t")PpG(t',1), (12
ment. 0

B. Projection-operator technique Eq. (10) can be rearranged to give

Let us now choosan arbitrary density matrixpp (sub- K(t)Qpp(t)=[1—K(t)]Ppp(t)+H(t,00Qpp(0).
scriptD stands for dummy, asp is a test object for the time

being, which acts orf{g and is constant in time. We intro-

duce time-independent projection operatéts and Qp, If K(t) is invertible, which is an important question to which
which are associated withy and act or{?, as we will return, Eq.(13) becomes
Pox=pp®Trex, Qp=1-Pp (xeH?). (7) Qpp(t)=[K(t) " 1=1]Ppp(t)+K(t) " *H(t,00Qpp(0),
(14

In particular, since Ta(pp)=1 (pp is a proper density ma-
trix), it follows that and Eq.(9a) can be rewritten as
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dPpp(t) . . gquation of motion fopg, which successfully addresses this
—at~ PoL(OK(®) “Pop(1) issue.

—iPpL(t)K(t) H(t,00Qpp(0). (15 A. Choice of Pp

After taking a partial trace with respect to the environment Some features of the eigenvalue problenPgfare virtu-
states, Eq(15) will give us the equation of motion fgsg as  ally obvious: P is Hermitian, and it is easily verified that
Pp is idempotent, i.e.Péz Pp . Hence, the eigenvalues are
dpg(t) i Tr[PoL(OK (D) *Ppp(1)] 0 and 1. On the other hand,. byzconstruct((iﬂ)l, the image
dt space ofPp corresponds withHg, so one seeshat the
eigenspace of p, corresponding to the eigenvalue 1, ought
to be isomorphic td—(é. A formal solution of the eigenprob-

—i Trel PoL(HK(1) *H(1,00Qpp(0)]

=—i Tre[L(OK (1) " *pp@ps(t)] lem of Py, is given in the Appendix. An important and useful
, 4 point that we need to recognize is the decompositioft{6f
— i Tre[L(OK(1) " "H(t,00Qpp(0) ] into a direct sum of eigenspaces R ,
— -1
- '<|—(t)K(t) >DPs(t) H2:(H2)PD:1@(H2)PD:0' 17)

—i Tre[ L(OK () " *H(,0Qpp(0)].  (16)
] ) . . ) where (H?)p__, is the d3-dimensional unit eigenspace and
The last line was obtained by introducifg:-)p, which D

2 ; 2042 _ 1\ _Hi ; :
maps operators acting dH? onto operators acting oﬂé: (Hlf)PD:O 'S :\hedS(dE 1) d|k:nen5|onlal Z(_ero T)lge_nsp;ce.
for any given A, (A)p is defined as <(A)D)j§§ we  choose 232 orthonormal eigenbasis  ¢fp
_s%  AlwiB () ypd[see Eq(3)]. Equation(16) is what {IInp)| np=1, ... dgdg} so that, according to decomposi-

i Po S tion (17), the firstd3 basis vectors spam(z)pD=l, we will

i,p,g=1" "po.qy ) .
we have, so far, referred to athe conventional time- .
be able to write

convolutionless equation of motion fpg(t) [12—23.
As already mentioned in the Introduction, there are two 5

features of Eq(16) that need attention. First, within the par- ds

tial trace in both terms on the right-hand side of Ei), Pp= 2 Ino)¢noll- (18)

there is an explicit dependence on the choice of the projec- o=t

tion operatorP (or, equivalently, on the environment den-

fr']tgsmgﬁ(ep aD ;E;Zg]g;jcﬁos ;251 gzilggtfg}eot%eg?iom%?e o_riginal basis vectordi a, j [?)) with diffe_renta, Bto (_Jbtain a
As is just an externl?cll arbitrary tool, in the end the e. ua_gwen.HnD»? The_ answer 1syes, qnly i th? density ”f‘a”'x
S Pp 1S JUS y ’ . 1€ €q inducing the projection operator is the uniform density ma-
tion of motion for pg(t) should not depend on it. This does rix [27], i.e

not mean that the time-convolutionless approach is incorrec%, T

it just means that all the equations for different projection

operators ought to, eventually, reduce to one and the same

equation. What that equation should be, or how to rigorously -

prove mutual equivalence of all the equations with differentwith the associated projection operator denotedPRy(see

