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Energy-momentum spectrum of some two-patrticle lattice Schrdinger Hamiltonians

Paulo A. Faria da Veiga
Departamento de Matertiaa, ICMC-USP, C.P. 668, 13560-970 &&arlos, Sa Paulo, Brazil

Lidério loriatti"
Departamento de Bica e Informéica, IFSC-USP, Caixa Postal 369, 13560-970Szarlos, Sa Paulo, Brazil

Michael O’Carrolf
Departamento de Matertiaa, ICMC-USP, Caixa Postal 668, 13560-970cS@arlos, Sa Paulo, Brazil
(Received 31 January 2002; published 29 July 2002

We determine the excitation spectrum of some one and two-pafticlattice Schrdinger Hamiltonians.
They occur as approximate Hamiltonians for the low-lying energy-momentum spectrum of diverse infinite
lattice nonlinear quantum systems. A unitary staggering transformation relates the low-energy-momentum
spectrum to the high-energy-momentum spectrum of the transformed operators. A feature for the one-particle
repulsive delta function Hamiltonian is that, in addition to the continuous band spectrum, there is a bound state
above the band, and the repulsive case spectrum and scattering can be obtained from the attractive potential
case by staggering. For the two-particle pair potential Hamiltonian, there are commuting self-adjoint energy-
momentum operators, and we determine the joint spectrum. For the cask ®pair potential, and equal
particle masses, for arbitrarily smél|, A <0, andd=3, there is no bound state for small system momentum,
but a bound state exists below the band if the momentum is large. We find that the binding energy is an
increasing function of the system momentum. The existence of this bound state is in contrast with the con-
tinuum case, where the Birman-Schwinger bound excludes negative-energy bound states for small couplings;
this bound state is absent if the two masses are different. Other spectral results are also obtained for the large
coupling case. An eigenfunction expansion that uses products of plane waves in the sum and difference
coordinates is used to obtain the spectral results.
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I. INTRODUCTION rate of equilibrium spin correlation functions.
In the ladder approximation, the Bethe-Salpeter equation

Recent investigations have considered the low-lying exciis, roughly speaking, the nonrelativistic two-body Sechro
tation spectrum of lattice Hamiltonians of diverse systemglinger resolvent equation with a repulsive or attractive delta
with an infinite number of degrees of freed¢i-12. Some  function pair potential.
of the Hamiltonians that have been studied are those associ- The analysis of the above infinite systems involves vari-
ated with: the mass, nonlinear spring system, or lattice scal&tus restrictions on parameters of the system, i.e., small cou-
quantum field theory; the generator of the stochastic dynamPling constants, large single-particle mass, zero or small sys-
ics of weakly coupled Ginzburg-Landau models; and the€m momentum, etc. As the lattice two-body spectrum
transfer matrix of classical ferromagnetic spin systems aPresents peculiar features not present in the continuum, we
high temperature. think it is deswable_to give a more comple.te deS(_:rlptlon qf

The joint spectrum of these Hamiltonians and the momenthe spectral properties of one- and two-particle lattice Hamil-
tum operators, associated with lattice translations, admit {nians. _ _ _
particle interpretation and the two-particle sector is analyzed Within this context, we consider the two-particle Hamil-
using a lattice version of a Bethe-Salpeter equation. The ladonian in€5(Z%) X €,(7%) taken as
der approximation gives a good qualitative picture of the A
bound-state spectrum outside the two-particle band, with rig- e ¥ - -
orous confirmations already accomplished in some cases, H2= 2m; +2—mz+v12(x1—x2)=H0+V2, @
controlling perturbations beyond the ladder approximation
(see, e.9.[13,5] and the basic work14]). with A;=A®| andA,=1® A, wheremy,m,>0 are the par-

The determination of elementary excitations in the abovesjqje massesx e 79 and A is the lattice Laplaciafie being

listed systems is of vital importance, as they are related, reg,o unit vector along th¢th direction andf e €,(7%)]
spectively, to the time evolution of quantum fields, the relax-

ation to equilibrium in the stochastic models, and the falloff d
—Af(x)=2d f(x)— 2, [f(x+e)+f(x—€)]. (2
=1

*Electronic address: veiga@icmc.sc.usp.br
"Electronic address: liderio@ifsc.sc.usp.br The one-particle lattice Hamiltonian, acting in the space
*Electronic address: ocarroll@icmc.sc.usp.br €,(79, is
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—A . problem. Spectral results fdi, of Eq. (1) are obtained in
=5y Fv0=Hot+Vy. (3)  Sec. V form;#m, and in Sec. IV form;=m,. Finally, in
Sec. VI, some concluding remarks are made.

