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Spread of epidemic disease on networks
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The study of social networks, and in particular the spread of disease on networks, has attracted considerable
recent attention in the physics community. In this paper, we show that a large class of standard epidemiological
models, the so-called susceptible/infective/remof@idR) models can be solved exactly on a wide variety of
networks. In addition to the standard but unrealistic case of fixed infectiveness time and fixed and uncorrelated
probability of transmission between all pairs of individuals, we solve cases in which times and probabilities are
nonuniform and correlated. We also consider one simple case of an epidemic in a structured population, that of
a sexually transmitted disease in a population divided into men and women. We confirm the correctness of our
exact solutions with numerical simulations of SIR epidemics on networks.
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[. INTRODUCTION within the statistical physics community, has addressed the
topological properties of networks of various kinds, from
Many diseases spread through human populations by coipoth theoretical and empirical points of view, and studied the
tact between infective individualéhose carrying the dis- effects of topology on processes taking place on those net-
eas¢ and susceptible individualshose who do not have the Works[4,5]. Social network46-9], technological networks
disease yet, but can catch.iThe pattern of these disease- [10—13, and biological networkg14—18 have all been ex-
causing contacts forms a network. In this paper we investidmined and modeled in some detail. Building on insights
gate the effect of network topology on the rate and pattern ogained from this work, a number of authors have pursued a
disease spread. mathematical theory of the spread of disease on networks
Most mathematical studies of disease propagation makil9—24. This is also the topic of the present paper, in which
the assumption that populations are “fully mixed,” meaning We show that a large class of standard epidemiological mod-
that an infective individual is equally likely to spread the €ls can be solved exactly on networks using ideas drawn
disease to any other member of the population or subpoptftom percolation theory.
lation to which they belon§Ll—3]. In the limit of large popu- The outline of the paper is as follows. In Sec. Il we intro-
lation size this assumption allows one to write down nonlin-duce the models studied. In Sec. Ill we show how percola-
ear differential equations governing, for example, numberdion ideas and generating function methods can be used to
of infective individuals as a function of time, from which Provide exact solutions of these models on simple networks
solutions for quantities of interest can be derived, such a¥ith uncorrelated transmission probabilities. In Sec. IV we
typical sizes of outbreaks and whether or not epidemics ocextend these solutions to cases in which probabilities of
cur. (Epidemics are defined as outbreaks that affect a noriransmission are correlated, and in Sec. V to networks repre-
zero fraction of the population in the limit of large system Senting some types of structured populations. In Sec. VI we
size) Epidemic behavior usually shows a phase transitiorflive our conclusions.
with the parameters of the model—a sudden transition from
a regime without epidemics tq one with. This transitign hap— Il. EPIDEMIC MODELS AND PERCOLATION
pens as the “reproductive ratidR, of the disease, which is
the fractional increase per unit time in the number of infec- The mostly widely studied class of epidemic models, and
tive individuals, passes though one. the one on which we focus in this paper, is the class of
Within the class of fully mixed models much elaboration susceptible/infective/removed or SIR models. The original
is possible, particularly concerning the effects of age strucand simplest SIR model, first formulatéthough never pub-
ture in the population, and population turnover. The crucialished by Lowell Reed and Wade Hampton Frost in the
element however that all such models lack is network topol1920s, is as follows. A population &f individuals is divided
ogy. It is obvious that a given infective individual does notinto three states: susceptil8), infective (1), and removed
have equal probability of infecting all others; in the real (R). In this context “removed” means individuals who are
world each individual only has contact with a small fraction either recovered from the disease and immune to further in-
of the total population, although the number of contacts thafection, or dead(Some researchers consider the R to stand
people have can vary greatly from one person to another. Thier “recovered” or “refractory.” Either way, the meaning is
fully mixed approximation is made primarily in order to al- the samé.Infective individuals have contacts with randomly
low the modeler to write down differential equations. For chosen individuals of all states at an average fafeer unit
most diseases it is not an accurate representation of real cotime, and recover and acquire immuniyr die) at an aver-
tact patterns. age ratey per unit time. If those with whom infective indi-
In recent years a large body of research, particularlyiduals have contact are themselves in the susceptible state,
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then they become infected. In the limit of larbyethis model 1-Tjj=lim (1—ry; St)7i /%= i, 2
is governed by the coupled nonlinear differential equations 5t—0
[1]:
and the probability of transmission is
ds . di . . dr i T.=1—e Fij7i (3)
- = = — —= 1 '

Some models, particularly computer simulations, use dis-

. . . crete time steps rather than continuous time, in which case
wheres(t), i(t), andr(t) are the fractions of the population instead of taking the limit in Eq(2) we simply setst=1
in each of the three states, and the last equation is redunda@living '
sinces+i+r=1 necessarily at all times. This model is ap-
propriate for a rapidly spreading disease that confers immu- Tij=1—(1—r;7, (4)
nity on its survivors, such as influenza. In this paper we will
consider only diseases of this type. Diseases that are endenyihere r is measured in time steps.

