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Convergence of threshold estimates for two-dimensional percolation
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Using a recently introduced algorithm for simulating percolation in microcanorifeedd-occupancy
samples, we study the convergence with increasing system size of a number of estimates for the percolation
threshold for an open system with a square boundary, specifically for site percolation on a square lattice. We
show that the convergence of the average-probability estimate is described by a nontrivial correction-to-scaling
exponent as predicted previously, and measure the value of this exponent to h® @®0For the median and
cell-to-cell estimates of the percolation threshold we verify that convergence does not depend on this exponent,
having instead a slightly faster convergence with a trivial analytic leading exponent.
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I. INTRODUCTION (3) The estimatepRc(L) corresponding to the point where

) _ ) R (p) equals its universal infinite-system valu®.
Percolatior{1] is one of the most fundamental and widely =R_ (p.) (which is determined by the system shape and
studied systems in statistical physics. Theoretical studies dfoundary conditions[5:

percolation models and applications of percolation theory to

physical systems have spawned thousands of papers over the R.(p)=R.. 3

last few decades. Even so, there are some substantial gaps in

our understanding of percolation. For example, we have ator a square system, whelRg= 3, this estimatepo (L) cor-
present no exact value for the positipp of the percolation responds to the median of the distributiB(p). A related
threshold for site percolation on that simplest of two-estimatepy. (L) for rectangular systems is the valuepoét
dimensional lattices, the square lattice. And in three dimenwhich the horizontal and vertical crossing probabilities sum
sions we have almost no exact results whatsoever. Becaut® unity [6—8]

of this, numerical methods have played an important role in ) )

the study of percolation. In this paper we consider a class of RIV(P)+R™(p)=1. (4)
methods for estimating. for site percolation using finite-
size scaling, and show how various estimatepoin this
class scale with varying system size in two dimensions.  boundary is a perfect square.

The methods studied here for measuringare widely (4) The estimatepmaL), which is the value op where
used and are all based upon consideration of the crossirfg/ (p) reaches a maximuior equivalently, wher®, (p) is
probability functionR, (p) [1-3]. This function gives the at its inflection point[2]:
probability that a connected path crosses the system from ,
one boundary segment to another, at site occupation prob- Ri(p)=0. 5
ability p and system size or length scdle Some examples
of these estimates are the following.

This estimate is identical tqaRc(L)=p0,5(L) when the

(5) The cell-to-cell RG estimate, which is the point where

(1) The renormalization-groupRG) fixed-point estimate two systems of different size have the same valu® ¢2].

_ ; ; ; One possible choice for this estimapd)(L), is the value of
L)=p*(L), wherep* is the solution to the equation ; s\
FZR(ASS )=p"(L) P q p at which

RL(p)=p. ) RL(P)=RL-1(p), (6)

while a second choicg{?)(L), is the point at which

RL(P)=RL;(p). (7)

R _ ! In order to use these estimates to determine the threshold
PadL)=(p) fo PRU(P)dp=1 fo Rulpydp, - (2 precisely, we need to know the manner in which they con-
verge top, asL—o0. While it is possible to simulate very
where the last equality follows from integrating by parts. Thelarge systems for which finite-size effects may be quite
prime indicates differentiation with respect po small, the statistics for such simulations are still relatively

(2) The average value gf at which crossing first occurs
[112]1
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poor because of the small number of samples that can typthe same way in the scaling limitin Ref.[5], no particular
cally be generated. In most cases, better results can be dassumption was made about the behavidr,0X), other than
rived by doing more simulations on smaller systems, and thits analyticity aboutx=0.
requires that the finite-size behavior is characterized accu- Note that the form offy(x) in Eq. (10) is not entirely
rately. universal, because the independent variabshould incor-

It is usually assumedbased upon very general scaling porate a metric factor which depends upon the underlying
argumentsthat all finite-system estimates of the percolationlattice [10,11]. For convenience, however, since we are con-

threshold converge to the bulk valpe as sidering only one system of site percolation on a square lat-
i tice in this paper, we do not include that factor here.
Pes(L) —Pc~cL™, 8 Once the above assumptions, Eq$0) and (11), are

made, the convergence of the various estimatepofs
- , straightforward to analyze, and one finds that while the RG
exponent governing the correlation lengt) such that ogtimate does indeed converge according to(Bg(a result
&~|p—pc| " (For the two-dimensional systems we will be 4t has been verified in many numerical stugigse rest of

; T T : _ i
looking at in this papery=3.) Well known exceptions 10  he estimates above should converge according to the faster
this behavior are a few highly symmetric, self-dual systemspahavior

such as bond percolation on a square lattice with a square
boundary, and site percolation on a triangular lattice with a Pes(L) —pe—cL™ 171, (12
rhomboidal boundary; in both these casggp) is perfectly
symmetric aboup=3 for all L and all the estimates above where the constart varies from estimate to estimate. Simu-
give p.=3 exactly. For these systems, the constaabove lations reported in Ref(5] for systems of size up to 1024
is zero. X 1024 sites verified this convergence for the estinmgteto