H,

Here,M >0 is the particle mass aru{i) is a real potential

verifying limg ..|x|* "% (x) =0 andv(x)=v(—Xx), «>0. Il. SPECTRUM FOR H,
ForV,=0, the Hamiltoniart, has a band spectrum. The 1, yo0rmine the spectrum b, we introduce the lattice

system lattice unitary translation operator commutes with . P oL T TR T s

H,, and we can define self-adjoint momentum operaRyrs translation operatorTsf(x;,xz) =f(x;—a,x;—-a), with a

satisfying[ P, ,P;]1=0, i,j=1, ... d. Here, we will be in- e 7. This operator commutes witH, and is unitary. We

terested in the energy spectrumhbf, and the joint spectrum Write T;=ex{iP-a] which defines the self-adjoint system

of (H,,P), called the energy-momentum spectrum. momentum operatorBj, j=1,...d, and system momen-

We mention some features of the lattice Hamiltonighs  tumge T9, with T¢=(—,7]% Since[P;,H,]=0, we de-
andH,. A unitary staggering transformaticisee[8]) maps  termine the joint energy-momentum spectrum i, (P).
low-energy spectrum to high-energy spectrum of the trans- We define the staggering transformation acting in the two-
formed Hamiltonians. In particular, the Hamiltoni&hy, of  particle space,(Z%) x €,(Z%) by
Eqg. (3) with an attractive delta potentiaME\ 5,A<0) is
transformed to a Hamiltonian with a repulsive delta potential .

(V=A46,A>0). For any\ if d=1,2, and for suitably large . E Dy e s

[\], if d=3), while the attractive case gives rise to a bound Uf(x1,%0) = (1) & (172 (xq %), 4
state below the band, there is a bound state above the band in

the repulsive case.

ForH, of Eq. (1), we distinguish two cases, depending onwhich is unitary and, sinc&J?=1, we haveU *=U. From
whether or not the two massesg andm, are equal. We first Eq. (4), it is easily seen thafU,T;]=0 and[U,S]=0,
consider the casm;=m,. For an attractive delta potential, whereS is the projection on the symmetrieven subspace
we find a bound state below the band fb=1,2, and the given by S=3(l1+7P), whereP is the permutation operator
binding energy increases as the system momentum increasesi,(x, ,x,) = f(X,,X;).

i.e., the bound-state curve does not approach the band. This For V= §, we find thatH, has the following intertwin-
result is in contrast to the well-known case of the nonrelativing property:

istic continuum, where the binding energy is independent of

the system momentum; and the case of two particles obeying

relativistic kinematics where, based on purely kinematical —-A®l le—-A
grounds, the binding energy decreases as the system momen="'2~ 2m; | 2m,
tum increases. Fod=3, and momentum zero, there is a

bound state only fox less than a critical value,<0. How- _ 1 1
ever, for arbitrarily small\|, A<O0, there is a bound state =|4d 2m; * 2m,)
for sufficiently high momentunhq|>q.>0. Here, the bind-

ing energy goes to zero dg§|—q. , and the bound state )
approaches the band. This result is in contrast with the corso that, for each system momentumthe negative bound-
tinuum case, where the Birman-Schwinger bousee[15]) state eigenfunction for the attractive caseO, is trans-
excludes bound states for sufficiently small potentials. formed byU into the positive bound-state eigenfunction for

We now consider the case;#m,, and the attractive the repulsive case>0. Keeping this in mind, it is enough to
delta potential. Ifd=1,2, there exists a bound state for any determine, e.g., the spectrum below the band.

+\No

—-A®l +I®—A sl lu
2m; 2m, '

small|\|, A<0. For dimensiord=3, for all values of the Here, we obtain the spectral representatiorHgfvia an
system momentum, no bound state exists for sidll in  eigenfunction expansion. Let us first remark that, although
agreement with the continuum. we do not have separation of the Hamiltonian in center-of-

We now describe the organization of the paper. In Sec. limass and relative coordinates, as in the continudgngcom-
we define the staggering transformation on the two-particlanutes with T;. So, we consider expanding a function
space ar_wd show how to separdtg into a free system f(x, x,) in terms of the nor, functions
Hamiltonian and a relative coordinate interacting Hamil-
tonian which depends on the system momenﬁ.lﬁihe sepa-
ration is achieved using an eigenfunction expansion based on S BR—
plane waves in the sum and difference coordinates. In this P(X1,X2,p,K) = (27)2d
way, we establish the general grounds of our two-particle
analysis for general system momentﬁrand masses); and
m,. Using the Lippmann-Schwinger equation, in Sec. Ill, we The functiony is an eigenfunction of the system momentum
determine the spectrum and the scattering for the Hamiloperatorﬁ, with eigenvalue ﬁ;ﬁ_ Also, i is an eigenfunc-
tonianH, of Eq. (3), which describes thg@=0 physics of the  tion of the free system Hamiltonia,, with eigenvalue

eik'- (>21+>22)ei,5- (>21—>22)_
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K(BR)=— - K (p+R)~ o R(F-K
(p, )=—2—ml (p )—2—m2 (p—k)
d