because they propagate on time scales comparable to or |n generak;; and; will vary between individuals, so that
slower than the rate of turnover of the population, or becausghe probability of transmission also varies. Let us assume
they confer only temporary immunity, are not well repre- jnjtially that these two quantities are independent identically
sented by this model; other models have been developed fefistributed(iid) random variables chosen from some appro-
these casef3]. priate distributionsP(r) and P(7). (We will relax this as-
The model described above assumes that the population é%mption late. The rater;; need not be symmetric—the
fully mixed, meaning that the individuals with whom a sus- probability of transmission in either direction might not be
ceptible individual has contact are chosen at random fromne same. In any cas@;; is in general not symmetric be-
the whole population. It also assumes that all individuals;gyse of the appearance gfin Egs.(3) and (4).
have approximately the same number of contacts in the same Now here is the trick: becausg and 7, are idd random
time, and that all contacts transmit the disease with the samgyriaples, so isT,;, and hence the priori probability of
probability. In real life none of these assumptions is correctyansmission of the disease between two individuals is sim-

and they are all grossly inaccurate in at least some cases. pr the averageT of T;; over the distributionsP(r) and
the work presented here we remove these assumptions byp?( 7), which is

series of modifications of the model.

First, as many others have done, we replace the “fully o
mixed” aspect with a network of connections between indi- T=(Tij>=l—J drdrP(r)P(r)e '" 5)
viduals [19-28. Individuals have disease-causing contacts 0
only along the links in this network. We distinguish here for the continuous time case or
between “connections” and actual contacts. Connections be-
tween pairs of individuals predispose those individuals to L
d|§ease—cau§|ng contact, but do not guarantee it. An |ﬂd|_\/|dp- T=1—f dr z P(r)P(7) (1—1)7 (6)
al's connections are the set of people with whom the indi- 0o 7=0
vidual may have contact during the time he or she is
infective—people that the individual lives with, works with, for the discrete cag3]. We call T the “transmissibility” of
sits next to on the bus, and so forth. the disease. It is necessarily always in the rangeré-=1.

We can vary the number of connections each person has Thus the fact that individual transmission probabilities
with others by choosing a particular degree distribution forvary makes no difference whatsoever; in the population as a
the network.(Recall that the degree of a vertex in a networkwhole the disease will propagate as if all transmission prob-
is the number of other vertices to which it is attachdebr  abilities were equal td. We demonstrate the truth of this
example, in the case of sexual contacts, which can commuesult by explicit simulation in Sec. Ill E. It is this result that
nicate sexually transmitted diseases, the degree distributiomakes our models solvable. Cases in which the variables
has been found to follow a power-law forf@]. By placing andr7 are not idd are trickier, but, as we will show, these are
the model on a network with a power-law degree distributionsometimes solvable as well.
we can emulate this effect in our model. We note further that more complex disease transmission

Our second modification of the model is to allow the models, such as SEIR models in which there is an infected-
probability of disease-causing contact between pairs of indibut-not-infective periodE), are also covered by this formal-
viduals who have a connection to vary, so that some pairsm. The transmissibilityl;; is essentially just the integrated
have higher probability of disease transmission than othersprobability of transmission of the disease between two indi-

Consider a pair of individuals who are connected, one ofviduals. The precise temporal behavior of infectivity and
whomi is infective and the othgrsusceptible. Suppose that other variables is unimportant. Indeed the model can be gen-
the average rate of disease-causing contacts between theneislized to includeany temporal variation in infectivity of
rij» and that the infective individual remains infective for a the infective individuals, and transmission can still be repre-
time 7; . Then the probability +-T;; that the disease witiot  sented correctly by a simple transmissibility variafileas
be transmitted froni to j is above.
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Now imagine watching an outbreak of the disease, which A. Generating functions

starts with a single infective individual, spreading across our \y,e wish then to solve for the average behavior of graphs
network. If we were to mark or “occupy” each edge in the of this type under bond percolation with bond occupation
graph across which the disease is transmitted, which happepgobability T. We will do this using generating function tech-
with probability T, the ultimate size of the outbreak would be niques[43]. Following Newmaret al.[36], we define a gen-
precisely the size of the cluster of vertices that can beerating function for the degree distribution thus

reached from the initial vertex by traversing only occupied .

edges. Thus, the model is precisely equivalent to a bond -y ‘

percolation model with bond occupation probabilltyn the GO(X)_k:0 PiX" @
graph representing the community. The connection between

the spread of disease and percolation was in fact one of thg e thatG (1)=3,p=
original motivations for the percolation model itsgk9], but probability gistributilé)nk.
seems to have been formulated in the manner presented herers function encapsulates all of the information about the

first by Grassberg€g0] for the case of uniformm andr, and  gegree distribution. Given it, we can easily reconstruct the
by Warrenet al.[23,24 for the nonuniform case. distribution by repeated differentiation

In the following section we show how the percolation
problem can be solved on random graphs with arbitrary de-
gree distributions, giving exact solutions for the typical size
of outbreaks, presence of an epidemic, size of the epidemic
(if there is ong, and a number of other quantities of interest.