In Ref. [5], however, it was argued that for non-self-dual high accuracy. The estimat@s.., Pmax, andp,, were stud-
systems with a square boundary, such as site percolation onied in Ref.[5] using only exact enumeration results for sys-
square latticéwhere because of the nonduality the estimategsems of sizes up to X7, which give polynomials foR (see
show finite-size effecjs the convergence of most of the the Appendiy, and while the behavior of these results was
above estimates is faster than given by E). This is an  found to be roughly consistent with E(L2), the uncertainty
observation of some practical significance, since this particudue to higher-order corrections was large.
lar system(site percolation on a square lattice with a square Following the publication of Refl5], Hovi and Aharony
external boundanyis one of the most commonly studied [10,12 argued that the irrelevant scaling variables in the
systems in percolation. Similar arguments also apply to otherenormalization-group treatment of percolation imply a
symmetric two-dimensional crossing problems, such as alower leading-order convergenceRf to its infinite-system
system with a rhomboidal boundary, which is commonlyvalue, characterized by an exponent whose value was
used when simulating triangular and honeycomb lattices. deduced from the Monte Carlo work of Stauffdr3] to be

The arguments of Ref5] were based upon the hypothesis about w=0.85. (Note that Hovi and Aharony used, to
that denote the exponent we call) A variety of series expansion

results from the early 1980s were also analyzed to give val-
RU(P)~fo(X)+ L~y (x)+ - (9 ues for this exponent ranging from 0.89 to ovefrls,15).

The argument given by Hovi and Aharony implies that the

leading terms in the expansion Bf (p) should in fact be

where ¢ is a system-dependent constant, andis the

for largeL, wherex=(p—p.)LY", fo(x) represents the uni-
versal part ofR, andf(x) represents the first-order correc-
tion to the scaling limit. The choice df ! as the leading RL(P)~fo(X)+ L “f ,(X)+L ,(x)+---, (13
order of the correction was based on numerical measure-

ments ofR at p., and can be derived from the assumptionwhere

that the system is effectively slightly rectangular in shape,

because of the different types of boundary conditions applied fo(X)=Cix+ P+ - (14
along the two principal axd®]. For smallx, it was assumed ) )
that Hovi and Aharony argued that the constant tesgnis zero
for a square system, becausepatthere are no correction
fo(X)=ag+ax+agx3+- -, (10)  terms for the square-lattice, bond-percolation system, and
corrections due to irrelevant variables should be universal.
f1(X)=bg+ by x+box2+- - -, (11)  They also argued thdt (x) should be even, so thag=0 in

Eg. (12), also by symmetry and self-duality. They discussed
wherea,=3 by the symmetry and self-duality of the square various consequences of these assumptions, and presented
boundary. The same symmetry also implies that 3 is an  numerical evidence that the term containing the expoaent
odd function inx and hence that,,=0 for all evenn>0, as is indeed the leading correction term, by showing that the
above.(To see thaff,— 3 is odd, note that for the perfectly behavior ofR (p) for largex (that is, forp+ p.) was better
dual system of bond percolation on a square latfie,; is  fit with such a term than without it. However, the procedure
an odd function ok for all L, includingL=c, and by uni- they used did not allow them to determine the valuewof
versality, systems with other underlying lattices must behaveccurately, because of the numerical difficulty of calculating
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R.(p) precisely for allp. Furthermore, they did not study the ~ (2) Average-probability estimate: Equati¢®) gives
convergence of the other estimates given above. «

Recently[16,17], the present authors have shown that pav(L)zl_L—lle 1[f0(x)+|_—wfw(x)+L_lfl(x)]dX,
guantities such aR (p) can be studied efficiently for afp Xo
by first finding the crossing probabilitR,_,, in a microca- (18)
nonical system of exactly occupied sites, and then convolv-
ing with a binomial distribution to derive results for the cor-
responding canonical system thus:

wherexo=—p.LY” andx; = (1—p.)LY", which are the val-
ues ofx atp=0 and 1, respectively. Noting that, sintgx)

is odd aboutf,(0)=3% and approaches 1 as—=, we have
N

RL(p)=2, ('r\,l

n=0

P'(1-p)" "R, (15 L*l/VJ'leo(x)dx~|_*l’Vx1=1—pc, (19)
Xo
where N=L? for site percolation on a square lattice. The
microcanonical crossing probability is found using an effi-
cient cluster-joining algorithm employing data structures oc
based on trees, and a fast method is employed for checkingpa/(L)=pc+ L*‘”*l’”f f (X)dx+ Lflfl’”f
for percolation on the fly during the progress of the calcula-
tion. (While many of the ideas incorporated in this method

were put forward previously18-23, to the best of our \yhere we have extended the limits of the integralstte.

knowledge, this was the first time that all of these compo—yis result is also implied by Eq40) of Ref. [12], for n

nents were combined in this way, for the purpose of findind_ 1 The order of the next correction depends upon the

R efficiently. In Ref.[16] we studied the function corre- higher-order corrections to E€L3).