L 2 2[1-cogp'+kl) ]+i
2ml m,

X 21 2[1-cogp! —Kk)].
=
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particle problem. In this case, E(f) becomes, after cancel-
ing the e’k (1%2) factor, and settingk=X,— Xy,

(Zw)df [K(p.K)—E(K)]b(p, k)& *dp

V(X) f b(p,k)eP*dp=0.

(2m)¢

Here, we see that the eigenvalue does not split into a sum of
center-of-mass and relative kinetic energy as in the conTaking the Fourier transform ir gives
tinuum using center-of-mass and relative coordinates. How-

ever,Hy is still a multiplication operator. It has a band spec-
trum for anyd, with a finite width which can become zero if

the system masses are equal and the system mome_iwtﬂm

equal to?rz(w, ...,m). Furthermore, the/’'s obey the fol-
lowing orthogonality and completeness relations:

f f E()le)_()Zlﬁl!El)w(;l1;2!521E2)d;1di2
= 8(K; — k) 8(p1— P2);
[ [0 5.3 Ry 5o B K0tk
TJT
= 8(X1—X1) 8(Xa— Xp).

Turning now to the time-dependent ScHimger equation,
we write

W(X1,Xp,t) = f a(K) (X1, X» k) EOK
(2m)¢

whereW satisfiesioW/dt=H,V, if we take ¢ such that

H,p=E(K) ¢, (5)

With (X, %z, K) = €% C %2y (X=X, K) - and  x(%,K)
=(2m) %Sb(p,k)e” *dp. Substituting in Eq(5), canceling

the e’k (x1*x2) factor, and taking the Fourier transform in the

relative coordinate=X,— X;, we obtain

K(p,k)—E(k k b(p’,k)dp’=0.
[K(p,k)—E(k)]b(p, )+(2w)dJ (p’.k)ydp (6)

Multiplying Eg. (6) by (K— E)*l(ﬁ,ﬁ) and integrating over
|5 leads to the eigenvalue equation

N dp
" (ZW)ddeK(ﬁ,IZ)—E(IZ) -0 @

The corresponding elgenfunctlon is
&K 52) [ of @/ K (p,K) ~ E(K) T} dp.
We point out that for a general potentid{x; —

proportional

X2), We

K(p,K)—E(K)]b(p,k
[K(p,k)—E(k)]b(p, )+(2w)d

xJTdV<5—5’>b(5',E>d6'=0.

i.e., the time-dependent Schiinger equation in momentum
space with a kinetic energy that depends on the system mo-

mentumd= 2k.

Ill. SPECTRUM OF H, FOR ZERO SYSTEM MOMENTUM

Fork=0, Eq. (6), with w=m;m,/(m;+m,), is

—A(p)

b(|o)+(2

which is the equatiod ; /= E ¢ in momentum space, taking
pn=2M. We point out that the above is the same equation as
that obtained for normal modes of polarized classical oscil-
lations of a monatomic isotropic crystalline lattice with an
isotopiclike defect at the origif20-23.

To derive the spectral properties of the Hamiltontdn
of Eg. (3), it is convenient to use the Laplacian M
of Eqg. (2) without the constant diagonal term, i.e., with
Af(x)=3{_ f(x+€&)+={_;f(x—¢). With this choice,
the spectrum is given by the values E)ﬁ), corresponding
to the energies of the noninteracting syster&(q)
=-1M3{_,cos¢, qeTY, and has the energy range
[—d/M,d/M].