We say that the generating functi@y, “generates” the dis-
tribution p,. The generating function is easier to work with
ll. EXACT SOLUTIONS ON NETWORKS WITH than the degree distribution itself because of two crucial
ARBITRARY DEGREE DISTRIBUTIONS properties.
Powers If the distribution of a propertk of an object is

One of the most important results to come out of empiri- . . . L
cal work on networks is the finding that the degree distribu-gener"jlted by a given generating function, then the distribu-

tions of many networks are highly right skewed. In othert'on of the sum ofk over m independent realizations of the

words, most vertices have only a low degree, but there are %b]eCt IS generated_ by thath power O.f that generating func-
small number whose degree is very high7,11,31. The tion. For example, if we choogm vertices at random from a
network of sexual contacts discussed above provides one eg_rge grap_h, th(_en the distribution of tﬂe sum of the degrees of
ample of such a distributio8]. It is known that the presence ohs/le vertltce_?hls generatfet(;l] WO();)) ]b'.l't distributi

of highly connected vertices can have a disproportionate ef- oments fhe mean of the probability distribution gener-

fect on certain properties of the network. Recent work Sug_ated by a generating function is given by the first derivative

gests that the same may be true for disease propagation 8rf1 the generatlr;g functtlon_, evaluatted aI: 1 Eor mts)tance, the
networks[21,32, and so it will be important that we incor- mean degree of a vertex in our NEtwork 1S given by
porate nontrivial degree distributions in our models. As a
first illustration of our method therefore, we look at a simple L\ — A~

S . : ; z=(k)=2, kp,=G{(1). 9
class of unipartite graphs studied previously by a variety of (k) EK Pc=Go(1) ©
authors[33-47, in which the degree distribution is speci-

fied, but the graph is in other respects random. Higher moments of the distribution can be calculated from

Our graphs are simply defined. One specifies the degregigher derivatives also. In general, we have
distribution by giving the properly normalized probabilities

px that a randomly chosen vertex has degked set of N

degreesfk;}, also called a degree sequence, is then drawn (k"= k"p=

from this distribution and each of thé vertices in the graph K

is given the appropriate numbds of “stubs”™—ends of

edges emerging from it. Pairs of these stubs are then chosen A further observation that will also prove crucial is the

at random and connected together to form complete edgefllowing. While G, above correctly generates the distribu-

Pairing of stubs continues until none are lgff an odd  tion of degrees of randomly chosen vertices in our graph, a

number of stubs is by chance generated, complete pairing mifferent generating function is needed for the distribution of

not possible, in which case we discard dgeand draw an- the degrees of vertices reached by following a randomly cho-

other until an even number is achievethis technique guar- sen edge. If we follow an edge to the vertex at one of its

antees that the graph generated is chosen uniformly at raends, then that vertex is more likely to be of higher degree

dom from the set of all graphs with the selected degreg¢han is a randomly chosen vertex, since high-degree vertices

sequence. have more edges attached to them than low-degree ones. The
All the results given in this section are averaged over thalistribution of degrees of the vertices reached by following

ensemble of possible graphs generated in this way, in thedges is proportional thp,, and hence the generating func-

limit of large graph size. tion for those degrees is

1 if p is a properly normalized

1 d“Gg

pkzﬁ ka |X=0' (8)

n

Go(x)

( d
Xd_X (10)

x=1
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vertices connected together by occupied edges in the corre-
Gl (x) sponding percolation model. Léto(x;T) be the generating
0

2 Kpx®
K =X ) (11)  function for this distribution,

E kpy G(,)(l)
k

Ho(x;T)= > Py(T)X". (16)

In general we will be concerned with the number of ways of 0

Ieaving such a verterexcludingthe edge we arrived along, By ana|ogy with the preceding section we also define
which is the degree minus 1. To allow for this, we simply H,(x;T) to be the generating function for the cluster of con-
divide the function above by one powerxfthus arriving at  nected vertices we reach by following a randomly chosen
a new generating function edge.

Now, following Ref. [36], we observe thaH; can be
broken down into an additive set of contributions as follows.
The cluster reached by following an edge may bB: a
single vertex with no occupied edges attached to it, other
wherez is the average vertex degree, as before. than the one along which we passed in order to reac(l_i)it;

In order to solve the percolation problem, we will also @ Single vertex attached to any number1 of occupied
need generating functior@,(x; T) andG,(x;T) for the dis- edges other than the one we re.ach.ed it by, each leading to
tribution of the number obccupiededges attached to a ver- another cluster whose size distribution is also gene_rated by
tex, as a function of the transmissibilify These are simple H,. We further note that the chance that any two finite clus-
to derive. The probability of a vertex having exaathyof the ters that' are attached to thga same vertexlwn'l have an edge
k edges emerging from it occupied is given by the binomialconnecting them together directly goesNis™ with the size

distribution @)Tm(l_-l—)kfm7 and hence the probability dis- N of the graph, and hence is zero in the lilNit>c. In other
tribution of m is generated by words, there are no loops in our clusters; their structure is

entirely treelike.

Gy(x) 1
T =2 64(x), (12

G, (xX)= =
G 2

w o K Using these results, we can exprésgx;T) in a Dyson-
Go(x;T)=> > pk( m)Tm(l—T)kmxm equation-like self-consistent form thus
m=0 k=m
H1(T)=XGy(H1(X; T);T). 17

(XT)M(L-=T)k™

Then the size of the cluster reachable from a randomly cho-
sen starting vertex is distributed according to

Ho(X; T)=XxGo(H1(X;T);T). (18

It is straightforward to verify that for the special cabe 1
=Go(1+(x=1)T). (13 of 100% transmissibility, these equations reduce to those
given in Ref[36] for component size in random graphs with
Similarly, the probability distribution of occupied edges leav- grhitrary degree distributions. Equatiofts?) and (18) pro-
ing a vertex arrived at by following a randomly chosen edgeyide the solution for the more general case of finite transmis-

is generated by sibility which applies to SIR models. Once we have
Ho(X;T), we can extract the probability distribution of clus-
Gi(xT)=G,(1+(x=1)T). (14 tersP(T) by differentiation using Eq(8) on Ho. In most
. . cases however it is not possible to find arbitrary derivatives
Note that, in our notation of Hy in closed form. Instead we typically evaluate them
Go(x:1)= Gy(X), (158 numerically. Since direct evaluation of numerical derivatives

is prone to machine precision problems, we recommend
evaluating the derivatives by numerical contour integration