sponding toR for the probability of a cluster wrapping (3) Medianp estimate: Equatiof3) gives

around the boundary of a periodic system on a torus. In the

present paper, we describe how that method can be imple- Ttapx+tbol t+exLme+ ... =1, (22)

mented for the crossing of an open system, and we report

results from some large-scale simulations. The results allowhich implies

us to determine accurately the behavior of all of the estimates

above, and to test the theoretical predictions that follow from

Eq. (13). As we will see, the appearance of the “irrelevant”

term in the scaling of some estimates is confirmed, and a

new, more precise value @f is found. (4) Maximum estimate: Equatio(d) gives
The outline of the paper is as follows. In Sec. Il we derive

the expected scaling behavior of the various estimatgs of

assuming the form of Eq13). In Sec. Il we describe our

numerical method, and in Sec. IV we present the results

our calculations. In Sec. V we give our conclusions.

we then get

~ h00dx
(20)

—o0

b
po_5<L>=pc—a—jL**”%O(L*H*l’”). (22)

Bagx+2b,L "1+ (2c,+6Cx)L 0+ --- =0, (23)

O\fvhich implies

c b
pmax(l-): Pe— él_—w—llv_ éL_1_1/V+O(L_2w_1/V).
Il. CONVERGENCE OF ESTIMATES 3 3

(24)
If we assume Eq(13) to be a correct description of the . ] . .

behavior ofR_(p), it is straightforward to deduce the result- (5) Cell-to-cell estimate: Equatiof6) gives
ing convergence of the various estimates gt In the fol- n _ Wyp | ~14 _ o, ..
lowing, we derive the leading correction term for each esti- A1(P~P)L bl T+ Ca(p— o)L
mate, or the two leading terms when their powers are closeto  =ay+a,(p—p.)(L—1)Y"+bo(L—1)"*
each other. o

_ _ tC(Pp—P)(L=1)"" -, (25

(1) The RG fixed point: The relevant terms of Ed) are
. 3 _y which implies
ztaXx+agx®+ .- =p.+xL, (16)
b
which implies (O(L)=p,+ a—OVL*1*1’V+ oLt e~y (26
1
_1 _1)3
Pra(L) = Port Pe™2 a3(pc4 2w Likewise, forp{?) we have
as ay
+O(L™?). @D PR =Pt —— LMoL ),
a(1-2""")

The term in brackets is the value wfthat is the solution to
fo(X)=Ppc. (27)
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Thus, the scaling oprg, Pos, and p... is unaffected to ters have been amalgamated by other sites added between
leading order by the presence of the exponentHowever, them: if they have the same root site they have been amal-
pav and pnax are affected byw to leading order, scaling as gamated, otherwise they have not. Performing this check af-
L=~ slightly slower than predicted in Ref5] (order ter the addition of each site to the lattice, we can detect when
L~171%). Note thatb; does not enter in any of these results, a spanning cluster on thex L open lattice first appears. The
so the leading scaling does not changb;ifis equal to zero, two methods have comparable running times and give com-
as was argued to be the case in R&g]. patible results. The second is somewhat simpler to imple-
ment.

In the third method, which was used for the majority of
the simulations here, we consider Bix L open lattice and

We have performed simulations to test the scaling hypothkeep track of the minimum and maximumandy coordi-
eses above using the algorithm described in Rif§,17. nates for sites in each cluster, updating their values as nec-
Briefly, sites are occupied one by one in random order startessary when clusters are joined. Whep,— Xmin="L—1 for
ing with an empty lattice. Occupied sites form contiguous@ cluster, we know that the cluster spans the lattice in the
clusters, each of which is identified uniquely by the site labehorizontal direction, and similarly for vertical crossing. This
of a chosen single site within the cluster, which we call themethod allows one to check for both crossing events simul-
“root site.” Other (nonrool sites within a cluster possess taneously, and it is also efficient and easy to program. A
pointers that point either directly to the root site, or to otherSimilar method was used in R¢4] for simulations of the
sites within the cluster such that by following a succession ofSing model.
pointers one can get from any site to the root. A newly added Since in the present calculation we are interested only in
site is considered to be a cluster of size 1, which is its owrfhe existence or not of a system-spanning cluster, we can
root site, and bonds are then added between it and any adjalop the simulation once a spanning cluster is detected, as
cent occupied sites. The clusters to which sites at either engP@nning must also occur for all higher valuesnofThis
of such a bond belong are identified by following pointersProduces about a 40% saving in running time. Each simula-
from them to their corresponding root sites, and if the roottion then produces just a single number, the value @it
sites found are different we conclude that two different clus-Which a spanning cluster first appe&os two numbers if we
ters have been joined by the addition of the bond. We reprecheck for spanning in both the horizontal and vertical direc-
sent this by adding a pointer from the root site of one of thelions). Making a histogram of these values over many runs of
clusters to the root site of the other. Smaller clusters aréhe algorithm, we derive an estimate of the probabiRty,
always made subclusters of larger ones, and all pointers fothat the system first percolates when the number of occupied
lowed are subsequently changed to point directly to the roodites reaches. This probability is related to the desired func-
of their own cluster. The net result is an algorithm that carfion R, according toP_ =R ,— R -1, and hence
calculateR, , (and many other observable quantifiésr all
values ofn in average running time which is of order the area n
of the lattice, orO(L?) for a square lattice. Rin= > Pio- (28)

