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Spread of epidemic disease on networks

M. E. J. Newman
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The study of social networks, and in particular the spread of disease on networks, has attracted considerable
recent attention in the physics community. In this paper, we show that a large class of standard epidemiological
models, the so-called susceptible/infective/removed~SIR! models can be solved exactly on a wide variety of
networks. In addition to the standard but unrealistic case of fixed infectiveness time and fixed and uncorrelated
probability of transmission between all pairs of individuals, we solve cases in which times and probabilities are
nonuniform and correlated. We also consider one simple case of an epidemic in a structured population, that of
a sexually transmitted disease in a population divided into men and women. We confirm the correctness of our
exact solutions with numerical simulations of SIR epidemics on networks.
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I. INTRODUCTION

Many diseases spread through human populations by
tact between infective individuals~those carrying the dis
ease! and susceptible individuals~those who do not have th
disease yet, but can catch it!. The pattern of these diseas
causing contacts forms a network. In this paper we inve
gate the effect of network topology on the rate and pattern
disease spread.

Most mathematical studies of disease propagation m
the assumption that populations are ‘‘fully mixed,’’ meanin
that an infective individual is equally likely to spread th
disease to any other member of the population or subpo
lation to which they belong@1–3#. In the limit of large popu-
lation size this assumption allows one to write down nonl
ear differential equations governing, for example, numb
of infective individuals as a function of time, from whic
solutions for quantities of interest can be derived, such
typical sizes of outbreaks and whether or not epidemics
cur. ~Epidemics are defined as outbreaks that affect a n
zero fraction of the population in the limit of large syste
size.! Epidemic behavior usually shows a phase transit
with the parameters of the model—a sudden transition fr
a regime without epidemics to one with. This transition ha
pens as the ‘‘reproductive ratio’’R0 of the disease, which is
the fractional increase per unit time in the number of infe
tive individuals, passes though one.

Within the class of fully mixed models much elaboratio
is possible, particularly concerning the effects of age str
ture in the population, and population turnover. The cruc
element however that all such models lack is network top
ogy. It is obvious that a given infective individual does n
have equal probability of infecting all others; in the re
world each individual only has contact with a small fracti
of the total population, although the number of contacts t
people have can vary greatly from one person to another.
fully mixed approximation is made primarily in order to a
low the modeler to write down differential equations. F
most diseases it is not an accurate representation of real
tact patterns.

In recent years a large body of research, particula
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within the statistical physics community, has addressed
topological properties of networks of various kinds, fro
both theoretical and empirical points of view, and studied
effects of topology on processes taking place on those
works @4,5#. Social networks@6–9#, technological networks
@10–13#, and biological networks@14–18# have all been ex-
amined and modeled in some detail. Building on insig
gained from this work, a number of authors have pursue
mathematical theory of the spread of disease on netwo
@19–24#. This is also the topic of the present paper, in whi
we show that a large class of standard epidemiological m
els can be solved exactly on networks using ideas dra
from percolation theory.

The outline of the paper is as follows. In Sec. II we intr
duce the models studied. In Sec. III we show how perco
tion ideas and generating function methods can be use
provide exact solutions of these models on simple netwo
with uncorrelated transmission probabilities. In Sec. IV w
extend these solutions to cases in which probabilities
transmission are correlated, and in Sec. V to networks re
senting some types of structured populations. In Sec. VI
give our conclusions.

II. EPIDEMIC MODELS AND PERCOLATION

The mostly widely studied class of epidemic models, a
the one on which we focus in this paper, is the class
susceptible/infective/removed or SIR models. The origi
and simplest SIR model, first formulated~though never pub-
lished! by Lowell Reed and Wade Hampton Frost in th
1920s, is as follows. A population ofN individuals is divided
into three states: susceptible~S!, infective ~I!, and removed
~R!. In this context ‘‘removed’’ means individuals who ar
either recovered from the disease and immune to further
fection, or dead.~Some researchers consider the R to sta
for ‘‘recovered’’ or ‘‘refractory.’’ Either way, the meaning is
the same.! Infective individuals have contacts with random
chosen individuals of all states at an average rateb per unit
time, and recover and acquire immunity~or die! at an aver-
age rateg per unit time. If those with whom infective indi
viduals have contact are themselves in the susceptible s
©2002 The American Physical Society28-1
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then they become infected. In the limit of largeN this model
is governed by the coupled nonlinear differential equatio
@1#:

ds

dt
52b is,

di

dt
5b is2g i ,

dr

dt
5g i , ~1!

wheres(t), i (t), andr (t) are the fractions of the populatio
in each of the three states, and the last equation is redun
sinces1 i 1r 51 necessarily at all times. This model is a
propriate for a rapidly spreading disease that confers im
nity on its survivors, such as influenza. In this paper we w
consider only diseases of this type. Diseases that are end
because they propagate on time scales comparable t
slower than the rate of turnover of the population, or beca
they confer only temporary immunity, are not well repr
sented by this model; other models have been developed
these cases@3#.

The model described above assumes that the populati
fully mixed, meaning that the individuals with whom a su
ceptible individual has contact are chosen at random fr
the whole population. It also assumes that all individu
have approximately the same number of contacts in the s
time, and that all contacts transmit the disease with the s
probability. In real life none of these assumptions is corre
and they are all grossly inaccurate in at least some case
the work presented here we remove these assumptions
series of modifications of the model.