Pp’s, is not presently known. the Appendix for a formal proof of this statemgn®ne in-
The second important issue is that, due to the partial traceleed finds that the vectors defined as

one must evaluate generally large and unpleasant evolution

The crucial question that we ask is:it possible not to mix

Po=0g L xap (19

d

matricesH, G, andK, only to extract significantly less infor- _ 1 &
mation after the partial trace. Much more information than laB)= F; [[ia,ip)) (20)
=

actually necessary has to be obtained. With increasing size of
the system+ environment and inclusion of a time depen-

dence due to external driving, this obstacle becomes increaSOnstitute an orthonormal basis within the unit eigenspace of
ingly serious when numerical implementation of Ef6) is Pp [28], namely,

considered. - o
PD”CYB»:”(X,B», <<a:BHO-7>>: 5&0'5,87/ (V a’B’U’y)'
Ill. PARTIAL-TRACE-FREE DIFFERENTIAL EQUATION (21
OF MOTION FOR THE REDUCED DENSITY _
MATRIX Pp can therefore be written as
In the preceding section, we realized that a serious con- dg

straint on the application of the conventional time- Po= 2 llap)(apl. (22)
convolutionless approadi6) in large systems is evaluation a,B=1

of large matrices, when not all the information contained in
them is needed. In this section, we derive a partial-trace-freand it follows that
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what we do perform is a basis transformationZif. This is
the basis for the derivation of a partial-trace-free equation of
A motion for the reduced density matrix.

(PTDx)E — (TrEx)aﬁ

ﬁE
basis ”@» basis ||aﬁ>)

P, =1

B. Partial-trace-free differential equation of motion for pg

(%’E®%’s)2< According to Eq.(26), there is a very simple correspon-
dence between howpp looks in terms of the eigenbasis
{laB)}, Eg. (20), and howpg looks in terms of the basis

{leBy} in HZ, namely,

FIG. 1. The isomorphisni26) between the unit eigenspace of (ps)*#=de(Ppp)“*”. (27)

ED and the system’s Liouville spadeg. This isomorphism enables
us to effectively perform a partial trace over the environmental

states by remaining iit> and working in the eigenbasis ¥ .

Using this result, we conclude that the evolution of the rep-
resentation matrix gbs can be tracked in?((z)pD:1 directly,

by following the evolutionPpp without taking the partial
trace with respect to the environment stategich would

. s mean going back t(‘Hé). The price is, however, that every-
Ppx= 2—1 (Ppx)“#|a B, (23 thing must be written in the eigenbasisRy , whose firsdi3
“r vectors ard| aB)}, Eq.(20), and the rest can be straightfor-
where wardly constructedfor details, see Sec. lll C and the Appen-

dix). In this basis, the projection operators are represented
de according to(boldface characters denote the representation

(PpX)*P=(ap]x)=— 2 (i a,i Bllx)= —E X8 matrices

(24) I
L42xq2 Og2x a2(d2 - 1) ]

(we identifiedx=|x)) to take advantage of the compactness Pp=
of the Dirac notation Using the fact that Frx, being a

vector onHZ, is written in terms of the basi§ap)} as

1
I Odg(dé— 1)% dg Odg(dé— 1) xdg(dé— 1)

5. 042 a2 Ou2x d2(d2 - 1) 8
ds ds o 0u2(d2-1)xd2  Ld2(d2-1)xd?(d2-1) '
L S'TE S S'‘TE N'"E
Tex= 2 (Tex)“ap)= 2 (2 x'“'ﬁ)llaﬁ»
a,p= 25 where we have explicitly written out the dimensions of each

submatrix for clarity. Also, the density matrix is represented
from Eq. (24) we obtain the crucial equation for the rest of by

this work,
 _ (Trex)eB _|P Prp= Pl} 29
PpXx)*=—r—F—. P>
E

where p; is adS column andp, is ad (d2 1) column.
Equation(26) represents a very useful |somorph|sm betweerlﬁ\ccordmg to Eq.(27),