Note that if we take bothm; and m, to be equal tom
>0 in the free parH, of the HamiltoniarH, of Eq. (1), and
if we set M=m/2 in Eq. (3), then the energy interval
[—d/M,d/M] also describes the momentum spectrum of the

free two-particle system with relative momentukn total

momentumg =0, and particle masses. As it is known, the
free part ofH, has a band spectrum, for any fixed total

momentumg. This is why we refer to the energy range of

toE(ﬁ) as a band. Also, for convenience and without spoiling

the analysis for the general mass model, we will assume
2M =1 throughout this section. The band then becomes

still reduce the two-particle problem to that of solving a one-[ —2d,2d].
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The causal(retardedl Green'’s function associated with the which has the interpretation of an electric field of a two-

HamiltonianH,, is (for —07") dimensional line charge distributidd(E). Using Eq.(10),
Eq. (8) becomesG, (0,0;E)=F(E)—iwD(E). We remark
Gg (X,Y;:E)=[(E+in)—Hol X(x,y) that F(E) is the Hilbert transform of an even and strictly
L positive function. It follows that(E) is odd in (—2d,2d),
1 eat=y) monotonically decreasing outside the band, and continuous
= (27r)ddeE+i U—E(d)dq. (8) at least inside the band but near the edgesl=fl, F(E)

vanishes inside the band and is exceptionally given by
sign(E)/VE?—4, if |E|>2. If d=2, F(E) has an infinite
garithmic discontinuity at the band edges, and is bounded
or d=3, at least near the band edges.
From the above behavior &, , the spectral properties
of H; can be now consistently discussed in terms of the
associated Lippmann-Schwinger equation, i.e.,

An important property of the Green’s function of E®)
is its transformation under the one-particle unitary staggerin
transformationU. In the configuration space, we have
UF(X)=(—1)5-17f(x); fel,(2%, and satisfiesU2=I
andU~1=U. In words,U transforms smooth functions into
rough functions and vice versH. has the intertwining prop-
erty —A+A6=U[—1(—A—)X8)]JU L In momentum R R o R )
space, the action of the staggering transformation becomes ¥~ (X)=¢(XE)+ X, Gg (X,y;E)V(Y)¥~ (), (12
(UF)“(p)=T(7—p), pe T From the definition ofJ, and y
the staggering transformation properties of the Laplacian u

der U, it follows that G (E) satisfies the property Nwhere ¢(x;E) is a suitably chosen eigenstate lgf, with

energy Ee (—2d,2d). For the localized potentiah/(i)

GI(XY:E)=—(—1) E?:l(x"*yj)e(f(ij; “E), (9 =\8(x), Eq.(12) has the solution

A ¢(0;E)

(E)1mnD(E) B0 KOE).

(13

where G5 is the advanced Green’s function which is ob- ¢~ (X)= ¢(X;E)+

: . . 1-\F
tained replacingy by — 7 in Eq. (8).

It is a general feature that the imaginary part of the trace

of a one—part_lcle Green's funcpon IS re_Iated to th_e ON€-5inceV is localized a=0, only free-particle states(x;E)
particle density of states of its associated Hamiltonia

[16,17). Here, the densitD(E), per lattice point, of the r\”naving nonzero amplitudes &t 0 are scattered. Taking Eq.

(free-)particle states of the Laplacian, at a given endggis 513)' we notice Fhat the_scattered wave contains a team
given by scattering amplitude’ with a factor

A
[ sE-E@aq o O iaFermoe M
:

which is infinite, under some circumstances. The condition
Using the staggering transformation, witk=y=0, it  for a singularity to occur irf(E) is given by
follows that D(E) is an even function of. Also, since . B
the eigenvalues of the Laplacian exist only for 1-AF(E)=0; AD(E)=0. (19

EE[_.Zd'Z.d]’ D(E.). is.zero outside the band. Besides, When E lies in (—2d,2d), the above properties df(E)

E)L(Zlfj) I?D?E;Ctsl)r/]gv?/:lt\l/\;?] Iﬂé;ezi}ﬁd)dlgﬁgstgfe tlr)]gnft(d)rtrer?ges ensure that the first of these conditions can be satisfied for

- 9 d=2, but not ford=1, whereF(E)=0 in the band. On the

—— other hand, ford=2, sinceF(E) becomes infinite at the

d— E_} . |E|=2d. (11) band edges, the first condition is satisfied for any. For

d 4d ’ ' small enough|\|, if A<O0, the solution occurs at sonte

5) close to—2d, and atE close to 2, if A>0. A similar argu-
ment holds ford= 3. However, sincé(E) is now bounded,

Although D(E) may diverge at the band edges, its integral® critical value\ . exists and a solution is found, for each

remains finite, with integral one over the banddi 1, Eq.  Sign of, only for IN[>[A¢[>0. Regarding the second con-
(11) holds as an equality, for an§. For d=2, D(E) has dition in Eq.(15), recall thatD (E) is finite and nonzero near

jump discontinuities at the edges and has a logarithmic sin=2d. for all d=2. Ford=2, the only possibility for having
gularity atE=0. For generati=3, D(E) is continuous and the productAD(E) small is to take small enough values of