First, as many others have done, we replace the ‘‘fu
mixed’’ aspect with a network of connections between in
viduals @19–28#. Individuals have disease-causing conta
only along the links in this network. We distinguish he
between ‘‘connections’’ and actual contacts. Connections
tween pairs of individuals predispose those individuals
disease-causing contact, but do not guarantee it. An indiv
al’s connections are the set of people with whom the in
vidual may have contact during the time he or she
infective—people that the individual lives with, works with
sits next to on the bus, and so forth.

We can vary the number of connections each person
with others by choosing a particular degree distribution
the network.~Recall that the degree of a vertex in a netwo
is the number of other vertices to which it is attached.! For
example, in the case of sexual contacts, which can com
nicate sexually transmitted diseases, the degree distribu
has been found to follow a power-law form@8#. By placing
the model on a network with a power-law degree distribut
we can emulate this effect in our model.

Our second modification of the model is to allow th
probability of disease-causing contact between pairs of in
viduals who have a connection to vary, so that some p
have higher probability of disease transmission than othe

Consider a pair of individuals who are connected, one
whom i is infective and the otherj susceptible. Suppose tha
the average rate of disease-causing contacts between th
r i j , and that the infective individual remains infective for
time t i . Then the probability 12Ti j that the disease willnot
be transmitted fromi to j is
01612
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12Ti j 5 lim
dt→0

~12r i j dt !t i /dt5e2r i j t i, ~2!

and the probability of transmission is

Ti j 512e2r i j t i. ~3!

Some models, particularly computer simulations, use d
crete time steps rather than continuous time, in which c
instead of taking the limit in Eq.~2! we simply setdt51,
giving

Ti j 512~12r i j !
t i, ~4!

wheret is measured in time steps.
In generalr i j andt i will vary between individuals, so tha

the probability of transmission also varies. Let us assu
initially that these two quantities are independent identica
distributed~iid! random variables chosen from some app
priate distributionsP(r ) and P(t). ~We will relax this as-
sumption later.! The rate r i j need not be symmetric—th
probability of transmission in either direction might not b
the same. In any case,Ti j is in general not symmetric be
cause of the appearance oft i in Eqs.~3! and ~4!.

Now here is the trick: becauser i j andt i are idd random
variables, so isTi j , and hence thea priori probability of
transmission of the disease between two individuals is s
ply the averageT of Ti j over the distributionsP(r ) and
P(t), which is

T5^Ti j &512E
0

`

dr dt P~r !P~t! e2r t ~5!

for the continuous time case or

T512E
0

`

dr (
t50

`

P~r !P~t! ~12r !t ~6!

for the discrete case@23#. We callT the ‘‘transmissibility’’ of
the disease. It is necessarily always in the range 0<T<1.

Thus the fact that individual transmission probabiliti
vary makes no difference whatsoever; in the population a
whole the disease will propagate as if all transmission pr
abilities were equal toT. We demonstrate the truth of thi
result by explicit simulation in Sec. III E. It is this result tha
makes our models solvable. Cases in which the variabler
andt are not idd are trickier, but, as we will show, these a
sometimes solvable as well.

We note further that more complex disease transmiss
models, such as SEIR models in which there is an infect
but-not-infective period~E!, are also covered by this forma
ism. The transmissibilityTi j is essentially just the integrate
probability of transmission of the disease between two in
viduals. The precise temporal behavior of infectivity a
other variables is unimportant. Indeed the model can be g
eralized to includeany temporal variation in infectivity of
the infective individuals, and transmission can still be rep
sented correctly by a simple transmissibility variableT, as
above.
8-2
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SPREAD OF EPIDEMIC DISEASE ON NETWORKS PHYSICAL REVIEW E66, 016128 ~2002!
Now imagine watching an outbreak of the disease, wh
starts with a single infective individual, spreading across
network. If we were to mark or ‘‘occupy’’ each edge in th
graph across which the disease is transmitted, which hap
with probabilityT, the ultimate size of the outbreak would b
precisely the size of the cluster of vertices that can
reached from the initial vertex by traversing only occupi
edges. Thus, the model is precisely equivalent to a b
percolation model with bond occupation probabilityT on the
graph representing the community. The connection betw
the spread of disease and percolation was in fact one o
original motivations for the percolation model itself@29#, but
seems to have been formulated in the manner presented
first by Grassberger@30# for the case of uniformr andt, and
by Warrenet al. @23,24# for the nonuniform case.

In the following section we show how the percolatio
problem can be solved on random graphs with arbitrary
gree distributions, giving exact solutions for the typical s
of outbreaks, presence of an epidemic, size of the epide
~if there is one!, and a number of other quantities of intere

III. EXACT SOLUTIONS ON NETWORKS WITH
ARBITRARY DEGREE DISTRIBUTIONS

One of the most important results to come out of emp
cal work on networks is the finding that the degree distrib
tions of many networks are highly right skewed. In oth
words, most vertices have only a low degree, but there a
small number whose degree is very high@5,7,11,31#. The
network of sexual contacts discussed above provides one
ample of such a distribution@8#. It is known that the presenc
of highly connected vertices can have a disproportionate
fect on certain properties of the network. Recent work s
gests that the same may be true for disease propagatio
networks@21,32#, and so it will be important that we incor
porate nontrivial degree distributions in our models. As
first illustration of our method therefore, we look at a simp
class of unipartite graphs studied previously by a variety
authors@33–42#, in which the degree distribution is spec
fied, but the graph is in other respects random.