(HZ)P _, (the unit eigenspace oPp) and H2, which is
erlcted |n.F|g 1. We have managed to “preserve’ _the iden- ps= \/d—Epl. (30)
tity of basis vectors{|aB)} from HZ when mapping to
(HZ)P —1. This isomorphism is basis induced, and enablesyith pg bemg the column that representg in the basis

us to effectlvely perform a partial trace with respect to the {[aB)} of H&. The block forms of other operators involved
environment states without actually performing it: instead,in Egs.(5)—(16) are readily written as

Lia(t)  LyoAt)
L(t):{l-Zl(t) Lzz(t)}, (313
r+y_Ta e _ Gyy(t',1)  Gpot' 1) ,
G(t',t)=T eX[{Ift,dSL(S))_{621“,,” Gzz(t’,t)} t'<t. (31b
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1 0
H(t,t")=T¢ i f ' dsOpL(5)0; t ! ° 31
(LE)=Trexp =1 | dsQoL(s)Qp | = TCexp(—if dSLzz(S)) 10 Hutt))! (319
t/
K(t)=1 'ftd [1 0 H 0 OHGll(t’,t) Glz(t’,t)}
t)y=1+i t'
( o0 Mttt [ 0]t Gt
[ 1 0
= t t
if dt’ Hox(t,t")Loy(t")Gya(t',1) 1+if dt’ Hoo(t,t")Log(t") Gao(t',1)
L 0 0
1 0 } 310
= . 31
| Kog(t)  Koy(t)
|
We see thaK(t) is invertible if C. Numerical applicability of the partial-trace-free
equation (34)
detK(t)=detK,,(t) The present approach, which culminates in B4), has

interesting features as far as numerical applicability is con-

[t cerned. As already mentioned, in order to solve a conven-

=de{ 1+|f at’ H22(t-t,)|—21(t,)612(t/vt)} tional time-convolutionless equation of moti¢h6), which
0 contains a partial trace and, within it, an assumption on the
£0. (32)  environment density matrix used, one needs to first evaluate

the full evolution matricegH,G,K), only to extract the re-
quired information by the partial trace. With increasing size

If Eq. (32) is fulfilled, from Eq.(31d) we obtain of the systems analyzed, the task of evaluating the entire
evolution matrices becomes increasingly cumbersome. If the

1 0 Liouville operatorL, Eq. (5), is time independent, this prob-

Kl(t)z[ ., . } (33 lem is less difficult, as, after initially having solved the

— Ky (DKa(t) Koo (1) eigenproblems of. and QpLQp , the evolution matrices at

any point in time are readily evaluated by exponentiation of
these operators in their respective eigenbases, and then going
back to the initial basis. However, in cases of externally
driven systems, for which is generally time dependent, the
problem of evaluation of evolution matrices becomes more
dps(t) . . co_mput_atiqnally demanding: nam_ely,(t)’s at different
gt = [k~ Lia(HKas (D Ka(H) 1ps(t) points in time do not commute with each othéhe same
holds forQpL(t)Qp’s], and the time-ordered products in the
+iVAEL (DK (D Has(1,0pp(0).  (34)  evolution operator$11),(12) need to be evaluated for every
order in the exponential series, and for each point in time.
Having this in mind, the biggest numerical advantage of
Equation(34) is the partial-trace-free time-convolutionless Eq.(34) over the conventional time-convolutionless equation
equation of motion fops. It actually describes the evolution (16) is its dependence on submatrices that are appreciably
of the representation matrix obs in the basis{||aB)}. Deal-  smaller than the full evolution matrices used in the conven-
ing with representation matrices in a given basis, rather thational approach. In small time-independent systems, this ad-
a representation-independent form, is not a downside in itvantage is less important, but with increasing size and/or
self, particularly if one has numerical implementation intime dependence, any reduction in the dimension of the ma-
mind. In this partial-trace-free form, multiplication of gener- trices is very welcome. Therefore, the present approach is
ally nonsquare submatricés.g.,L,,K,,') is what mimics the  especially adequate for large externally driven systems.
partial trace. Moreover, since no explicit dependence on théHowever, there is the issue of irreversibility, which is an
projection operator used is present, the partial-trace-freenportant one when it comes to implementation, and is ad-
equation(34) offers a clearer picture as to what elements ofdressed in Sec. IV A.
the Hamiltonianh, through the evolution of submatrices, ac- The actual implementation should follow the sequence
tually come into play. This increased transparency should bgiven below.
useful when choosing and employing different approxima- (1) Usually, start from the matrix elements of the Liou-
tions. ville operator(5) in a tensor-product basjsa,j ).