Go(1;T)=Go(1), (15D ysing the Cauchy formula
Go(1;T)=TGo(1), (150) 1 dH, 1 [ Ho&T)
P(T)=—= —— =— dz, (19
sl dxs 277 s+1
and similarly forG,. [G,(x;T) here represents the derivative 0o ¢

of Gy(x;T) with respect to its first argumeift. ) , . ) )
where the integral is over the unit cirdlé4]. It is possible to

find the first thousand derivatives of a function without dif-
ficulty using this method36]. By this method then, we can

The first quantity we will work out is the distribution find the exact probabilityP that a particular outbreak of our
P(T) of the sizess of outbreaks of the disease on our net-disease will infects people in total, as a function of the
work, which is also the distribution of sizes of clusters of transmissibilityT.

B. Outbreak size distribution
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C. Outbreak sizes and the epidemic transition where u=H,(1;T) is the solution of the self-consistency
Although in general we must use numerical methods td€lation
find the complete distributioRg of outbreak sizes from Eq. u=G,(u:T) (26)
(19), we can find the mean outbreak size in closed form. A
Using Eq.(9), we have Results equivalent to Eq$22)—(26) were given previously

in a different context in Ref.40].
Note that it is not the case, even abolg, that all out-

i breaks give rise to epidemics of the disease. There are still

where we have made use of the fact that the generating fungite outbreaks even in the epidemic regime. While this ap-

tions are 1 ak=1 if the distributions that they generate are nears very natural, it stands nonetheless in contrast to the

properly normalized. Differentiating E¢17), we have standard fully mixed models, for which all outbreaks give
rise to epidemics above the epidemic transition point. In the
present case, the probability of an outbreak becoming an

1-Gi(1;T) » (2D epidemic at a give is simply equal toS(T).

(s)=Hg(1;T)=1+Gy(L;T)H(1;T), (20

Hi(1;T)=1+G(1;T)H(1;T)=

and hence D. Degree of infected individuals

The quantityu defined in Eq.(26) has a simple interpre-
Gy(1;T) TGy(1) tation: it is the probability that the vertex at the end of a
=1+ —. (22)  randomly chosen edge remains uninfected during an epi-
1=Gy(1T) 1=TGy(1) demic (i.e., that it belongs to one of the finite components

) . The probability that a vertex does not become infected via
Given Eqs(7), (12), (13), and(14), we can then evaluate this one of its edges is thus=1— T+ Tu, which is the sum of

expression to get the mean outbreak size for any value of o probability - T that the edge is unoccupied, and the

and degree distribution. , ~ probability Tu that it is occupied but connects to an unin-
We note that Eq(22) diverges whenTG(1)=1. This  fected vertex. The total probability of being uninfected if a

point marks the onset of an epidemic; it is the point at whichertex has degrek is v¥, and the probability of having de-

the typical outbreak ceases to be confined to a finite numbeﬁree k given that a vertex is uninfected 80"/ p, v

of individuals, and expands to fill an extensive fraction of the_ pw/Go(v), which distribution is generated by the func-

graph. The transition takes place whefs equal to the criti- 4 Go(vX)/Go(v). Differentiating and settingc=1, we

cal transmissibilityT., given by then find that the average degreg, of vertices outside the
giant component is

(s)y=1+

1 Gy1) 2 K 3 , PG vGiv) u[1-THTul o,
= = = out™ - - _
c Gl Gy S kk-1pe Go(v) Go(v) 1-S
k Similarly the degree distribution for an infected vertex is

o o _generated by Go(x) — Go(vx)]/[1—Go(v)], which gives a
- ForT>T,, we have an epidemic, or “giant component” mean degree,, for vertices in the giant component of
in the language of percolation. We can calculate the size of

this epidemic as follows. Above the epidemic threshold Eq. 1-vGy(v) 1-u[1-T+Tu]

(17) is no longer valid because the giant component is ex- =1 Go(0) & S z (28)
tensive and therefore can contain loops, which destroys the

assumptions on which Eq17) was based. The equatids Note that 1-S=Gy(u;T)<u, since all coefficients of

valid however if we redefinél, to be the generating func- Gg(x;T) are by definition positive(because they form a

tion only for outbreaks other than epidemic outbreaks, i.e.probability distribution and henceGy(x;T) has only posi-

isolated clusters of vertices that are not connected to thtve derivatives, meaning that it is convex everywhere on the

giant component. These however do not fill the entire graphpositive real line within its domain of convergence. Thus,

but only the portion of it not affected by the epidemic. Thus,from Eq. (27), zy,=z. Similarly, z,=z, and hence, as we

above the epidemic transition, we have would expect, the mean degree of infected individuals is al-
ways greater than or equal to the mean degree of uninfected
ones. Indeed, the probability of a vertex being infected,

HO(l;T)ZES Ps=1-S(T), (24 given that it has degrde goes as +v*=1—e ") je_

tends exponentially to unity as degree becomes large.