Our graphs are simply defined. One specifies the deg
distribution by giving the properly normalized probabilitie
pk that a randomly chosen vertex has degreek. A set of N
degrees$ki%, also called a degree sequence, is then dra
from this distribution and each of theN vertices in the graph
is given the appropriate numberki of ‘‘stubs’’—ends of
edges emerging from it. Pairs of these stubs are then ch
at random and connected together to form complete ed
Pairing of stubs continues until none are left.~If an odd
number of stubs is by chance generated, complete pairin
not possible, in which case we discard oneki and draw an-
other until an even number is achieved.! This technique guar-
antees that the graph generated is chosen uniformly at
dom from the set of all graphs with the selected deg
sequence.

All the results given in this section are averaged over
ensemble of possible graphs generated in this way, in
limit of large graph size.
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A. Generating functions

We wish then to solve for the average behavior of grap
of this type under bond percolation with bond occupati
probabilityT. We will do this using generating function tech
niques@43#. Following Newmanet al. @36#, we define a gen-
erating function for the degree distribution thus

G0~x!5 (
k50

`

pkx
k. ~7!

Note thatG0(1)5(kpk51 if pk is a properly normalized
probability distribution.

This function encapsulates all of the information about
degree distribution. Given it, we can easily reconstruct
distribution by repeated differentiation

pk5
1

k!

dkG0

dxk
ux50 . ~8!

We say that the generating functionG0 ‘‘generates’’ the dis-
tribution pk . The generating function is easier to work wi
than the degree distribution itself because of two cruc
properties.

Powers. If the distribution of a propertyk of an object is
generated by a given generating function, then the distri
tion of the sum ofk over m independent realizations of th
object is generated by themth power of that generating func
tion. For example, if we choosem vertices at random from a
large graph, then the distribution of the sum of the degree
those vertices is generated by@G0(x)#m.

Moments. The mean of the probability distribution gene
ated by a generating function is given by the first derivat
of the generating function, evaluated at 1. For instance,
mean degreez of a vertex in our network is given by

z5^k&5(
k

kpk5G08~1!. ~9!

Higher moments of the distribution can be calculated fro
higher derivatives also. In general, we have

^kn&5(
k

knpk5F S x
d

dxD
n

G0~x!G
x51

. ~10!

A further observation that will also prove crucial is th
following. While G0 above correctly generates the distrib
tion of degrees of randomly chosen vertices in our graph
different generating function is needed for the distribution
the degrees of vertices reached by following a randomly c
sen edge. If we follow an edge to the vertex at one of
ends, then that vertex is more likely to be of higher deg
than is a randomly chosen vertex, since high-degree vert
have more edges attached to them than low-degree ones
distribution of degrees of the vertices reached by followi
edges is proportional tokpk , and hence the generating fun
tion for those degrees is
8-3
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(
k

kpkx
k

(
k

kpk

5x
G08~x!

G08~1!
. ~11!

In general we will be concerned with the number of ways
leaving such a vertexexcludingthe edge we arrived along
which is the degree minus 1. To allow for this, we simp
divide the function above by one power ofx, thus arriving at
a new generating function

G1~x!5
G08~x!

G08~1!
5

1

z
G08~x!, ~12!

wherez is the average vertex degree, as before.
In order to solve the percolation problem, we will als

need generating functionsG0(x;T) andG1(x;T) for the dis-
tribution of the number ofoccupiededges attached to a ve
tex, as a function of the transmissibilityT. These are simple
to derive. The probability of a vertex having exactlym of the
k edges emerging from it occupied is given by the binom
distribution (m

k )Tm(12T)k2m, and hence the probability dis
tribution of m is generated by

G0~x;T!5 (
m50

`

(
k5m

`

pkS k
mDTm~12T!k2mxm

5 (
k50

`

pk (
m50

k S k
mD ~xT!m~12T!k2m

5 (
k50

`

pk~12T1xT!k

5G0„11~x21!T…. ~13!

Similarly, the probability distribution of occupied edges lea
ing a vertex arrived at by following a randomly chosen ed
is generated by

G1~x;T!5G1„11~x21!T…. ~14!

Note that, in our notation

G0~x;1!5G0~x!, ~15a!

G0~1;T!5G0~1!, ~15b!

G08~1;T!5TG08~1!, ~15c!

and similarly forG1. @G08(x;T) here represents the derivativ
of G0(x;T) with respect to its first argument.#

B. Outbreak size distribution

The first quantity we will work out is the distribution
Ps(T) of the sizess of outbreaks of the disease on our ne
work, which is also the distribution of sizes of clusters
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vertices connected together by occupied edges in the co
sponding percolation model. LetH0(x;T) be the generating
function for this distribution,

H0~x;T!5(
s50

`

Ps~T!xs. ~16!

By analogy with the preceding section we also defi
H1(x;T) to be the generating function for the cluster of co
nected vertices we reach by following a randomly chos
edge.

Now, following Ref. @36#, we observe thatH1 can be
broken down into an additive set of contributions as follow
The cluster reached by following an edge may be:~1! a
single vertex with no occupied edges attached to it, ot
than the one along which we passed in order to reach it;~2!
a single vertex attached to any numberm>1 of occupied
edges other than the one we reached it by, each leadin
another cluster whose size distribution is also generated
H1. We further note that the chance that any two finite clu
ters that are attached to the same vertex will have an e
connecting them together directly goes asN21 with the size
N of the graph, and hence is zero in the limitN→`. In other
words, there are no loops in our clusters; their structure
entirely treelike.