In our previous calculations using this algorithm we mea- n’=0
sured the probability of the existence of a cluster that wraps ] ] )
around the periodic boundary conditions of a toroidal lattice Once theR, , is determinedR, (p), the corresponding func-

In this paper we are interested instead in the existéoce tionin the c_anonlcal _percplatlon e_n_semble, is calculat_ed from
not) of a cluster that spans an open system along one givelRd- (15), with the binomial coefficients for larg8l being
direction. There aréat leas three efficient methods for de- calculated by iterative multiplicatio17]. The estimates
tecting spanning of this kind, two of which are described inPrs. Pos, andp..c for the percolation threshold are then
detail in Ref.[17] and all of which we have used in the €valuated directly according to Eqf), (3), and (6). The
present work. In the first method, we use the same pointe€stimate,p,,, could be found directly by performing a nu-
based trick that we used in R¢L6] to detect wrapping with ~merical integral oveR, (p), but a better method is to use the
periodic boundary conditions, but start out with dn+(1)  following exact formula:

X (L+1) lattice in which one horizontal row of sites is fixed

to be permanently empty and one vertical one is fixed occu- 1

pied. Occurrence of a wrapping cluster in such a system is Pay=1- fo Ru(p)dp

then exactly equivalent to the occurrence of a spanning clus-

Ill. PROCEDURE

ter in the horizontal direction in an open system with dimen- NN 1
sionsL X L. =1- ( )RL,nJ p"(1—p)"""dp
In the second method, two complete rows of sites at the n=0\n 0
top and bottom of an operL2)X (L+2) lattice are fixed 1 N
permanently empty, and two columns lofsites on the left =1-yi1 20 R (29
=

and the right sides of the lattice are fixed occupied. The two
columns of occupied sites form two initial clusters on the
lattice. By following pointers from one site in each of theseUsing Eq.(28) this can also be written directly in terms of
clusters it is then simple to determine whether the two clusP, , as
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TABLE I. Various estimates op. from the simulations I(=7), whereNg is the number of samples, and from exact expressians (
<7). The cell-to-cell estimate isgz_lg for superscript (1) andffg for superscrip(2). Errors in the numerical results are generally in the last

digit quoted.

L Ns Prc pav:<p> Po.s Pec-c Pmax V<(Ap) ) RL(Pc)
2 (exac) 0.61803399 0.53333333 0.54119610 0.57735027 0.22110832 0.5792507
3 (exac} 0.619 26013 0.552 38095 0.559 296 32 0.620 73447 0.580302 37 0.181 37908 0.566 703 6
4 (exac} 0.619 35542 0.564 009 19 0.569 72413 0.61958878 0.584 39952 0.154 834 66 0.555588 4
5 (exac) 0.61809529 0.57114567 0.57581007 0.61350805 0.58675948  0.1358442 0.5475384
6 (exach 0.616 587 09 0.575850 67 0.57970276 0.609 20876 0.588 256 53 0.121512 46 0.541 4670
7 (exach 0.615117 36 0.57911947 0.582 351 30 0.606 07599 0.589 265 61 0.110272 24 0.536 7513
7 1.0x10°°  0.6151180 0.5791204 0.5823519 0.6060812 0.5892655 0.1102720 0.536 749
8 6.0x 10° 0.6137656 0.581486 6 0.584 2394 0.608@14 0.5899755 0.1011925 0.532 998
16 2.0x10° 0.606 902 2 0.5887819 0.589 8858 0.598@28  0.5920104 0.063376 1 0.518 117
32 2.0x10° 0.6016319 0.5914246 0.591 8352 0.594@p5 0.5926026 0.0387203 0.509 535
64 3.0<10° 0.598 1485 0.592 3179 0.592 4657 0.593@13 0.5927391 0.0233379 0.504 890
128 1.0<10°  0.5959837 0.592 608 7 0.592 661 3 0.592@52  0.5927577 0.0139703 0.502 476
256 4.0<10°  0.5946742 0.5927013 0.5927208 0.5928b8  0.5927536 0.008334 3 0.501 24
1 n N 15, giving a resolution of 2™ on the estimate fop.. Thus,
Pa=1-N771 > 2 Pin=ro1 2 "Pin. R, (p) is evaluated at only a finite set of points, and this adds
n=0n'=0 n=0 (30 some uncertainty to the calculation, beyond the basic statis-

which means that the canonical average position of the pe
colation threshold i®N/(N+ 1) times the microcanonical av-
erage (IN)>nP_ , and no convolution is necessary to fin

its value. Higher moments of the distributidR’ can be

tical error. Given that our microcanonical method is also
fnuch faster than binary search due to its efficient cluster
merging and percolation checking, there seems no reason to

d use other methods when quantities sucRa) are desired

for a range of values qgb.

found in a similar fashion. For the second moment, for ex-

ample, we have

n=0

( 2>=f1 ’R((p)d =1—;§N‘, (n+1)R
p 0 p L p p (N+1)(N+2) L,n

1 N

:m nZO n(n+1)P,_‘n. (31)

To find whereR/' (p) =0 for the estimat,,.,, we make use
of the following result:

NN
R’L’(p)=n§=lo ( n)n”(l—p)N“RL,n
n(n—1) B 2n(N—n) (N—-n)(N—-n+1)
p? p(1—p) (1-p)?
(32

The above three results, along with E45), demonstrate
further the advantage of calculatif®) (p) through the mi-
crocanonicaR_,: quantities such aR, (p) andR/(p) can

be calculated exactly at g, while p,, can be found without
introducing any error through numerical integration.