D(E)= o

D(E)=
(2\/m)r

bounded. IN|. D(E) is arbitrarily small, ford=3, if E is close enough
For P denoting the Cauchy’s principal value, let to =£2d, whereD(E) vanishes. Thus, a resonance appears
for small\ in d=2 and for|\| above but neaf\|, for d
20 D(E') =3. .
F(E):’pj —— “dE’, In the same way, bound states of the Hamiltontdp
-2dE—E’ correspond to singularities of scattering amplitudes, regarded
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as functions ofE. When both conditions of Eq(l5) are  describes the asymptotic behavior of wave function of the
simultaneously satisfied, the Lippmann-Schwinger 8@)  bound state with positive energyk £ 0). It is worth noting
may present nontrivial solutions even wheé(x;E) is setto  that these asymptotic formulas are valid only wher4d

be a null function, which is the case & is outside that is, the limit of weak blndlng In this limit, the appear-
[—2d,2d]. In fact, letting b(x:E)=0 in Eq. (12), we find, 2Nce of the bound states can be understood from the hybrid-

for the bound states, ization of& states associated with energies closettdd.
Also, we remark that if the binding energyis large com-
Pp(X) =\Gg (X,0;Ep) ¢(0). (16)  pared to 4, an exponential decay behavior |af— per-

sists for any of thezpb(i). This can be seen applying the

Provided thaty,(0)# 0, a nontrivial solution emerges when payley-Wiener theorelfil8], using the analyticity properties
1-\Gq (0,0;Ep) =[1—NF(Ep)]+iAD(Ep) =0, which is  on a strip about the real axis of the Fourier transfornsgf.
equivalent to Eq(15). As before, the first of these conditions However, a closer examination shows that the decay rate
can always be met, for sontg provided that\ is suitably  depends on the direction, and the asymptotic behavior is not
chosen. The second one requires, consistently with the vamsotropic.
ishing of¢(§; E), the bound-state enerdy, to satisfy|Ey| If d=1, G, (0x;E) can be explicitly calculated for any
>2d, whereD(E) vanishes. Sinc&(E) is odd and mono- value of x. We obtain, for a=cosh(1+€/2)
tonically decreasing outsid¢ —2d,2d], a unique finite >0, G;(0x;E,)=conste” “X. This equation agrees with
bound-state solutiok=Ey(\) exists either for the attractive Eq. (17), with d=1, except for the fact that# \e. The
and the repulsive potentials. For<0, we haveEp(N)  conditiona= e is only recovered in the limit of weak bind-
EE%,()\)<—2d and the corresponding binding energyeis ing e~0.
=—2d—E}(\). By staggeringsince F(E) is odd], for Before closing this section, we determine the effect of the
>0, it follows that Eb()\)EE{,()\)z - Eg(— IN])>2d and staggering transformation on the wave and scattering opera-
the binding energy is obviously the same. Fee2, where tors (see[24]). Making explicit the\ dependence iH;
F(E) diverges near the band edges, a bound state exists fesH,;(\), we define the wave operatorsW.(\)
any value of\. Ford=3, whereF(E) is bounded, a bound =s—lim,_ ..e"1Me Mot We have, recalling that
state still exists but only fox depending on a critical value U~ H;(\)U=—H,(—\),
\.. Staggering guarantees, for each of the cases, either at-
tractive or repulsive, a symmetrical pattern around the band W. (A\)U=s—lim UUteH1Mtyyte-Holy
[ —2d,2d]. Knowing the spectrum for one of these two t—toe
cases, the other one is obtained by reflection about the _ T ZiHA ()t aiH At _
middle of the band==0. For a physical interpretation for =Uls tﬂTwe (VM= UWs (- N).
the existence of thénonintuitive bound state, foh>0, in
terms of a system of classical oscillators, §&8). ; _ * :

Turning to the bound state wave functions, from Ef), For the scattering operat@(h) =W (\)"W-(1), we find
we sSe trlat the bound-state yvave fur_wtlons are Sletermlned US(\U~L=UW, (A\)*UU~w_(\)u-t
by G5 (0.x,Ep). The asymptotic behavior, for larde| and
E,< — 2d, is dominated byg=0 in Eq. (8), leading to, for

x| =2,

—W_(—N)*W, (—A)=S(—\)*.