Using these results, we can expressH1(x;T) in a Dyson-
equation-like self-consistent form thus

H1~x;T!5xG1„H1~x;T!;T…. ~17!

Then the size of the cluster reachable from a randomly c
sen starting vertex is distributed according to

H0~x;T!5xG0„H1~x;T!;T…. ~18!

It is straightforward to verify that for the special caseT51
of 100% transmissibility, these equations reduce to th
given in Ref.@36# for component size in random graphs wi
arbitrary degree distributions. Equations~17! and ~18! pro-
vide the solution for the more general case of finite transm
sibility which applies to SIR models. Once we hav
H0(x;T), we can extract the probability distribution of clus
ters Ps(T) by differentiation using Eq.~8! on H0. In most
cases however it is not possible to find arbitrary derivativ
of H0 in closed form. Instead we typically evaluate the
numerically. Since direct evaluation of numerical derivativ
is prone to machine precision problems, we recomme
evaluating the derivatives by numerical contour integrat
using the Cauchy formula

Ps~T!5
1

s!

dsH0

dxs U
x50

5
1

2p i R H0~z;T!

zs11
dz, ~19!

where the integral is over the unit circle@44#. It is possible to
find the first thousand derivatives of a function without d
ficulty using this method@36#. By this method then, we can
find the exact probabilityPs that a particular outbreak of ou
disease will infects people in total, as a function of th
transmissibilityT.
8-4
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C. Outbreak sizes and the epidemic transition

Although in general we must use numerical methods
find the complete distributionPs of outbreak sizes from Eq
~19!, we can find the mean outbreak size in closed fo
Using Eq.~9!, we have

^s&5H08~1;T!511G08~1;T!H18~1;T!, ~20!

where we have made use of the fact that the generating f
tions are 1 atx51 if the distributions that they generate a
properly normalized. Differentiating Eq.~17!, we have

H18~1;T!511G18~1;T!H18~1;T!5
1

12G18~1;T!
, ~21!

and hence

^s&511
G08~1;T!

12G18~1;T!
511

TG08~1!

12TG18~1!
. ~22!

Given Eqs.~7!, ~12!, ~13!, and~14!, we can then evaluate thi
expression to get the mean outbreak size for any valueT
and degree distribution.

We note that Eq.~22! diverges whenTG18(1)51. This
point marks the onset of an epidemic; it is the point at wh
the typical outbreak ceases to be confined to a finite num
of individuals, and expands to fill an extensive fraction of t
graph. The transition takes place whenT is equal to the criti-
cal transmissibilityTc , given by

Tc5
1

G18~1!
5

G08~1!

G09~1!
5

(
k

kpk

(
k

k~k21!pk

. ~23!

For T.Tc , we have an epidemic, or ‘‘giant componen
in the language of percolation. We can calculate the size
this epidemic as follows. Above the epidemic threshold E
~17! is no longer valid because the giant component is
tensive and therefore can contain loops, which destroys
assumptions on which Eq.~17! was based. The equationis
valid however if we redefineH0 to be the generating func
tion only for outbreaks other than epidemic outbreaks, i
isolated clusters of vertices that are not connected to
giant component. These however do not fill the entire gra
but only the portion of it not affected by the epidemic. Thu
above the epidemic transition, we have

H0~1;T!5(
s

Ps512S~T!, ~24!

whereS(T) is the fraction of the population affected by th
epidemic. Rearranging Eq.~24! for S and making use of Eq
~18!, we find that the size of the epidemic is

S~T!512G0~u;T!, ~25!
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where u[H1(1;T) is the solution of the self-consistenc
relation

u5G1~u;T!. ~26!

Results equivalent to Eqs.~22!–~26! were given previously
in a different context in Ref.@40#.

Note that it is not the case, even aboveTc , that all out-
breaks give rise to epidemics of the disease. There are
finite outbreaks even in the epidemic regime. While this a
pears very natural, it stands nonetheless in contrast to
standard fully mixed models, for which all outbreaks gi
rise to epidemics above the epidemic transition point. In
present case, the probability of an outbreak becoming
epidemic at a givenT is simply equal toS(T).

D. Degree of infected individuals

The quantityu defined in Eq.~26! has a simple interpre
tation: it is the probability that the vertex at the end of
randomly chosen edge remains uninfected during an
demic ~i.e., that it belongs to one of the finite component!.
The probability that a vertex does not become infected
one of its edges is thusv512T1Tu, which is the sum of
the probability 12T that the edge is unoccupied, and th
probability Tu that it is occupied but connects to an uni
fected vertex. The total probability of being uninfected if
vertex has degreek is vk, and the probability of having de
gree k given that a vertex is uninfected ispkv

k/(kpkv
k

5pkv
k/G0(v), which distribution is generated by the func

tion G0(vx)/G0(v). Differentiating and settingx51, we
then find that the average degreezout of vertices outside the
giant component is

zout5
vG08~v !

G0~v !
5

vG1~v !

G0~v !
z5

u@12T1Tu#

12S
z. ~27!

Similarly the degree distribution for an infected vertex
generated by@G0(x)2G0(vx)#/@12G0(v)#, which gives a
mean degreezin for vertices in the giant component of

zin5
12vG1~v !

12G0~v !
z5

12u@12T1Tu#

S
z. ~28!