whereS(T) is the fraction of the population affected by the

epidemic. Rearranging E¢24) for Sand making use of Eq. E. An example

(18), we find that the size of the epidemic is Let us now look at an application of these results to a
specific example of disease spreading. First of all we need to
S(T)=1-Ggy(u;T), (25 define our network of connections between individuals,
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which means choosing a degree distribution. Here we will
consider graphs with the degree distribution
0 fork=0 ©

Pk ckee W fork=1, (29

whereC, «, andk are constants. In other words, the distri-
bution is a power-law of exponent with an exponential

cutoff around degree. This distribution has been studied
before by various autholf§,36,37,40. It makes a good ex- 4
ample for a number of reasond) distributions of this form v
are seen in a variety of real-world networkg45]; (2) it

includes pure power-law and pure exponential distributions,

both of which are also seen in various netwdrkd1,12,31, 0.0 02 0.4 06 0.8

as special cases whet—o or «—0; (3) it is normalizable
and has all moments finite for any finite

The constantC is fixed by the requirement of normaliza-

tion, which givesC=[Li (e Y<)]~* and hence

kfaefklk

= fork=1,
Li a(e_ 1/K)

Pk (30

where Lj,(x) is thenth polylogarithm ofx.
We also need to choose the distributid&) and P(7)

transmissibility T

FIG. 1. Epidemic sizdtop) and average outbreak sigleottom)
for the SIR model on networks with degree distributions of the form
(30) as a function of transmissibility. Solid lines are the exact solu-
tions, Egs.(25 and(22), for «=2 and(left to right in each pangl
x=20, 10, and 5. Each of the points is an average result for 10 000
simulations on graphs of 100 000 vertices each with distributions of
r and 7 as described in the text.

In Fig. 1 we show the results of calculations of the aver-

for the transmission rate and the time spent in the infectiveage outbreak size and the size of epidemics from the exact
state. For the sake of easier comparison with computer simdermulas, compared with explicit simulations of the SIR
lations we use discrete time and choose both distributions tonodel on networks with the degree distributi(80). Simu-

be uniform, withr real in the range &r <r o, andr integer
in the range ¥ 7< 1,5, The transmissibilityT is then given
by Eq.(6). From Eq.(30), we have

- Li (xe™ ) -
O(X)_ Lia(e—llk)
and
H —1/k
Gy = Hett*€ D (32

XLia—l(e_llK) .
Thus the epidemic transition in this model occurs at

T _ Lia—l(e_l/K) (33)
© Ly (e Vo) —Li, (e ¥’

Below this value ofT there are only smal(nonepidemi¢
outbreaks, which have mean size

(s)=1
. T[Li,—y(e )2
Li (e Y)[(T+1)Li, (e ¥)—TLi, (e ¥)]
(34)

lations were performed on graphs bf=100 000 vertices,
with =2, a typical value for networks seen in the real
world, andx=5, 10, and 2(Qthe three curves in each panel
of the figurg. For each pair of the parametersand« for the
network, we simulated 10000 disease outbreaks each for
(r,7) pairs withr 5, from 0.1 to 1.0 in steps of 0.1, angl,,,
from 1 to 10 in steps of 1. Figure 1 shows all of these results
on one plot as a function of the transmissibilitycalculated
from Eq. (6).

The figure shows two important things. First, the points
corresponding to different values of,5, and 7,5 but the
same value of fall in the same place and the two-parameter
set of results for and r collapses onto a single curve. This
indicates that the arguments leading to E&s.and (6) are
correct(as also demonstrated by Warrehal. [23,24]) and
that the statistical properties of the disease outbreaks really
do depend only on the transmissibilily and not on the
individual rates and times of infection. Second, the data
clearly agree well with our analytic results for average out-
break size and epidemic size, confirming the correctness of
our exact solution. The small disagreement between simula-
tions and exact solution fdrs) close to the epidemic transi-
tion in the lower panel of the figure appears to be a finite size
effect, due to the relatively small system sizes used in the
simulations.

To emphasize the difference between our results and those
for the equivalent fully mixed model, we compare the posi-

Above it, we are in the region in which epidemics can occurtion of the epidemic threshold in the two cases. In the case

and they affect a fractio of the population in the limit of
large graph size. We cannot solve 8®iin closed form, but

a=2, k=10 (the middle curve in each frame of Fig), bur
analytic solution predicts that the epidemic threshold occurs

we can solve Eq925) and (26) by numerical iteration and at T,=0.329. The simulations agree well with this predic-

hence findS

tion, giving T.=0.3X2). By contrast, a fully mixed SIR
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model in which each infective individual transmits the dis- Ho(X{TiH) =XxGo(H (x:{TH):{TiH, (39
ease to the same average number of others as in our network
gives a very different prediction df .= 0.558. where

IV. CORRELATED TRANSMISSION PROBABILITIES Hi(XH{Tip) =XGy(H1 OG{TinATiD. (39)

It is possible to imagine many cases in which the prob-The average outbreak size when there is no epidemic is given
abilities of transmission of a disease from an infective indi-by EQ.(22) as before, and the size of epidemics above the
vidual to those with whom he or she has connections are ndtpidemic transition is given by Eq&5) and(26). The tran-

iid random variables. In other words, the probabilities ofsition itself occurs whe3(1;{T;})=1 and, substituting for
transmission from a given individual to others could beG, from Eq.(37), we can also write this in the form
drawn from different distributions for different individuals.