Esing the block form$29)—(33), the equation of motion for
Ppp, EQ.(15), and the isomorphisr27), we obtain
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(2) According to Eq(20), first the vector§a8)) and then  In order for Eq.(36) to have a unique solution, fixed by the

the rest of the eigenvectors &, are constructedsee Ap- Initial p(0), for all te[022), Z andY must be continuous in
pendix for details We will just note that all the vectors of this time interval[26]. This requirement is fulfilled iK,, is
the initial basis|ia,jB), such thati#j, are already both invertible for a_IIt € [0,0_0), In WhICh_ case the evolution of the
mutually orthogonal, and orthogonal to 4B}, and that 'educed density matrigs is described by
leaves, for every,, only de—1 vectors to construct, fol- ¢
lowing the standard Gram-Schmidt orthogonalization proce-  p(t)= U(t.o){Ps(OHJ drU(7,0)]2Y( 7-,0)},
dure. Of course, any other basis iH?) py—0 May be chosen, 0
Eg. (34 will remain the same; however, the basis in .
(H?)p, -1 must be|apB). u(t,0)=T¢ exp( —if dTZ(T)). (37)
(3) The matrix elements of the Liouville operator are re- 0
written in the new total basis @2, and then the evolution
operators, i.e., their submatricé&¥19—(31d), are found.
(4) Equation(34) is set up and solved.

Apparently, the assumption of invertibility &, which led us

to the differential equationi34) in the first place, also guar-

antees the existence and uniqueness of the soly8a@n

Therefore,time-irreversible processes cannot be described

IV. DISCUSSION by a time-convolutionless approacas that implies that the

A. Irreversibility and breakdown of time-convolutionless inverse ofK vanishes. This statement holds for both the con-
approaches. Far-from-equilibrium situations ventional and the partial-trace-free approach, although the

above equations are given for only the latter.

It was already mentioned. that the existence OT a time- There is another way of grasping the true meaning behind
convolutionless approach relies upon the assumptionkhat vanishing inverse df. Namely, by using the block forms
is invertible. However, this cannot be taken for granted.(28)_(33) Eq. (13) can be written as

Namely, if we were capable of using the exact form of the
Hamiltonians(4) and the exact initial stat@(0), and the 1 0 [py(t) pu(t)
systemt environment were indeed closed except for the ex- H (t)}:[ 0
ternal driving force, then, as already mentioned, since(5q. Kaa(t) - KaAt) JLP2

is a linear equation, there always exists a unique solution

p(t) fixed by p(0). Consequently, there exists a unique solu-,hich yields

tion for pg(t). Unfortunately, we are most often not quite so

lucky. We are forced to make approximations, for instance,

about the initial statée.g., assume that the environment is in Koo(1) pa(t) = — Kay(t) pr(t) +Hox(t,0)p2(0).  (38b)
thermal equilibrium, or perform some type of averagiog

about the dynamicee.g., Markov approximation, retardation |f getK,(t)=0 at some point in timd, there actually is a
effects, local approximationsAlso, very often the system constraint on the right-hand side of E@8b), since we re-

+environment that we consider is not actually closed, butquire that the solutiom,(T) exists. Namely, the right-hand

coupled to some outer environment, and we might want tqQ: :
include some information about that coupling. The bottomq‘:'Ide O_f qu3§b) must be .orthogonal to all solutiorysof the
equationK;,(t)y=0[29], i.e.,

line is that introducing approximations may lead to irrevers-
ible behavior. This has been well known for non-Markovian
approaches, which, due to the robustness of the memory ker-