Note that 12S5G0(u;T)<u, since all coefficients of
G0(x;T) are by definition positive~because they form a
probability distribution! and henceG0(x;T) has only posi-
tive derivatives, meaning that it is convex everywhere on
positive real line within its domain of convergence. Thu
from Eq. ~27!, zout<z. Similarly, zin>z, and hence, as we
would expect, the mean degree of infected individuals is
ways greater than or equal to the mean degree of uninfe
ones. Indeed, the probability of a vertex being infecte
given that it has degreek, goes as 12vk512e2k ln(1/v), i.e.,
tends exponentially to unity as degree becomes large.

E. An example

Let us now look at an application of these results to
specific example of disease spreading. First of all we nee
define our network of connections between individua
8-5
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M. E. J. NEWMAN PHYSICAL REVIEW E66, 016128 ~2002!
which means choosing a degree distribution. Here we
consider graphs with the degree distribution

pk5H 0 for k50

Ck2ae2k/k for k>1,
~29!

whereC, a, andk are constants. In other words, the dist
bution is a power-law of exponenta with an exponential
cutoff around degreek. This distribution has been studie
before by various authors@7,36,37,40#. It makes a good ex-
ample for a number of reasons:~1! distributions of this form
are seen in a variety of real-world networks@7,45#; ~2! it
includes pure power-law and pure exponential distributio
both of which are also seen in various networks@7,11,12,31#,
as special cases whenk→` or a→0; ~3! it is normalizable
and has all moments finite for any finitek.

The constantC is fixed by the requirement of normaliza
tion, which givesC5@Lia(e21/k)#21 and hence

pk5
k2ae2k/k

Lia~e21/k!
for k>1, ~30!

where Lin(x) is thenth polylogarithm ofx.
We also need to choose the distributionsP(r ) and P(t)

for the transmission rate and the time spent in the infec
state. For the sake of easier comparison with computer si
lations we use discrete time and choose both distribution
be uniform, withr real in the range 0<r ,r max andt integer
in the range 1<t<tmax. The transmissibilityT is then given
by Eq. ~6!. From Eq.~30!, we have

G0~x!5
Lia~xe21/k!

Lia~e21/k!
~31!

and

G1~x!5
Lia21~xe21/k!

xLia21~e21/k!
. ~32!

Thus the epidemic transition in this model occurs at

Tc5
Lia21~e21/k!

Lia22~e21/k!2Lia21~e21/k!
. ~33!

Below this value ofT there are only small~nonepidemic!
outbreaks, which have mean size

^s&51

1
T@Lia21~e21/k!#2

Lia~e21/k!@~T11!Lia21~e21/k!2TLia22~e21/k!#
.

~34!

Above it, we are in the region in which epidemics can occ
and they affect a fractionS of the population in the limit of
large graph size. We cannot solve forS in closed form, but
we can solve Eqs.~25! and ~26! by numerical iteration and
hence findS.
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In Fig. 1 we show the results of calculations of the av
age outbreak size and the size of epidemics from the e
formulas, compared with explicit simulations of the SI
model on networks with the degree distribution~30!. Simu-
lations were performed on graphs ofN5100 000 vertices,
with a52, a typical value for networks seen in the re
world, andk55, 10, and 20~the three curves in each pan
of the figure!. For each pair of the parametersa andk for the
network, we simulated 10 000 disease outbreaks each
(r ,t) pairs withr max from 0.1 to 1.0 in steps of 0.1, andtmax
from 1 to 10 in steps of 1. Figure 1 shows all of these resu
on one plot as a function of the transmissibilityT, calculated
from Eq. ~6!.

The figure shows two important things. First, the poin
corresponding to different values ofr max and tmax but the
same value ofT fall in the same place and the two-parame
set of results forr andt collapses onto a single curve. Th
indicates that the arguments leading to Eqs.~5! and ~6! are
correct~as also demonstrated by Warrenet al. @23,24#! and
that the statistical properties of the disease outbreaks re
do depend only on the transmissibilityT, and not on the
individual rates and times of infection. Second, the d
clearly agree well with our analytic results for average o
break size and epidemic size, confirming the correctnes
our exact solution. The small disagreement between sim
tions and exact solution for̂s& close to the epidemic transi
tion in the lower panel of the figure appears to be a finite s
effect, due to the relatively small system sizes used in
simulations.

To emphasize the difference between our results and th
for the equivalent fully mixed model, we compare the po
tion of the epidemic threshold in the two cases. In the c
a52, k510 ~the middle curve in each frame of Fig. 1!, our
analytic solution predicts that the epidemic threshold occ
at Tc50.329. The simulations agree well with this predi
tion, giving Tc50.32(2). By contrast, a fully mixed SIR

FIG. 1. Epidemic size~top! and average outbreak size~bottom!
for the SIR model on networks with degree distributions of the fo
~30! as a function of transmissibility. Solid lines are the exact so
tions, Eqs.~25! and~22!, for a52 and~left to right in each panel!
k520, 10, and 5. Each of the points is an average result for 10
simulations on graphs of 100 000 vertices each with distribution
r andt as described in the text.
8-6
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SPREAD OF EPIDEMIC DISEASE ON NETWORKS PHYSICAL REVIEW E66, 016128 ~2002!
model in which each infective individual transmits the d
ease to the same average number of others as in our net
gives a very different prediction ofTc50.558.