In terms of the Fourier transform of the transition matrix
di2—1 ’r(|5'|2;)\)'
. 2 Je .
Gy (0X,Ep)=— —(—») Kaia—1(Velx]),
(2ym)* 2]x|
(17

whereK,=K_, is the modified Bessel function of order a_nd~S_(f),lZ) is the Fourier transformed kernel &f By con-
and e>0 is the binding energy. Thus, apart from a normal-sidering the effect of a staggering transformation in momen-

ization, for large|x|, the wave function for the.<0 case tum space, fop#k but E(p)=E(K), we have
satisfies

S(p,k) = 8(p—k)—2mi S(E(p)—E(K)T(p,k;\)

. i T(p.kN)=—T(7—K7—p:—N),
P () =|x|1 Y2 4o 1 (VelX]),

. o . ) which is seen to hold for the explicit solution obtained
which shows that it is exponentially decreasing, the decaypove, i.e.,

rate being uniform ik and depending only od (and on the
massm). Using the transformation property Gf; under the T(p,K:N)=A[1-\G (0,0:E(K))] % (18)
staggering transformation, it follows that

. d . . Note that the on-shell limifdiagonal pant Eq. (18) gives
Ph0)=(— 1)1 |x| 1 YK o1 (Ve x]) f(E) of Eq. (14).
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IV. SPECTRAL RESULTS FOR H,: UNEQUAL MASSES
Ford=1, we have the eigenvalue equation
1+>\if” L 4p=o, (19

2w ) -=9(p,q)—z

where

g(p.q)= %[Zd— 2(cogg/2)cosp—sin(g/2)sinp)]
my

1
+ H[Zd —2(cogq/2)cosp+sin(g/2)sinp)]
2

=acosp+bsinp+c.
But

—ar

™ dp _
Jfﬁa cosp+r—¢ ({—a)'((+a)?

with a= « cosr, andb= « sinr and{=z—c, so that Eq(19)
becomes

-1
N lew (@ W (@

with solutions

0, (20

1 [co(qr2) sir(qr2)|"?
Wi(q):_i 2 + 2 )
d s Y

(21)

w=mmy(m;+m,)* andy=m;m,(m,—m,) . Note that

w. (q) are precisely, respectively, the upper and lower enve?

PHYSICAL REVIEW E 66, 016130(2002

e

2_

— —a

FIG. 1. The energy-momentum spectrum for the aksel and
unequal masses, wittn,=0.2m;. The most inner curves are the
band envelopes. All its interior points also belong to the spectrum.
Its lower and upper envelopes do not coincidegat+ . For A
<0, only the isolated bound state lower dispersion curves appear;
for A>0, only the isolated upper curves appear. The curves closest
to the band describe bound statesXér= 26 and the farthest curves
are forA?=80. These curves change concavity for some momen-
tum value. Also, the band envelopes change from convex to con-
cave. The gaps between each pair of symmetrical curves and the
band are equal, and the binding energies increase as the system
momentum increases.

which, noting that ¥ sinp’ can be replaced by -1cosp/,
has a solution fox <0, |\| arbitrarily small, only ford
=1,2, but not ford=3. This agrees with the Birman-
Schwinger boundsee[15]). The band width afj= 7 is
2d/y.

To close, we remark that the staggering transformation
allows us to obtain spectral results for the repulsive delta
function potential £ >0) from those of the attractive case
(A<0).

lopes for the band, i.e. the energy envelopes for two particles

with total system momenturﬁ. For the attractive case,

<0, lettingz=w_(q) — €, >0, we have a bound state with

binding energy

(W, —w_)

1
— _ 2 21172
5 +2[(W+ W_)+N7]H4

(22

€= —

The results for unequal masses atheét 1 are depicted in
Fig. 1.

For dimensiord and system momentum= 7, the bound
state equation is

A dp
i (277)"de 4 /1 sinp -0
%)
=1\ M
or, with z=d(1/u— 1/y) — €, the binding energy¥>0 veri-
fies

-

UL . N
(2md)rd 1 ’

> Z(sinpl+1)+e
=17

V. SPECTRAL RESULTS FOR H,: EQUAL MASSES

In the case of equal massesbecomest . This is the
case relevant to the correspondence with the infinite nonlin-
ear lattice quantum models, since the resolvent of this
Hamiltonian is similar to what occurs in the Bethe-Salpeter
equation. This is why our analysis is more complete here.
Without loss of generality, settingn2,=2m,=1, we have
w=1/4. Equation(6) becomes, for system momentuq
=2k,

d

J L A
4 E cosc;—(l—co:sp')b(p)wL
=1

b(p')dp’
w)df (p")dp

(2

b(p), (23)

d j
={E—(4d—42 COSq—
=12

which is the momentum space form of the normal mode
equation for classical polarized oscillations of an anisotropic
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— | T P f ! dp=0
0] (2m)d)a & =7