This allows, for example, for cases in which the probabilities N

tend either all to be high or all to be low but are rarely a i:EO kil(ki—1)T;—1]=0. (40)
mixture of the two. In this section, we show how the model

of Sec. Il can be generalized to allow for this. In fact, it is straightforward to convince oneself that when

Suppose that the transmission ratesor transmission the sum on the left-hand side of this equation is greater than
from an infective individual to each of thek; others with zero epidemics occur, and when it is less than zero they do
whom they have connections are drawn from a distributiorgt,

Pi(r), which can vary from one individual to another in any  For example, consider the special case in which the dis-
way we like. Thus thea priori probability of transmission tripution of transmission rate®(r) depends on the degree of
from i to any one of his or her neighbors in the network is the vertex representing the infective individual. One could
imagine, for example, that individuals with a large number of
T=1- fwdr drP,(nP(r) e " (35) connections tp others tend to have lower tra_\nsmiss_ion rates
0 than those with only a small number. In this cakeis a
function only ofk; and hence we have
One could of course also allow the distribution from which
the time 7 is drawn to vary from one individual to another, 18
although this does not result in any functional change in the Go(xi{Td) = ‘Zo [1+(x=1)T, %
theory, so it would be rather pointless. In any case, the for- o
malism developed here can handle this type of dependency *
perfectly well. = E Pl 1+ (x—1)T,]* (41)

Following Eq.(13), we note that in the percolation repre- k=0
sentation of our model the distribution of the number of oc-
cupied edges leading from a particular vertex is now gener-
ated by the function

2 kp 1+ (- DT

N Kk
1 L[k . _
Golxi{Tih=5 2 3 (H;)T{”(l—mkimxm G106{Ti) 42
=0 m=0 2 kpk
\ K
1
N i:zo [1+(x=1)Ti%. (36) whereT, is the mean transmissibility for vertices of degree

k.

And similarly, the probability distribution of occupied edges  ONe€ can also treat the case in which the transmissibility is
leaving a vertex arrived at by following a randomly chosen@ function of the number of connections which the individual

edge is generated by being infected has. If the probability of transmission to an
individual with degreek is U, then we define

> ki[1+(x—1)T;]6 1
Gi(x{TiH)= . (37
2k

Go(x;{uk})=2k pix’, 43

g kp 1+ (XK 1=1)U,]

Clearly these reduce to Eg&l3) and (14) whenT; is inde- Gi(x;{U) = , (44)
pendent ofi. E K
With these definitions of the basic generating functions, K P

our derivations proceed as before. The complete distribution
of the sizes of outbreaks of the disease, excluding epidemiand then the calculation of cluster size distribution and so
outbreaks if there are any, is generated by forth proceeds as before.
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Further, one can solve the case in which probability of 1 &
transmission of the disease dependsoththe probabilities ;
of giving it and catching it, which are arbitrary functioig
and U, of the numbers of connections of the infective and
susceptible individualgThis means that transmission from a
vertex with degreg to a vertex with degrek occurs with a
probability equal to the produdtU, .) The appropriate gen-

e
=

Cumulative frequency

erating functions for this case are 0.01 ¢ =
GoO{Tdh{Uh) =2 pd1+(x- DT (49) 0.001 | .
F ) | ]
1 10
G 1(X;{Tk} ’{U k}) Number of connections
FIG. 2. Distributions of the numbers of sexual contacts of men
E kpk(1+{[1+(x—1)Tk]k‘1—1}uk) and women in the study of Liljerost al. [8]. The histogram is
K

cumulative, meaning that the vertical axis indicates the fraction of
! individuals studied who have greater than or equal to the number of
E Kpx contacts specified on the horizontal axis. Both distributions approxi-
K mately follow power laws—straight lines on the logarithmic axes
(46) used here. Inset: the bipartite form of the modeled network of con-
tacts.

and indeed Eq941)—(44) can be viewed as special cases of
these equations when eith€g=1 or U, =1 for all k. Note

thatGo(x;{Ux}) andGo(x;{Tw},{U}) are both independent  The models we have studied so far have made use of
of {U}, since the probability of a randomly chosen infective simple unipartite graphs as the substrate for the spread of
individual having the disease is unity, regardless of the probgisease. These graphs may have any distribution we choose
ability that they caught it in the first place. . of the degrees of their vertices, but in all other respects are
As a concrete example of the developments of this seccompletely random. Many of the really interesting cases of
tion, consider the physically plausible case in which thedisease spreading take place on networks that have more
transmissibility T depends inversely on the degree of thestrycture than this. Cases that have been studied previously
infective individual: Ty=T,/k. Then from Eq.(40) we find  jnclude disease spreading among children who attend a com-
that there is epidemic behavior only if mon school and among patients in different wards of a hos-
pital between whom pathogens are communicated by peripa-
tetic caregiverd47]. Here, we give just one example of
(47) disease spreading in a population with a very simple struc-
ture. The example we consider is the spread of a sexually
transmitted disease. The important structural element of the
regardless of the degree distribution. Sidckes strictly be-  population in this case is its division into men and women.
tween zero and one however, this is impossible. In networks
of this type, we therefore conclude that diseases cannot
spread. Only if transmissibilities fall off slower than in-
versely with degree in at least some part of their range are Consider then a population & men andN women, who
epidemics possible. One plausible way in which this mighthave distributiong; , g of their numberg andk of possibly
happen is ifT,~ (To+k) L. In this case it is straightforward disease-causing contacts with the opposite (sexnections
to show that epidemics are possible for some degree distrin our nomenclatune In a recent study of 2810 respondents
butions for some values df,. Liljeros et al.[8] recorded the numbers of sexual partners of
Other extensions of the model are possible too. One area@en and women over the course of a year and found the
of current interest is models incorporating vaccinationdistributionsp;, g, shown in Fig. 2. As the figure shows, the
[19,46. Disease propagation on networks incorporating vac4istributions appear to take a power-law fopy~j“m, g
cinated individuals can be represented as a joint site/bond k*f, with exponentsa,, and «¢ that fall in the range
percolation process, which can also be solved exddiy, 3.1-3.3 for both men and womdb2]. (The exponent for
both in the case of uniform independent vaccination probwomen seems to be a little higher than that for men, but the
ability (i.e., random vaccination of a populatjoand in the difference is smaller than the statistical error on the measure-
case of vaccination that is correlated with properties of indi-ment)