IV. RESULTS OF SIMULATIONS

Simulations were carried out for L
=7,8,16,32,64,128,256. The results are given in Table I,
along with exact results from exhaustive enumeration of
states for small systems with<7. The polynomials from
which the exact results are derived are listed in the Appen-
dix. We conducted the simulations =7 to compare nu-
merical and exact results, and the agreement was found to be
perfect within the statistical accuracy of the simulations. The
pseudorandom number generator used for the simulations
was the four-tap feedback generator knowmRaE90r GFSR4
[25].

An error analysis for the simulation data indicates that the
estimates ofp. are accurate to about six figures, and the
values ofR(p.) are accurate to four or five figures, as indi-
cated in the table. We also simulated 2 40" samples for a
system of sizeL =512, but the statistical accuracy of the
results was insufficient to add anything to the present analy-
sis.

Consider the results for the estimatg,,, whose conver-
gence is nonmonotonic. Its value starts belpwfor small
systems, then goes abopgas the lattice size passes through
L=100, and presumably convergesg from above ad

In the more familiar binary search method for finding —«. Indeed, according to Eq24), ppyax has two correction
R.(p) [1], p is increased or decreased to narrow the boundserms with closely spaced scaling exponentsy— 1/v
on one’s estimate of the position of the percolation point for~—1.65 (using the value ok from below and —1—1/v
a given realization of the disorder. This search process iss —1.75; it appears that these terms contribute more or less

stopped after some number of iterations, typically about

equally in the range of system sizes that we are considering.
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FIG. 2. Plot of Pgstapa)/(1+a) vs L™ wherea=1

FIG. 1. Absolute values of the pairwise slope§in|pe(L)  —2 .

—pe| —In|Pes(3L) — pcl1/In 2, plotted as a function.~“, for the
estimateo (L) (circles, pa(L) (triangles, andp{Z(L) (squares  yalue there has little effect on the determinationeofrom
with p.=0.592 746 2. the intercept of,(L).

We can also compare the coefficients for the leading be-
The observed behavior is consistent with E24) if b,<0,  havior of estimates to their predicted values. For example,
c,>0, and the two are roughly comparable in magnitudethe predicted value of the leading coefficient foys, Eq.
[Note thata;<0 becausd(x) is at a maximum ax=0.] It (22), isbg/a;=0.423, using values df,= 0.322(see below

is not possible to fit the exponents of E@4) reliably to ~ and @;=0.765[5,12]. This compares favorably with the
these data. value measured here of 0.436. And fulf}, the coefficient

-1l
The rest of the estimates are all monotonic, and lead oM Ed. (27), bo/[a;(1-2 ™1, should have a value of
reasonably straight lines when viewed on a logarithmic plot-04, Which compares favorably with the measured value
of | pes— Pe| VS L, reflecting the leading power-law behavior. 1.02. Note that if we take the linear combination of these two

To provide a more sensitive representation of our data, w stimategwhose finite-size corrections are opposite in sign

) 1 o1l : y
calculate successivénegative slopes between pairs of (PostaPco)/(1+a), wherea=1-2""" the leading cor

: f _ _ rection terms are predicted to cancel one another and the
points folr systems of sizesl and. L. [Irﬂ Pes(L) el combination should have leading scaling bf 1<~
—In[pes(3L) —pc[1/In2 for the various estimatepes(L).  —| =265 And indeed this combination is seen to converge
For these calculations we used the vajue=0.5927462  yery quickly in our numerical results, with values 0.592 698,
given in Ref.[16], which is consistent with the data pre- 0,592 739, 0.592 745, and 0.592 746 for 32, 64, 128, and
sented here, but of somewhat higher precision than thesgse, respectively. The plot of these figureslvs>® given in
data would yield. Fig. 2 shows linear behavior as expected, with an intercept at

In Fig. 1 we show the plots of the successive slopes fop=0.592 7464(5), consistent with the best current figure of
estimategg 5(L), pgg(L), andp,/(L), as a function oL = ¢ p.=0.592 74@(1) [16]. Thus, by taking a combination of
with @=0.9. According to Egs(22) and(27), both of these estimates, we can improve the convergence rate for the open
estimates should converge with a leading exponent-@f  system to the point where it becomes competitive with that
—1/v and a next-order term of order1— 1/v—w, which  of the periodic system, in which the estimate with the best
implies that the successive slopes should fall on a straightonvergence has the exponent1/4[16]. This cancellation
line when plotted as a function &f” “, with an intercept of of leading-order corrections between the two terms is ex-
1.75. This behavior is indeed seen in Fig. 1, with measuregected to be universal.
intercepts of 1.754 and 1.763, respectivéote that agree- The results forprg—p. and the standard deviation
ment is not highly sensitive to the value @f, if the data = /((p)?)=(p?)—(p)® converge to zero with the pre-
were plotted as a function df 2, the fit to linearity would  dicted exponent—1/v=—0.75 [see Eq.(8)], as demon-
not be much worsg. strated in Fig. 3, where we plot th@egative successive