IV. CORRELATED TRANSMISSION PROBABILITIES

It is possible to imagine many cases in which the pro
abilities of transmission of a disease from an infective in
vidual to those with whom he or she has connections are
iid random variables. In other words, the probabilities
transmission from a given individual to others could
drawn from different distributions for different individuals
This allows, for example, for cases in which the probabilit
tend either all to be high or all to be low but are rarely
mixture of the two. In this section, we show how the mod
of Sec. III can be generalized to allow for this.

Suppose that the transmission ratesr for transmission
from an infective individuali to each of theki others with
whom they have connections are drawn from a distribut
Pi(r ), which can vary from one individual to another in an
way we like. Thus thea priori probability of transmission
from i to any one of his or her neighbors in the network

Ti512E
0

`

dr dt Pi~r !P~t! e2r t. ~35!

One could of course also allow the distribution from whi
the timet is drawn to vary from one individual to anothe
although this does not result in any functional change in
theory, so it would be rather pointless. In any case, the
malism developed here can handle this type of depende
perfectly well.

Following Eq.~13!, we note that in the percolation repre
sentation of our model the distribution of the number of o
cupied edges leading from a particular vertex is now gen
ated by the function

G0~x;$Ti%!5
1

N (
i 50

N

(
m50

ki S ki

mDTi
m~12Ti !

ki2mxm

5
1

N (
i 50

N

@11~x21!Ti #
ki. ~36!

And similarly, the probability distribution of occupied edge
leaving a vertex arrived at by following a randomly chos
edge is generated by

G1~x;$Ti%!5

(
i

ki@11~x21!Ti #
ki21

(
i

ki

. ~37!

Clearly these reduce to Eqs.~13! and ~14! whenTi is inde-
pendent ofi.

With these definitions of the basic generating functio
our derivations proceed as before. The complete distribu
of the sizes of outbreaks of the disease, excluding epide
outbreaks if there are any, is generated by
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H0~x;$Ti%!5xG0„H1~x;$Ti%!;$Ti%…, ~38!

where

H1~x;$Ti%!5xG1„H1~x;$Ti%!;$Ti%…. ~39!

The average outbreak size when there is no epidemic is g
by Eq. ~22! as before, and the size of epidemics above
epidemic transition is given by Eqs.~25! and~26!. The tran-
sition itself occurs whenG18(1;$Ti%)51 and, substituting for
G1 from Eq. ~37!, we can also write this in the form

(
i 50

N

ki@~ki21!Ti21#50. ~40!

In fact, it is straightforward to convince oneself that wh
the sum on the left-hand side of this equation is greater t
zero epidemics occur, and when it is less than zero they
not.

For example, consider the special case in which the
tribution of transmission ratesP(r ) depends on the degree o
the vertex representing the infective individual. One cou
imagine, for example, that individuals with a large number
connections to others tend to have lower transmission r
than those with only a small number. In this caseTi is a
function only ofki and hence we have

G0~x;$Tk%!5
1

N (
i 50

N

@11~x21!Tki
#ki

5 (
k50

`

pk@11~x21!Tk#
k ~41!

and

G1~x;$Tk%!5

(
k

kpk@11~x21!Tk#
k21

(
k

kpk

, ~42!

whereTk is the mean transmissibility for vertices of degr
k.

One can also treat the case in which the transmissibilit
a function of the number of connections which the individu
being infected has. If the probability of transmission to
individual with degreek is Uk , then we define

G0~x;$Uk%!5(
k

pkx
k, ~43!

G1~x;$Uk%!5

(
k

kpk@11~xk2121!Uk#

(
k

kpk

, ~44!

and then the calculation of cluster size distribution and
forth proceeds as before.
8-7
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M. E. J. NEWMAN PHYSICAL REVIEW E66, 016128 ~2002!
Further, one can solve the case in which probability
transmission of the disease depends onboth the probabilities
of giving it and catching it, which are arbitrary functionsTk
and Uk of the numbers of connections of the infective a
susceptible individuals.~This means that transmission from
vertex with degreej to a vertex with degreek occurs with a
probability equal to the productTjUk .) The appropriate gen
erating functions for this case are

G0~x;$Tk%,$Uk%!5(
k

pk@11~x21!Tk#
k, ~45!

G1~x;$Tk%,$Uk%!

5

(
k

kpk„11$@11~x21!Tk#
k2121%Uk…

(
k

kpk

,

~46!

and indeed Eqs.~41!–~44! can be viewed as special cases
these equations when eitherTk51 or Uk51 for all k. Note
thatG0(x;$Uk%) andG0(x;$Tk%,$Uk%) are both independen
of $Uk%, since the probability of a randomly chosen infecti
individual having the disease is unity, regardless of the pr
ability that they caught it in the first place.

As a concrete example of the developments of this s
tion, consider the physically plausible case in which t
transmissibility T depends inversely on the degree of t
infective individual:Tk5T1 /k. Then from Eq.~40! we find
that there is epidemic behavior only if

T1.
z

z21
, ~47!

regardless of the degree distribution. SinceT lies strictly be-
tween zero and one however, this is impossible. In netwo
of this type, we therefore conclude that diseases can
spread. Only if transmissibilities fall off slower than in
versely with degree in at least some part of their range
epidemics possible. One plausible way in which this mig
happen is ifTk;(T01k)21. In this case it is straightforward
to show that epidemics are possible for some degree di
butions for some values ofT0.