V. STRUCTURED POPULATIONS

>_
T1 z—1’

A. Bipartite populations

viduals such as their degréso that vaccination can be di- We will assume that the disease of interest is transmitted
rected at the so-called core group of the disease-carryingrimarily by contacts between men and wont&noe only for
network—those with the highest degries some diseases in some communifié8]), so that, to a good
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approximation, the network of contacts is bipartite, as showmnipartite case, and the resulting equationdfgrandH , are

in the inset of Fig. 2. That is, there are two types of verticeddentical to Egs.(17) and (18). We can also calculate the

representing men and women, and edges representing coaverage outbreak size and the size of an epidemic outbreak,

nections run only between vertices of unlike kinds. Withif one is possible, from Eq$22), (25), and(26). The average

each edge we associate two transmission rates, one of whiclutbreak size for males, for example, is

represents the probability of disease transmission from male

to female, and the other from female to male. These rates are Fo(L:Tmi Tim) Tt mfo(1)91(1)

drawn from appropriate distributions as before, as are thgs)=1+ A =1+ ; PPN

times for which men and women remain infective. Also as 1-F1(1;Ttm, Tme) 1—Tmefmf1(1)91(15)3

before, however, it is only the average integrated probability (53

of transmission in each direction that matters for our perco ; ; e .

lation model, so that we have two transmissibilities; and ‘[hle gffemlc transition takes place WHBA(L T, Tim)

S =1, quivalently when

T¢, for the two directiong53].
We define two pairs of generating functions for the degree ToTmfA(1)gl(1)=1, (54)

distributions of males and females,

and hence the epidemic threshold takes the form of a hyper-

. 1 .
fo00=2 ppd. fa00=2fo00, (483 POl T Tim space,
]
1 nv
= g o oy "M e |
9o(X¥) =20 QX" 91(X)= T Go(X), (48b) 1(1)gy :; j(j__l)pj;; K(k—1)p,
whereu and v are the averages of the two degree distribu- (59
tions, and are related by Note that this expression is symmetric in the variables de-
scribing the properties of males and females. Although we
®_ 1, (49) derived it by considering the generating function for males
M N F,, we get the same threshold if we consid®y instead.

quation(53) is not symmetric in this way, so that the typical
mbers of males and females affected by an outbreak may
different. On the other hand E@5) involves the trans-
missibilities T+ and T¢,, only in the form of their product,

since the total numbers of edges ending at male and fema
vertices are necessarily the same. Using these functions WR
further define, as before

fo(x:T)=fo(1+(x—1)T), 50 a_nd hencg the quantities of interest are a function only of a
o T)=fo(L+(x=1)T) (503 single variableT Ty .
f,0¢T)=fo(1+ (x—1)T) (50) The generalizations of Sec. IV, where we considered
v ! ’ transmission probabilities that vary from one vertex to an-
TY=an(l+ (x— DT other, are possible also for the bipartite graph considered
90X T)=0o(1+ (x=1)T), (500 {ere. The derivations are straightforward and we leave them
9, T)=g,(1+(x=1)T) (500) as an exercise for the reader.
Now consider an outbreak that starts at a single indi- B. Discussion

vidual, who for the moment we take to be male. From that one jmportant result that follows immediately from Eq.

male the disease will spread to some number of females, angg, is that if the degree distributions are truly power law in
from them to some other number of males, so that after thos%rm’ then there exists an epidemic transition only for a

two steps a number of new males will have contracted thema)| range of values of the exponent of the power law. Let
disease, whose distribution is generated by us assume, as appears to be the case, that the exponents are
) _ . i roughly equal for men and womew,,,= a;= «. Then Eq.
FoTmt, Trm) = fo(@1 (X Ttm): Tme)- (51) (55) tells us that the epidemic falls on the hyperbola

. .. _T2
For a disease arriving at a male vertex along a randomly mTrm=Tc, where
chosen edge we similarly have

{(a—1)
T.= , (56)
F106Tmes Tim) = F1(92106 Tim); Tme)- (52 {(a=2)={(a—1)
And one can define the corresponding generating functionghere{(x) is the Riemanr function. The behavior of . as
G, and G, for the vertices representing the females. a function of« is depicted in Fig. 3. As the figure shows, if