The successive slopes fpg(L) do not fall on as good a slopes as a function of I/ The latter represents expected
straight line as the other estimates, presumably because théggher-order scaling of these estimates. The intercepts of
exponents— w—1/v and —1—1/v of the two leading terms these curvegwhich give the negative of the scaling expo-
in convergence are closely spadsde Eq.(20)]. Extrapola- nenj are at 0.749 and 0.763, respectively. The prediction that
tion to L=oo is still possible however, and we find an inter- o converges as ~*" is given in Ref[12] and also follows
cept at 1+ w=1.65+0.02, clearly different from the value from the equations of Sec. Il.
of 1.75 for the other estimates, implyirg=0.90+0.02, the We also show in Fig4 a plot of the type introduced by
figure we have used above. The error bars are smaller thaBtauffer, in whichpgg is shown as a function af, allowing
the size of the symbols for all exceptL =256, as shown in  extrapolation to infinite system size to be carried out without
the plot. Althoughw is used in the abscissa of Fig. 1, its knowledge of the value of [1]. This plot shows nearly
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08 ——— — TABLE Il. Exact results forR, (p) expressed as polynomials in
[ p, forL=2 to 7.
07 r L RL(p)
& F 2 2p2_ p4
< 3 3p3+4p*—6p°—9p®+ 14p”— 6p2+p°®
0s | 4 4p*+12p5—6p°®—28p”— 22p%+ 48p°+ 66p1°— 10801!
I + 1Op12+ 44p13_ 20p14+ plG
5  5p°+24p°+12p’—62p®—92p7—41p'%+274p™ 1+ 42p*
I +474p"— 1336+ 17205
o PR L 16 17 18 19 20
o 0.02 0.04 0.06 0.08 n 12?9321422&?22 " 21)8:11)5;2)3:128213 p 4261
L 6 6p8-+40p”+ 60p®— 80p°— 2481°— 276p 1+ 201p*?

FIG. 3. Absolute values of the pairwise slopes of
—[In|pra(L) — pc| — IN|pra(L/2)— p¢|1/In 2, with p,=0.592 746 2
(triangles, and of the standard deviation of the distribution pof
(circles, plotted as a functioh. . The lines are fit through all the
points.
linear behavior, with the last three points 64, 128, and 7
256) well fit by the linepgg=0.592 746 5+ 0.231 512 with
R2=0.9999979. The intercept is in excellent agreement
with the known value op, although this high agreement is
perhaps somewhat fortuitous, considering the slow conver-
gence of the RG estimate.

The last column of Table | gives the crossing probability
at p.. The considerations in Sec. Il imply thet (p;) ~1/2
+bg/L with no contributions from the irrelevant scaling
variable [5,12,26, and indeed an analysis of these data
shows good agreement with the behaviBf(p.)=1/2
+0.320L—0.44L%+ - - -, yielding by=0.320+0.001. This
is nearly identical to the value 0.319 given in Réf] (where

+944p3— 298+ 23995 2426

+5480— 24 84%'+ 38 68%1°— 754+ 515 642

—117 312%2-133312p%

+ 588 639p%*— 608 464p25+ 683 6225+ 420 396p?7

— 455 910p?8+ 235 816p%°— 62 454

+ 3200031+ 321 20%2— 102403+ 120p3*— p3°
7p’+60p8+ 150p0°— 18p*°— 490p*!— 885 12— 318 *®

+ 1464+ 30561°— 15866

+ 558417 65208+ 43 15 *°— 153 589p%°

+ 128 504p?1— 407 257p%*+ 127 828 $*°

—124 319 $%*+219 537 4$?°>— 698 363 p*°

+827 153 §%’— 699 066 P28+ 177 413 3p*°

—113444 3p3°—552 949 29531+ 916 429 05>

+671521 943374 25557

+557 174 473%— 463 108 229+ 225 338 948%"

—471 353 6@%°— 129506 9p*°

+111 688 49%9— 172 480 4**— 106 730 H*?

+ 689 318p*3— 196 565p**+ 34 845*°

—4391p%6+ 422047— 28p*8+ p*°

larger systems, but with lower statistics, were genejaad

the value 0.3+0.01 of Ref.[12] . adjustingw to get the best linear regression, we find an ex-
Besides the results presented here, the data on the micrggjjent fit (R?=0.999 985) with w=0.8891, a,=0.7616

canonical crossing functions can be used to study addition%lndcl=0.3555. This value ob is consistent with the results
properties ofik(p). For exam_pl_e, the derivativ’(p) May — above. The value of; is slightly below the valuea;

be calculated.by aformula similar to E(($2)1f}nd according =0.765 found previously5,12]; this difference can be at-
to Eq._(wlS) this quantity shc_)uld_ scale ds _'3 (pc)=_a1 tributed to the extrapolation to infinity done hefer ex-
+ciL™ ¢ atpg EV\ll;th no contnpunorl of ordet. " ). Plotting ample, atL=256, the value ofL Y"R’(p,) is equal to
the results ol ~*"R’(p.) against.~* for L =16-256, and 0.7844. Many other results can be extracted in a similar
fashion once we have numerical data for the microcanonical
R