/—\ 4_21 cogqi/2)(1—cosp) + e
E i=

Note that the integrand in E@25) is positive and is a con-

(25

q tinuous function ofe>0.
Another important observation is that, for adyand any
-_— \, there is always a solutior(7)=|\| to Eq. (25), for q

FIG. 2. The equal mass energy-momentum spectrum for the 7 This is a trivial matter since the kinetic energy term

cased=1. The most inner curves are the band envelopes. Al itsvanishes. The eigenvalue equation is simply(x) ¢(x)
interior points also belong to the spectrum. Rox 0, only the :E',/,()Z), E'=4—d=z—4d=\= — ¢, which has the mul-
isolated bound-state lower dispersion curves appean fo®, only tiplicity one eigenfunctiorﬁ()Z) with eigenvalueE’ =\ and

the isolated upper curves appear. The upper em.'e.k’pe for the bandE e infinite multiplicity eigenvalue zero with eigenfunctions
concave and the lower one convex. They join each other at

q=+. The curves closest to the band describe bound states fg?(X—U), u#0. Forq=, the band is a single poirisee
A\2=1.6 and the farthest curves are faf=34. These curves Fig. 2. The fact that the bound-state wave function is local-

Change Conca\/ity for momentum close tor. The gaps between ized in a Single pOint iS to be Compared W|th the bOUhd-State
each pair of symmetrical curves and the band are equal, and thgiven below wave function forﬁzﬁ, which has exponen-
binding energies increase as the system momentum increases. tial decay. This last result is in agreement with the results of
Sec. lll. All these results follow from the Payley-Wiener
crystalline lattice with a point defe¢20,21,23. The anisot- theorem[18].
ropy depends on the direction of the system momentum; for We now give an interesting physical interpretation of the
q=0, the first term is the isotropic kinetic energy2A(p).  above result. Note that the cq#2 factor in the kinetic-
The eigenvalue equation becomes energy term in Eq(23) is the inverse of a directional mass
which increases for increasing system momentum, and
N df) which, in turn, Iowgrs the energy. Note that this makes the
1+ 2y e d =0, ehqual masslcase dlfferentrl‘rom the uneaqual masE case. D_ue to
) JT i : the unequal mass term, the operator does not have an inter-
4d_4j21 cogq'/2)cosp' ~E pretation of an anisotropic one-particle lattice Sclinger.
Also, another difference between the equal and unequal mass

which leads to the equation for the binding enefgge Eq. cases is that the band collapses to a single point,=atr,

(25) below]. when the masses are equal. For examplej4nl, we can
We first taked=1. Egs.(19) to (22) hold in the y— interpret theH, eigenvalue equation as an equation for clas-
limit. Solving the bound state equation gives=  sical polarized oscillations for particles in a two-dimensional

— 1w, (q)—w_(q)+ L[ (W.(q)—w_(q)2+\2]¥2 which lattice with defects along a diagonal line through the origin
determinesE,(q). From this solution, we see that this bound (zero relative coordinate The bound states correspond to a
state curve does not intersect the band for all valueg of ~ Multiplicity one normal mode having nonzero displacements
As for the one-particle case, we now consider the effect oPnly along the line of defects. There is also an infinite num-
a staggering transformation on the two-particle Hamiltonianber of other normal modes, along parallel diagonal lines, for
For d=1, this will give us a bound state curve, for the re- which the nonzero particle displacements only occur on the
pulsive case, above the bandzatw. (q)—e, €>0, with Iing. These are the modes that correspond to the coalescent
gap e given by the same expression as above, for the attrad2oint of the band. o
tive case. The final result fat=1 is summarized in Fig. 2. Back to the general case,df=2 andq+ , the integral
Let us turn to the casesl=2. Setting f(p,q)=4d diverges ag\,0. Since the integrand is strictly monotone in

—42?:1cosqj/2)cospj, the condition for a bound state is  the binding energy>0, there is a unique bound-state solu-
tion for eachh <0, which does not intersect the band. For

d=3, the integral in Eq(25) converges absolutely and re-
+ A f _ { dp=0. (24) mains finite as\,0. It defines a positive and even function
(2m)?) 1 (p,q)~z of q and, for fixedq is strictly monotone decreasing for
increasinge. Using the parity property on the components of
To determine the bound state below the band, in the alg, we concentrate our analysis to non-negative components
tractive case\ <0, with fixedq, it is convenient to define q', j=1,... d. For fixed\, differentiating Eq.(25) with
fmin(a)zminﬁe.rdf(ﬁ’a)=2?:14(1_Cosqi/2) and setz(q) respecttay’, j=1,...d, sh(zws that the components of the
=fmin(Q) —€(q), €>0, being the binding energy. The gradient of the SO|Uti0nS‘E_)(Q)_) are continuous and non-
bound state condition of E¢24) becomes negative, vanishing only aj=0. In words, the binding en-
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ergy increases as the system momentum increases. This is in 4
contrast to the nonrelativistic continuum case, where the

binding energy is independent of the system momentum.