Other extensions of the model are possible too. One a
of current interest is models incorporating vaccinati
@19,46#. Disease propagation on networks incorporating v
cinated individuals can be represented as a joint site/b
percolation process, which can also be solved exactly@40#,
both in the case of uniform independent vaccination pr
ability ~i.e., random vaccination of a population! and in the
case of vaccination that is correlated with properties of in
viduals such as their degree~so that vaccination can be d
rected at the so-called core group of the disease-carr
network—those with the highest degrees!.
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V. STRUCTURED POPULATIONS

The models we have studied so far have made use
simple unipartite graphs as the substrate for the sprea
disease. These graphs may have any distribution we ch
of the degrees of their vertices, but in all other respects
completely random. Many of the really interesting cases
disease spreading take place on networks that have m
structure than this. Cases that have been studied previo
include disease spreading among children who attend a c
mon school and among patients in different wards of a h
pital between whom pathogens are communicated by per
tetic caregivers@47#. Here, we give just one example o
disease spreading in a population with a very simple str
ture. The example we consider is the spread of a sexu
transmitted disease. The important structural element of
population in this case is its division into men and wome

A. Bipartite populations

Consider then a population ofM men andN women, who
have distributionspj , qk of their numbersj andk of possibly
disease-causing contacts with the opposite sex~connections
in our nomenclature!. In a recent study of 2810 responden
Liljeros et al. @8# recorded the numbers of sexual partners
men and women over the course of a year and found
distributionspj , qk shown in Fig. 2. As the figure shows, th
distributions appear to take a power-law formpj; j am, qk
;ka f , with exponentsam and a f that fall in the range
3.1–3.3 for both men and women@52#. ~The exponent for
women seems to be a little higher than that for men, but
difference is smaller than the statistical error on the meas
ment.!

We will assume that the disease of interest is transmi
primarily by contacts between men and women~true only for
some diseases in some communities@48#!, so that, to a good

FIG. 2. Distributions of the numbers of sexual contacts of m
and women in the study of Liljeroset al. @8#. The histogram is
cumulative, meaning that the vertical axis indicates the fraction
individuals studied who have greater than or equal to the numbe
contacts specified on the horizontal axis. Both distributions appr
mately follow power laws—straight lines on the logarithmic ax
used here. Inset: the bipartite form of the modeled network of c
tacts.
8-8
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SPREAD OF EPIDEMIC DISEASE ON NETWORKS PHYSICAL REVIEW E66, 016128 ~2002!
approximation, the network of contacts is bipartite, as sho
in the inset of Fig. 2. That is, there are two types of vertic
representing men and women, and edges representing
nections run only between vertices of unlike kinds. W
each edge we associate two transmission rates, one of w
represents the probability of disease transmission from m
to female, and the other from female to male. These rates
drawn from appropriate distributions as before, as are
times for which men and women remain infective. Also
before, however, it is only the average integrated probab
of transmission in each direction that matters for our per
lation model, so that we have two transmissibilitiesTm f and
Tf m for the two directions@53#.

We define two pairs of generating functions for the deg
distributions of males and females,

f 0~x!5(
j

pjx
j , f 1~x!5

1

m
f 08~x!, ~48a!

g0~x!5(
k

qkx
k, g1~x!5

1

n
g08~x!, ~48b!

wherem andn are the averages of the two degree distrib
tions, and are related by

m

M
5

n

N
, ~49!

since the total numbers of edges ending at male and fem
vertices are necessarily the same. Using these function
further define, as before

f 0~x;T!5 f 0„11~x21!T…, ~50a!

f 1~x;T!5 f 1„11~x21!T…, ~50b!

g0~x;T!5g0„11~x21!T…, ~50c!

g1~x;T!5g1„11~x21!T…. ~50d!

Now consider an outbreak that starts at a single in
vidual, who for the moment we take to be male. From t
male the disease will spread to some number of females,
from them to some other number of males, so that after th
two steps a number of new males will have contracted
disease, whose distribution is generated by

F0~x;Tm f ,Tf m!5 f 0„g1~x;Tf m!;Tm f…. ~51!

For a disease arriving at a male vertex along a rando
chosen edge we similarly have

F1~x;Tm f ,Tf m!5 f 1„g1~x;Tf m!;Tm f…. ~52!

And one can define the corresponding generating funct
G0 andG1 for the vertices representing the females.

Using these generating functions, we can now calcu
generating functionsH0 andH1 for the sizes of outbreaks o
the disease in terms either of number of women or of num
of men affected. The calculation proceeds exactly as in
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unipartite case, and the resulting equations forH0 andH1 are
identical to Eqs.~17! and ~18!. We can also calculate th
average outbreak size and the size of an epidemic outbr
if one is possible, from Eqs.~22!, ~25!, and~26!. The average
outbreak size for males, for example, is

^s&511
F08~1;Tm f ,Tf m!

12F18~1;Tf m ,Tm f!
511

Tm fTf mf 08~1!g18~1!

12Tm fTf mf 18~1!g18~1!
.

~53!

The epidemic transition takes place whenF18(1;Tm f ,Tf m)
51, or equivalently when

Tm fTf mf 18~1!g18~1!51, ~54!

and hence the epidemic threshold takes the form of a hy
bola in Tm f-Tf m space,

Tm fTf m5
1

f 18~1!g18~1!
5

mn

(
j

j ~ j 21!pj(
k

k~k21!pk

.

~55!

Note that this expression is symmetric in the variables
scribing the properties of males and females. Although
derived it by considering the generating function for ma
F1, we get the same threshold if we considerG1 instead.
Equation~53! is not symmetric in this way, so that the typic
numbers of males and females affected by an outbreak
be different. On the other hand Eq.~55! involves the trans-
missibilitiesTm f andTf m only in the form of their product,
and hence the quantities of interest are a function only o
single variableTm fTf m .