1 0 H 0 }
0 Hyy(t)|[P2(0))
(3839

nel's integral form, seem to tolerate such approximations (= Kaa(O)pa(t) + Haolt.00p5(0)]y) =0
fairly well. However, the same does not hold for time- .o~
convolutionless approaches. (Vy, Kylt)y=0), (39

The assumption of invertibility oK is actuallythe as-
sumption of time reversibility gis’'s evolution Namely, let
us introduce shorthand notation

where(--|--) is the standard scalar product of two columns.
Therefore, any approximation made for the dynanfies, to
L,K,H) and the initial statgp,(0) must be such that, if the

evolution becomes irreversible, i.e., #et(t)=0, then Eq.
Z(t)=Lll(t)—le(t)ngl(t)K21(t), (39 must also hold. If this requirement is fulfillddor in-
stance, if the right-hand side of E(8b) is zerd, the van-
ishing determinant simply means that the number of mutu-
Y(1,0) =i VAL 1o ) KA (1) Hoo(t,0) o (O). 35 ally mdependept equations in this system is Iegs (2
(8.0 =1 VdeL 1)Kz (D H2A1.0)p2(0) 39 —1). There will be “free elements” in the solution column
pz(T), in terms of which all other elements will be given.
This appears as a degree of arbitrariness, or insufficiency of
dpa(t) the information contained in the evolution submatrices and
ps\t) _ . the initial condition. Simply, this is another way of stating
dt 1Z(Ups()+Y(L.0). (36) that irreversibility occurs. In order to reset the time-

Then, Eq.(34) can then be rewritten as
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convolutionless approach after breakdown, a new initial con- In order for the steady state to be achieved, the following

dition p(t*) needs to be obtained from an external assumpmust hold simultaneously with E¢40):

tion, and that is the crucial obstacle for the application of

Y . . = > . 1

time-convolutionless approaches. Again, although the formal Y6L1=0 7>ty (41)

steps were given for the partial-trace-free approach, they camhis condition represents the vanishing of the so-called “ran-

easily be generalized for the conventional approach. dom force,” and is presently not fully understog@i], but
Atypical situation for which one encounters time irrevers-should hold for an arbitrary,(7). We believe that further

ibility is far from equilibrium, in externally driven systems. investigation of the properties of the operator

In this case, one actually requires that a steady-state value fr, (t)K,,}(t, r)H, (t,7), Eq. (35), will reveal that its ap-

ps be independent of the initial stap€0). The independence proximately null subspace increases in dimension, as time

of the final state from the initial state is another way ofncreases, which enables E@1) to hold for an arbitrary
stating that there is no unique connection between them, PBo(7).

that the evolution isnot reversible[26,30. Rather, the
steady-state value is achieved by a balance between driving B. Application of Eq. (34) to the case of
forces and decay forcedrom the system to the environ- initially decoupled system and environment

mend, namely, b L
) ¥, DY The case of no initial coupling is important for several

reasons. First, it serves as a reality check, to test the correct-
[L1a(t) = Laa(H) Ky (1, T)Kaa(t, 7) | ps(t) =0, ness of the present approach. Furthermore, it is a good start-
ing point in many essentially nonequilibrium situations, in
™1t Ps(t)=const, (40) which the coupling builds up in time. And third, if one is
interested in cases with initial coupling, the no-initial-
where K(t,7) is a natural extension of the definition of coupling limit marks just the opposite end of the spectrum.
K(t)=K(t,0), Egs.(12) and (310, with the lower limit of Let us assume that a&=0 the system and the environ-
integration equalingr; tj,s is the last moment in time, pre- ment are uncoupled, $9,(0)=pe(0)® p<(0) (the extra sub-
cedingt, for which the determinant df(t) vanishedas all  scriptu stands foruncoupleg. A very common approach in
functions involved inK are continuous, and the determinant this case is to choosep ,=pg(0) for the projection-
is a continuous function, there may be either isolated point®perator technique, so that the free term in B would
in time or entire time intervals for which dK{(t) vanisheg vanish. Then, Eq(16) can be rewritten as

dp;(t) = —i(L(DK,(6) ") p ups(t) =i Trg| L(DK (1) H,(1,0)0p ,.p.(0)
_[ > —_—
=0

=—i(L(OK, (1) ")pups(e). (42)