0610 |

L V. CONCLUSIONS
0.605 |

We have studied the finite-size scaling of estimates of the
percolation thresholg, derived from the crossing probabil-
ity R (p) for site percolation on the square lattice. Our nu-
merical results confirm that different estimates converge to
p. with a variety of scaling exponents as predicted by the
scaling theory developed in Ref$§,10,17. In particular, we
have shown that the average threshold estinmiecon-
verges with a nontrivial exponeht “~ Y, whose origins lie
in the irrelevant variables in the renormalization-group treat-

FIG. 4. “Stauffer plot” of prg vs o= {(Ap)?); the line is fit ~ ment of the problem, and our results for this estimate provide
through the leftmost three points and its equation is given in theds with a direct measurement of that exponent. We tind
text. =0.90+02, somewhat higher than the value of about 0.85

Pra

0600 |

0595 |

0.00 0.02 0.04 0.06 0.08
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TABLE Ill. Exact results forR, (p,q) expressed as polynomials mandq=1-p, forL=2 to 7.

L RL(plq)

2 2p2g?+4pq+p*

3 3p%q°®+22p*q®+59°q*+67p°g>+36p’q*+9p®q+ p°

4 4p*q'?+60p°qt+3900°q O+ 1452 q° + 34160°q° + 52720°q" + 5414%° + 3736 'g°

+ 1752 %q*+ 5600 %+ 1200 g2+ 16p*°q + p*®

5 5p5q2%+ 124p%q %+ 141807 q*8+ 995&8q"+ 48 171p°q 5+ 170 390 %15+ 456 051 1g 4
+942 07 %+ 151 813 $*%q*?+ 191 788 p*‘g**+ 190 335 59 °+ 148 630 $%°
+915 64D 0%+ 446 53%8q" + 172 749*%°+ 52 871p?%° + 12 650 ' + 230?%°
+ 30q)23q2+ 25p24q + p25

6 6p%q°°+ 220p7q?°+ 383828+ 42 20(p°q?’+ 330 86 %5+ 196 683 D5+ 922 005 p1g*
+349 865 6@%9%3+ 109 429 249 g%+ 285 726 95p*°q> 1+ 628 339 894620
+117 065 617 @*7q*°+ 185 451 985 p%q'8+ 250 279 719 p*°q 7+ 287 954 750 p°q6
+282 477 386 g5+ 236 295 381 p?%q*+ 168 645 572 p2°q*3+ 102 808 519 p'q*?
+536 110 144251+ 239 427 49821+ 915 847 20?7q°+ 299 432 39?5
+832 262 P2°q7 + 194 684 D% %+ 376 99D319°+ 58 905 °%q* + 714 *3q> + 630p>g?
+ 36p35q + p36

7 7p’q*+ 354p8q*+ 8631°q*0+ 135 54D %%+ 153 891 $ g8+ 134 800 3p 2>’
+948 508 4p*%q %6+ 551 119 22493+ 269 732 922 p*°%q*+ 112 862 456 2969
+408 335 758 1873+ 128 871 332 816831+ 357 226 485 246'%q°°
+874 366 412 6998°°92°+ 189 748 991 30287'q?%+ 366 204 287 877p%%q%"
+ 629 886 980 32813>%%5-+ 966 956 844 7297%q?5+ 132 585 068 442 §%°q>*
+162 424 120 333 38°%q 23+ 177 768 801 987 987 'q?+ 173 788 593 629 7#%q>*
+151 728 375 886 §7°%2°+ 118 300 132 565 687’1+ 823 920 775 762138
+512 857 828 295@°°q "+ 285 516 297 7558°%q 5+ 142 265 267 82712%%q*°
+ 634 745 588 1501%°q*+ 253 562 760 568°°q" 3+ 905 980 448 58%'q%+ 288 886 115 9% ™!
+818 938 813 8%%1°+ 205 207 815 p*%q°+ 450 849 378*'q°+ 858 971 9p*%q’
+139 838 1§*%q°+ 190 688 $*q°+ 211 87H*°q* + 18424%%q>+ 1176*79?
+ 490+ p*°

found previously{ 13] but consistent with théwide) bounds  was seen but not fully understood or recognized. For ex-
set by series studig44,15. Our result is in good agreement ample, Reynoldst al.[2] derived an estimate ¢f, which is
with a renormalization-group result @=0.915 found by equivalent to oump,, from numerical data for the one-way
Burkhardt [27,32. More extensive simulations could be crossing probability, which they denotd}. Assuming this
done to givew to higher precision. estimate to scale as E(p), they plotted their results against
Of the estimates considered hepg, is the only one that | ~1» (their Fig. 13. The resulting plot is seen to fall on a
shows the effect of the irrelevant exponent clearly. The estinearly vertical line, consistent with higher-order behavior.
matespo,s andp..c are confirmed to converge 85, s Fitting their data with the supposdd ¥ scaling, they de-