The generalizations of Sec. IV, where we conside
transmission probabilities that vary from one vertex to a
other, are possible also for the bipartite graph conside
here. The derivations are straightforward and we leave th
as an exercise for the reader.

B. Discussion

One important result that follows immediately from E
~55! is that if the degree distributions are truly power law
form, then there exists an epidemic transition only for
small range of values of the exponent of the power law.
us assume, as appears to be the case, that the exponen
roughly equal for men and women:am5a f5a. Then Eq.
~55! tells us that the epidemic falls on the hyperbo
Tm fTf m5Tc

2 , where

Tc5
z~a21!

z~a22!2z~a21!
, ~56!

wherez(x) is the Riemannz function. The behavior ofTc as
a function ofa is depicted in Fig. 3. As the figure shows,
a<3, Tc50 and henceTm fTf m50, which is only possible
if at least one of the transmissibilitiesTm f and Tf m is zero.
As long as both are positive, we will always be in the e
demic regime, and this would clearly be bad news.
8-9
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amount of precautionary measures to reduce the probab
of transmission would ever eradicate the disease.~Lloyd and
May @32# have pointed out that a related result appears in
theory of fully mixed models, where a heterogeneous dis
bution of the infection parameterb @see Eq.~1!# with a di-
vergent coefficient of variation will result in the absence
an epidemic threshold. Pastor-Satorras and Vespignani@21#
have made similar predictions using mean-field-like so
tions for SIRS-type endemic disease models on netwo
with power-law degree distributions and a similar result h
also been reported for percolation models by Cohenet al.
@38#.! Conversely, ifa.ac , whereac53.4788 . . . is the
solution of z(a22)52z(a21), we find thatTc51 and
henceTm fTf m51, which is only possible if bothTm f and
Tf m are 1. When either is less than 1 no epidemic will ev
occur, which would be good news. Only in the small inte
mediate region 3,a,3.4788 does the model possess
epidemic transition. Interestingly, the real-world netwo
measured by Liljeroset al. @8# appears to fall precisely in
this region, witha.3.2. If true, this would be both good an
bad news. On the bad side, it means that epidemics can
cur. But on the good side, it means that it is in theory p
sible to prevent an epidemic by reducing the probability
transmission, which is precisely what most health educa
campaigns attempt to do. The predicted critical value of
transmissibility isTc50.363 . . . for a53.2. Epidemic be-
havior would cease were it possible to arrange for the tra
missibility to fall below this value.

Some caveats are in order here. The error bars on
values of the exponenta are quite large~about60.3 @8#!.
Thus, assuming that the conclusion of a power-law deg
distribution is correct in the first place, it is still possible th
a,3, putting us in the regime where there is always e
demic behavior regardless of the value of the transmiss
ity. ~The error bars are also large enough to put us in
regime a.ac in which there are no epidemics. Empiric
evidence suggests that the real world is not in this reg
however, since epidemics plainly do occur.!

It is also quite possible that the distribution is not a p
fect power law. Although the measured distributions do

FIG. 3. The critical transmissibilityTc for the model of a sexu-
ally transmitted disease discussed in the text.Tc is greater than zero
and less than one only in the small range 3,a,3.4788 of the
exponenta.
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pear to have power-law tails, it seems likely that these t
are cut off at some point. If this is the case, then there w
always be an epidemic transition at finiteT, regardless of the
value of a. Furthermore, if it were possible to reduce th
number of partners that the most active members of the
work have, so that the cutoff moves lower, then the epide
threshold rises, making it easier to eradicate the disease
terestingly, the fraction of individuals in the network who
degree need change in order to make a significant differe
is quite small. Ata53, for instance, a change in the valuek
of the cutoff fromk5` to k5100 affects only 1.3% of the
population, but increases the epidemic threshold fromTc

50 to Tc50.52. In other words, targeting preventive effor
at changing the behavior of the most active members of
network may be a much better way of limiting the spread
disease than targeting everyone.~This suggestion is certainly
not new, but our models provide a quantitative basis for
sessing its efficacy.!

Another application of the techniques presented here
described in Ref.@49#. In that paper we model in detail th
spread of walking pneumonia~Mycoplasma pneumoniae! in
a closed setting~a hospital! for which network data are avail
able from observation of an actual outbreak. In this exam
our exact solutions agree well both with simulations and w
data from the outbreak studied. Furthermore, examination
the analytic solution allows us to make specific suggesti
about possible new control strategies forM. pneumoniaein-
fections in settings of this type.

VI. CONCLUSIONS

In this paper, we have shown that a large class of
so-called SIR models of epidemic disease can be solved
actly on networks of various kinds using a combination
mapping to percolation models and generating funct
methods. We have given solutions for simple unipart
graphs with arbitrary degree distributions and heterogene
and possibly correlated infectiveness times and transmis
probabilities. We have also given one example of a solut
on a structured network—the spread of a sexually transm
ted disease on a bipartite graph of men and women.
methods provide analytic expressions for the sizes of b
epidemic and nonepidemic outbreaks and for the position
the epidemic threshold, as well as network measures suc
the mean degree of individuals affected in an epidemic.

Applications of the techniques described here are poss
for networks specific to many settings, and hold promise
the better understanding of the role that network struct
plays in the spread of disease.
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