The solution of Eq(42) is given by

Pl,u(O)} (5)

[Pu(o)]u:[ 0
t
ps(t)=T°¢ exr{ =i fodT<|—(T)Ku(T)_1>D,u)Ps(o)-

where[- -], denotes the representation column in the eigen-

(43 basis ofPp . In the eigenbasis oPp, on the other hand,
pu(0) is written as
However, in the partial-trace-free equati@4) the rightmost
term survives, a®pp,(0)#0, and it has no counterpart in p1(0)
Eq. (42). This leads us to question whether from Eg8¢) we pu(0)= {Pz(o)}'
will also obtain the solution of the form

(46)

Since both eigenbases are orthonormal, there exists a unitary

ps(t)=E(1,0)pg(0), @49 iy
as we did from Eq(42). My Mg,
To answer this problem we should remember that, as seen :[ } (47
in Sec. Il A, every projection operator has a unit-eigenspace Mz Mg,
isomorphic tng. In the eigenbasis oPp ,,p,(0) can be
written as which relates the representation columns in the two bases,
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achieved. Lastly, we illustrated the application of the partial-
. (48)  trace-free equation to the case of no initial coupling between
the system and the environment.

My My
M2 My,

p1(0)
p2(0)

As detM+#0 (M is unitary, one can solve uniquely for

p1(0),p>(0), if p4(0) is given. From the second row in Eq.
(48), we obtain ACKNOWLEDGMENTS
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APPENDIX: EIGENPROBLEM OF THE PROJECTION

yielding OPERATOR AND THE CHOICE OF Pp

In this appendix, we first solve the eigenvalue problem of
ot . a projection operatoP, which is induced by a given envi-
ps(t)={ U(t,0)—i fodTU(t:T)Ln(T)Kzz (7) ronment density matriyp . This solution enables us to jus-
tify the choice ofPy, made in Sec. Il A. We conclude with

X Hool 7. 00MIM 0 57 @ detailed construction of an eigenbasisPef.
22 TOIM2; 21] Ps(0) ) If we choose{i)} to be an orthonormal eigenbasis gf

(pp being considered as an operatorkp), it follows that

(note that the\/d factors have canceled gu©bviously, Eq.
(51) is of the form(44), as ought to be expected for the case
of no initial coupling. de de
/DD:iZl poilli,i), where pp;=0, ;1 ppi=1.

V. SUMMARY (A1)

In this paper, evolution of an externally driven system,
coupled to its environment, was investigated. First, a partial- . ) )
trace-free time-convolutionless equation of motion for theThe action ofPp onx is then given by
reduced density matrix of the system was derived, (B4).
This result was obtained by implementing an extension of
the projection-operator technique, which is based on an iso-
morphism, introduced in this paper, between the system Ppx=pp®@Trex= 2, ppili,iN® >, x**¥|a,B)Y)
Liouville space(space of operators acting on the system’s ! Ka.p
Hilbert space and the unit eigenspace of the projection op-
erator induced by the uniform density matrix of the environ- = 2 poixkekBia,i Y. (A2)
ment. Being partial-trace-free, this equation depends on sub- Lk
matrices considerably smaller than those in the conventional
time-convolutionless approach. As a result, numerical appli- ) ]
cation of our partial-trace-free equati¢d4), rather than of From the above expression, one can see that the actibp of
the conventional time-convolutionless equatiébe), be- 0N linear combinations of basis vectdfisy,j 8)), such that
comes more advantageous with increasing size and in timé#], gives zero(since the environment partial trace over
dependent systems, as in these cases any reduction in thdch vectors is zejoConsequently, the zero-eigenvalue sub-
dimension of the matrices is desirable. space ofPp is at leastdidg(de—1) dimensional. The re-
Second, we showed that any time-convolutionless apmaining (d%dE)fdi_mensional subspace contains vectors of
proach, either a conventional or a partial-trace-free one, ithe fOI’mEi'a’BX'a"'BHia,iﬂ». In this subspace, according to
actually based on an inherent assumption of reversibility oEg. (A2), solving the eigenvalue problem Bfy, namely, the
the system evolution. Namely, we have demonstrated that thequationPpx=AX, can be written as
vanishing inverse of a particular operatathose invertibility
is not a priori guaranteed when approximations are made,
but is the underlying assumption of time-convolutionless ap-
proachep actually means the onset of time irreversibility; ppi 2, XKekB_\xi@iB=0 (¥ «,B,i), (A3)
i.e., the available information is insufficient to uniquely solve k
the system’s equation of motion. Furthermore, we investi-
gated the description of far-from-equilibrium situations,
when a steady state that is independent of initial conditions isvhich, for an arbitrary paie,3, becomes a matrix equation
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pp1— A Pp1 Ppb1 xla18
Pp2  Pp2— N pp2 x22B
30,38