proposed pr_ev_lously[S]. The maximum- estimat®max IS qyced a best estimate pf=0.5931 in the large system-size
fou_nd to exhibit nonmonotonic behavior, w_h|ch can be €X-imit. If however one assumes instead the®~1* scaling
Ellglsne?j Sggcecgrgfs(g':g&sfit\fﬁe:n dcgr;eftic/): terms Wlthpredicted by the theory10,12, the intercept of their data
The numerical results reported here were found using %ecome;pc—O.SfQﬁ?, Whlch is much closer to the current
microcanonical simulation method, which allows one to cal- est estimate of this quantity. . . .
culateR, (p) easily for anyp [16,17]. The various estimates Yonezawaet al. [6] plott-ed a qtj?/rgnty essentially equiva-
can then be found quickly to any desired degree of precisiofft 10 0UrPos as a function oflL ==, and found apparent
by applying appropriate formulas, Eq4)—(7). This method ~agreement with thl_sle_lisumécdgpepdenp(;hew Figs. 7 and
proves to be particularly advantageous for the estimpaje 8- The expected. " behavior is evidently too weak to
since this estimate depends on knowRg(p) for all values ~ be distinguished fron.~** within the errors on their nu-
of p, the determination of which by most other methods re-merical data. Similarly, Hiet al. [28] believed the cell-to-
quires a great deal of work. From the microcanonical datagell estimatep{) to be insensitive td; again, the precision
pav can be found without any calculational bias using Eg.of their work did not allow them to observe the higher-order
(30). scaling predicted by Eq27).
Having characterized the convergence rates of our various It should be emphasized that the convergence behavior
threshold estimates, one can go back to older literature andiscussed here is specific to a two-dimensional system with a
find many instances where an anomalous rate of convergensguare or rhomboidal open boundary, with the crossing de-
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fined as a path from one specified side to its opposite. Belattice of sizeL XL, for crossing from one given side of the
cause of the symmetry of this system, some terms cancel ougquare to the opposite sideuch as left to right The results
allowing various higher-order corrections to become domifor L=2 to 5 were given previously by Reynolés al. [2].
nant. For different boundariésuch as rectangular oneand  Those forL =6 andL =7 were calculated previously for the
for higher-dimensional systems, the behavior will generallywork reported in Ref|[5], but reported in a different format
be different. In those cases, most of our estimates will scalfresults were given foR, (p) rather tharR, (p) itself]. From

as the conventiondl ~ ', except perhaps the estimaigs,  the results here, one can with reasonable ease calculate the
and pg_. (To employ the latterR. must be known, but we various estimates op. given in Table | using a symbolic
have exact values only for rectangular and conformally resmathematics program such &PLE Or MATHEMATICA. A
lated two-dimensional systen|29].) The study of these file containing these polynomials in forms readable by such
other systems is a subject for future research. programs is available by email from the authors.

Another approach to measuring, is to use periodic An alternative way to represent these results is as a series
rather than open boundary conditions. A partially periodicin p"g"~", whereq=1—p andN=L2. The transformation
system in two dimensions is a cylinder, and crossing in thisan be achieved by substitutipg-1/(1+r), multiplying by
system was studied in RdfL2]. The fully periodic rectangle (1+r)NpN, expanding, and replacing—q/p. The results
is a torus, and the criterion of crossing is replaced by criterig@re given in Table III.
involving the different topologically distinct ways in which This is also the form that Reynold2] used in their series
clusters can wrap around the boundafi&g]. (Some authors for Ry(p) to Rs(p). From the present point of view, these
[11,24,3] have also considered the percolation criterion inseries are interesting because they are precisely in the form
which a cluster has the full dimension of the lattice along atof Eq. (15), so that the coefficiera, , of p"g™~"in R_(p,q)
least one axis but does not necessarily wrap aroundRef.  above is related to the microcanonical crossing probability
[17] we showed that many estimatesmfon the torus con- R , simply by
verge a factorL faster than the estimates for the open
square—some converging as fastlas . CLn  CLnn!(N—n)!

In conclusion, it is clear that the convergence of estimates Rin= M I NTE (A1)
for the critical occupation probabilitp, in percolation sys-

n
tems is highly dependent upon the nature of the estimate, agat js, ¢, |, represents the number of configurations with
well as the shape and boundary conditions of the system, angtpied sites that satisfy the crossing criterion, out of a total

that the shrewd use of this fact'can allow one to make verys (w) possible configurations of theoccupied sites among
accurate estimates @f; and scaling exponents. the N=L2 sites of the lattice. For example, of the

16!/(6!10!)=8008 possible configurations of 6 occupied

ACKNOWLEDGMENTS sites on a & 4 lattice, exactly 390 are percolating by cross-
The authors thank L. N. Shchur and A. Aharony for com-ing in one directior{from the third term inR,(p,q)], yield-
ments and corrections to the manuscript. ing a microcanonical  probability R,s=390/8008

=0.04870Q .. ..Likewise, forn=16 occupied sites on the
4X 4 system, there is exactly one percolating system out of
one total system.

In Table Il we give the exact expressions for the crossing Thus, the polynomials given in Table Ill represent the
probability functionR (p) for site percolation on a square microcanonicaR_ , for L up to 7.
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