Using these generating functions, we can now calculatere<3, T,=0 and hencd ,¢T;,,=0, which is only possible
generating functionsly andH for the sizes of outbreaks of if at least one of the transmissibiliti€g, s and Ty, is zero.
the disease in terms either of number of women or of numbeAs long as both are positive, we will always be in the epi-
of men affected. The calculation proceeds exactly as in theemic regime, and this would clearly be bad news. No
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pear to have power-law tails, it seems likely that these tails
] are cut off at some point. If this is the case, then there will
] always be an epidemic transition at finikeregardless of the
1 value of a. Furthermore, if it were possible to reduce the
= number of partners that the most active members of the net-
] work have, so that the cutoff moves lower, then the epidemic
4 threshold rises, making it easier to eradicate the disease. In-
] terestingly, the fraction of individuals in the network whose
n degree need change in order to make a significant difference
1 is quite small. Ate =3, for instance, a change in the valde
00 L N of the cutoff fromk=o to k=100 affects only 1.3% of the
25 30 35 4.0 population, but increases the epidemic threshold from
exponent o =0 to T,=0.52. In other words, targeting preventive efforts
at changing the behavior of the most active members of the
FIG. 3. The critical transmissibilityf for the model of a sexu- network may be a much better way of limiting the spread of
ally transmitted disease d.iscussed in the téxtis greater than zero  {isease than targeting everyofighis suggestion is certainly
and less than one only in the small range-8<3.4788 of the  \ ha\y but our models provide a quantitative basis for as-
exponenta. sessing its efficacy.
Another application of the techniques presented here is

08 -

epidemic threshold T,

amount of precautionary measures to reduce the probabilit ) . ; .
of transmission would ever eradicate the diseddeyd and escribed in R_ef[49]. In that_ paper we model in det_al! the
May [32] have pointed out that a related result appears in thgpread of walking pneumonidycoplasma pneumoniaén

theory of fully mixed models, where a heterogeneous distri® closed settinga hospita for which network data are avail-

bution of the infection parametgs [see Eq.(1)] with a di- able from observation of an actual outbreak. In this example,
vergent coefficient of variation will result in the absence of OUr exact solutions agree well both with simulations and with

an epidemic threshold. Pastor-Satorras and Vespigizdii data from the outbreak studied. Furthermore, examination of
the analytic solution allows us to make specific suggestions

have made similar predictions using mean-field-like solu- bout bl trol strateaies fb =%
tions for SIRS-type endemic disease models on network out possible new control strategies xr pneumoniaen-
ections in settings of this type.

with power-law degree distributions and a similar result ha
also been reported for percolation models by Cobkéral.
[38].) Conversely, ifa>a;, where a.=3.478 ... is the
solution of {(a—2)=2¢(a—1), we find thatT,=1 and VI. CONCLUSIONS

henceTnTim=1, which is only possible if botfl,; and In this paper, we have shown that a large class of the
Tim are 1. When either is less than 1 no epidemic will eversg_cajled SIR models of epidemic disease can be solved ex-
occur, which would be good news. Only in the small inter-actly on networks of various kinds using a combination of
mediate region 3 a<3.4788 does the model possess anmapping to percolation models and generating function
epidemic transition. Interestingly, the real-world network methods, We have given solutions for simple unipartite
measured by Liljeroet al. [8] appears to fall precisely in - graphs with arbitrary degree distributions and heterogeneous
this region, witha'=3.2. If true, this would be both good and and possibly correlated infectiveness times and transmission
bad news. On the bad side, it means that epidemics can Ogropabilities. We have also given one example of a solution
cur. But on the good side, it means that it is in theory posyn g structured network—the spread of a sexually transmit-
sible to prevent an epidemic by reducing the probability ofieq disease on a bipartite graph of men and women. Our
transmission, which is precisely what most health educatiomethods provide analytic expressions for the sizes of both
campaigns attempt to do. The predicted critical value of thepidemic and nonepidemic outbreaks and for the position of
transmissibility isT;=0.3@ ... for a=3.2. Epidemic be- the epidemic threshold, as well as network measures such as
havior would cease were it possible to arrange for the transhe mean degree of individuals affected in an epidemic.
missibility to fall below this value. Applications of the techniques described here are possible
Some caveats are in order here. The error bars on thgy networks specific to many settings, and hold promise for

values of the exponent are quite larggabout+0.3 [8]).  the better understanding of the role that network structure
Thus, assuming that the conclusion of a power-law degregjays in the spread of disease.

distribution is correct in the first place, it is still possible that
a<3, putting us in the regime where there is always epi-
demic behavior regardless of the value of the transmissibil-
ity. (The error bars are also large enough to put us in the
regime a>a, in which there are no epidemics. Empirical ~ The author thanks Lauren Ancel, $zlo Barabai, Dun-
evidence suggests that the real world is not in this regimean Callaway, Michelle Girvan, Catherine Macken, Jim
however, since epidemics plainly do ocgur. Moody, Martina Morris, and Len Sander for useful com-

It is also quite possible that the distribution is not a per-ments. This work was supported in part by the National Sci-
fect power law. Although the measured distributions do ap-ence Foundation under Grant No. DMS-0109086.
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the sum of all contacts over a specified period of time. Al-
though this is similar to other networks of sexual contacts stud-
ied previously[50,5] it is not the network required by our
models, which is the instantaneous network of connections
(not contacts—see Sec).IWhile the network measured may
be a reasonable proxy for the network we need, it is not known
if this is the case.
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with few short loops, indicating that the treelike components of
our percolating clusters may be, at least in this respect, quite a
good approximation to the shape of real STD outbreaks.
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