PD3 pp3s  Pp3—A x>
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whereR is defined as

=0.

(A4)

There is a nontrivial solution to EqA4) only if the deter-

minant of the system matrix vanishes, namely, if

Pp1 Pp1 PD1

Pp2 Pp2 Pbp2

Pp3 Pp3 Pbp3

(AB)

We will now prove that Eq(A5) has exactly one nonzero

po1i— N pp1 Pp1 solution, A =1, whereas the solutioh=0 is (dg—1)-fold
Po2  Poa—N  Ppo degenerate.
defR—\Il)=de =0, Say there aren nonzerop;. We may always perform a
Pp3 Pos  Pp3~ A simple permutation of basis vectors, or effectively transposi-
tions of rows and columns, such that from E45) we in-
(A5) deed obtain
|
[ op1i—N  pp1 Pp1 Pp1 Pp1 ]
Pp2 Pp2—A\ Pp2 Pp2 Pp2
fDn Ppn Ppn ): fDn pDﬁ
n‘><rn nx(%—n)
det(R— N\I)=det
0 O 0 Y 0
0 =X
0O 0 - 0 0 0 -\
N st ~ ~ J
(dg—n)Xn (dg—n)X(dg—n)
Pp1—A Pp1 Pp1
:(_)\)dEfn det D2 Pp2— A Pp2 ,
Ppn Ppn pDn_)\ (A7)
|
wh(_arele,...,pDn are now then nonzeropp,. Let us now  detA,(xy,....X,)
define
X1—N  Xq X1
X2 Xz_)\ X2
=de
X1—N X X1 Xn Xn Xp— A
X2 Xz_)\ X2 r
An(Xl,...,Xn)z 1_£ 1 1
X1
Xn Xn Xn— A \
(A8) 1 1-— 1
= X1 Xy * X, det X2 (A9)
A
. 1 1 1— —
where allx; are nonzero. Then we may write L Xn
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Since a determinant does not change if we subtract one row — T
from another, we first subtract the second row from the first, P. -1 Py =1, basis ”“ﬂ >>
then the third from the second, and so on, finishing with the dim : d}
subtraction of theath row from the 6 —1)th row. The result
can be displayed as
P, =0, basis Ief"’)
detAn(Xy ... Xn) = XX Xy dEtAL(Xy ... Xp), dim : d5(d, - 1)
(A10)
where we have introduced —
P, =
An(X1,. .. Xp)
TN -
-—  — 0 0 0
X1 X2
A
o -—— — 0 0
X2 X3
0 0 N 0 0 FIG. 2. An eigenbasis oP that enables use of the partial-
— B x_3 trace-free equatiofB4).
)\ detKrH'l(le'--!Xni»l)
0 0 0 5 - N n+1
oo = — —detAy(Xa, ... X1 1)+ (— 1)”*2]'[
A X1 =2 X
1 1 ! B ! 1= X_ +1 +1
: "- GO N
(A1) = e | M 2 Xi|+(—1) Hzx_.
. - n+1yn n+l n+1
If we expand the determinant of the above matrix in terms _ (=" N E x| +(— 1)n+21—[ A
of the first column, we obtain the equation X1Xo  Xpp1| : =2 X
_avn+1yn | n+1
detA(Xq,... X,) = — X—ldetAn_l(xz,...,xn) XiXp' - Xns1| =2 T
n _ 1)n+1)\n [ n+1
A (
+ =——|\— Xi|, A15
R | e T R a1
which proves our assumptidAl4). Consequently, after Eq.
Forn=1 andn=2, (A10), we obtain