Also, in the case of particles obeying relativistic kinematics,

the binding energy of two particles decreases as the system

momentum increases. =

Settingq=0, a negative bound-state solution exists pro-
vided thatA <\.(0)<0, where\.(0) is the \ solution to
Eq. (25 with g=0 in the limit €\,0, i.e.,

Ac(0 1 .
14 20 . dp=0. (26) 0 q

(27T)d Td42 (l—cospj) FIG. 3. The approximate energy-momentum spectrum for the
= attractive casel=3, small coupling, and equal masses. The system
momentum isﬁ:(qlsq,0,0). The upper curve is the band lower
Thus, using the continuity ie, we extend the argument and envelope, and we see that a bound state only occurgd.
a solutione(q) is shown to exist for a neighborhood gf
—=0. A new critical value\c(ﬁ)<0 emerges at eacci1 Inthis  dimensional integral which diverges as, 0, and there is a

way, we can iterate the use of continuity énto show the Unique bound-state solution. By continuity it the bound
state persists down to some minimal valuegt>0. We

existence of a solution for eachup toq nears. We remark ! . .
that, from Eq(26), we also know that the components of the remark that there is a Birman-Schwinger-type bound below
this critical g* value. The approximate bound-state curve is

gradient ofn,(q) are continuous, positive, finite, and strictly shown in Fig. 3.

increasing functions, for aqu# 77) the final conclusion is
that a bound-state curve, which never intercepts the band, is VI. CONCLUSIONS
present at least provided that \ ., where\. is the critical

value determined by .=mingra Ac(Q).

Emphasizing how the use of staggering transformations
We now show, ford=3, A<0 and |\| is arbitrarily — €&n be important in understanding the Ic.)w—lyi.ng spectrum of
small, that there is a region oﬁ space contained in quantum lattice systems, we have obtamed |"nt'erest|ng spec-
C R tral features for théone- andl two-particle Schrdinger op-

(=, a]%, and containingy=m, such that a bound-state ex- erator onz¢, with a delta potential, which are expected to
ists. We know there is a bound-state solutiondef 7 and  occur in some infinite lattice nonlinear quantum systems.
[&e/aqj](Fr)=2, so that, fora: m, we have 6(5): -\ Among other results which are hard to guess on the basis of
+22?=1(q1—w). That means there is a bound state cﬁar pure .IntUItIOI’], we show that a .bound. ;tate can apped, if
near = The vanishing of the binding energg(ﬁ) deter- =3, if the' system momentgm is sufflc':lently.hlgh, .for both

. . v, the h NS ® (o= ) — X the attractive and the repulsive cases, in aII_dlm_ensmns. Also,
mines, approximately, the hyperplan ;—1(q *m)=N\. even if the strength of the potential is arbitrarily small, the
Thus, a bound state exists for the regioma$pace bounded higher is the system momentum in these cases, the more
by the boundary of the hypercube-¢r,7]% but bounded stable the pair becomes. Whether this could favor a phenom-
away from it, and the hyperplane. Besides, we know theenonlike condensation in some real system is a good ques-
binding energy vanishes fm(q) 0. Thus, there is a bound tion to be analyzed.
state for a region inq space bounded by the cube Also, we have developed a framework within which the
(—m,]% and the hyperplane 2'_,(q/+7)=X\. A more effect on the spectrum can be determined for more general

detailed picture of the zero binding-energy surface can b@otenuals Also, here we considered perturbation of Lapla-

obtained numerically. As an example of a bound state emerd:!ans, but more general kinetic-energy operators, as occur in
ing away from zero system momentum, we consider3 he infinite lattice systems mentioned in the Introduction, can

andg?=q3=0. Then the bound-state equation becomes /S0 be analyzed with our methods. .
It would be interesting to get a complete picture of the

A df) zero binding-energy surfaces, even in the ladder approxima-
+ 3f v =0, tion, for the stochastic model, the nonlinear mass spring sys-
(2m)*)T°h(p,q7) + € tem and the spin system described above.

for h(p,qt) =4 cos@/2) (1— cospl) +4(1—cosp?) +4(1
—cosp®). We consider small negative. For q*=0, the in-
tegral is finite fore=0 such as there is no bound state. On  This work was partially supported by Pronex, CNP(q, and
the other hand, fog'=, the integral reduces to a two- FAPESP.
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