detAn(Xy, ... Xp) =Xg* X, detAn(Xq ... Xq)

n

~ A ~ A
detAi(X1)=1——, detAy(X1,Xz)= —[A=(Xy+X2)].
X1 X1X2

(A13) =(—1)"m\"1 )‘_;1 Xi|. (A16)
Let us assume that Finally, according to EqQ9A7)—(A10) and (A16)
de(R—\I)=(—\)% "detA,(pp1.-...pon)
_ ( 1)n)\n 1 n
detAn(Xq,....X,) = N— 2 Xi|. (Ald) n
X =(=N)E(=D\"H N =D pps
=
We will use mathematical induction to justify our guess =(—1)%\%E"(\—1). (A17)

(A14), based on the forms of EqA13). Obviously, Eq.
(A14) is true forn=1 andn=2. Suppose it is true for some The above determinant vanishes for 0 [(dg—1)-fold de-
n. According to Eq.A14), for n+1 we obtain generate solutionand\ =1 (nondegenerajeAs Eqgs.(A3)
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and (A4) are defined for any given pait, 8, we conclude e de
that the total eigenspace &fy, corresponding to the unit |eB)= —E lic,iB) (VY a,B), (A19)
eigenvalue, isl3 dimensional. dgi=t

So, in principle, we are now able to find eigenvectors of . . o o

Pp, by solving Eq.(A3) for A=0 and\=1. We will not  constitute an orthonormal eigenbasis in the unit eigenspace
find the eigenvectors, in general, but will rather try to answernof Py [Eq. (21) in Sec. I A), i.e.,
the following question, first asked in Sec. Il & it possible
not to mix original basis vector§i «,j 8)) with differenta, ED”CY_B»ZHE», (<EH<T_7>>: 8acdpy (Y a,B8,0,7).
to obtain any given eigenvectoihe answer is: yesf the
matrix R, Eq. (A6), is normal so that it can be diagonalized. (A20)
It can be easily checked that this requirement is fulfilled only\yhen constructing the rest of the eigenbasisPgf, it is
if t_he denS|ty matrix |nduc!ng the prole_ctlon operator is thenoteworthy that all the vectors of the initial bagis, j 3),
uniform environment density matrig9), i.e., such thati#j, are already both mutually orthogonal and

FDEdlglldExdE- (A18)  orthogonal to alllaB)). This leaves, for every,3, only dg

—1 vectors to construct (we will call them

When matrix elements d® correspond g, , the eigenvec- 11€5°),....|€3” ), and once they have been constructed for
tor of R associated with the unit eigenvalue is of the formone paira,, the same construction procedure holds for ev-

constx (1,1, . ..,1)", meaning that alk' *'# are equal for the ery other pair(and the expansion coefficients are also the
given «,B. This implies that the vectors of the for(20), same, and follows the standard Gram-Schmidt orthogonal-
repeated here, ization procedure outlined below,
N 5 T — —
et )= =gy, lai" D=1, 18)—(apl1e,18)llaB),
la ] —
\fdg
af ”agﬁ» af s ~h aff af
les™)=—=zr> las"h=l2e.28)—(apl2a28)|aBh—{(ei"2a28)eT"),
la3”] —
g
B ||aff§,1>> B - _
||€dE71>>: ”C’ffT”, ||adE71>>: ldg=1.e;dp—1,8)—{aplldg— Lasdz— 1.B)| aB)
—1 ~ — -’
E 1/\/@
dp—2

- ,; (ePlldp—1asdy—1,BY|es?Y.

(A21)

The decomposition of the subspacéSZIpDzl and (Hz)pD:O, induced by the outlined procedure, looks as shown in Fig. 2.
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