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Large clusters in supercritical percolation
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The statistical behavior of the size of large finite clusters in supercritical percolation on a finite lattice is
investigated(below the critical dimension of the spadg=6). For this purpose, an approximate system of
ordinary differential equations for a number of finite clusters is obtained. The correlation between the critical
exponents that determine the cluster decay law (lg~—¢%) and the surface of clusters is shown. It is found
that for clusters without self-intersections having a maximal surfacg. For clusters with a small number of
self-intersectiong=1— ». Here » is a function depending on the ratio of the surface area of a cluster to its
size, which tends to zero, when the surface tends to a maximum. For compact clusters with a minimum or
near-minimum surface area, the first correction to the cluster decay law above percolation threshetd (In
—g4-1/dy has been found on the basis of the drop model and the derived system of equations. The predictions
are tested numerically on two- and three-dimensional lattices by Monte Carlo simulations. The results of the
work allow one to conclude that above the percolation threshold majority of large clusters are compact and that
the cluster surface is the main factor affecting its behavior in supercritical percolation.
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[. INTRODUCTION lation on the basis of more rigorous considerations and also
to trace the role of the cluster surface in this law.
Percolation is a standard model for structurally disordered
systems. Among numerous areas of its application are poly-
mer gelation, epidemic diseases of garden trees, flows in po-
rous media, hopping conduction in semiconductors, etc.
[1,2]. Recently this theory has also been applied to describ- The site problem on a periodic lattice Nfsites embedded
ing social and economic phenomeiga4]. in the space of subcritical dimensidr<d.= 6 is considered.
Among the problems of the percolation theory, the so- We deal with an ensemble of percolation systems that
called cluster size distribution is of major importance. Manyincludes a set of systengkttices with all possible values of
properties of percolative systems can be found by means &f site occupation probabilify from 0 to 1. A change ip and
this distribution. Typical examples are magnetic susceptibila related variation of the system properties is described in
ity and the contribution of an external magnetic field to heatterms of a transition from a subensemble of the systems,
capacity of spin glass¢§], magnetization density for diluted where a site occupation probabilitypgsubensemblép}) to
ferromagnetg6], susceptibility of a liquid-porous solid sys- a subensemble wherein this probability is larger by an infini-
tem[7], optical absorption edge for diamondlike carlfh  tesimal quantitydp (subensemblép+dp}). We note that all
geometry of the localized wave function in the integer quanthe values related to both finite clusters and the infinite one

Il. A SYSTEM OF ORDINARY DIFFERENTIAL
EQUATIONS FOR A NUMBER OF FINITE CLUSTERS

tum Hall effect[9], etc. are considered as average with respect to the corresponding
Since the cluster numberg(p) are known exactly fos subensemble.
<10[10], this problem may be thought as solved fofar Further, we will use the fact that with increase in a site

from p., because in this case there is a small quantity obccupation probability, the cluster cannot break into smaller
large clusters. The study of this problem in the neighborhoodnes(the occupied site cannot become nonoccupi&d im-

of the percolation threshold is of the greatest interest. In on@ortant consequence is that with increasingandom addi-

of the recent work$11] this problem was considered in de- tion of occupied sites to the latticéarger-size clusters can
tail below the percolation threshold. Above the percolationbe formed only from clusters of smaller sizes by their aggre-
threshold, the so-called infinite clustéiC) is of primary  gation. Using this fact, after simple calculations we obtain
importance for the system behavior. However, in supercritithe conditional probability for the transition of an arbitrary
cal percolation large finite clusters still exist. Unfortunately, nonoccupiedsite to an occupied one,

a phenomenological approach dominates up to date in the

study of these clusters. Therefore, the development of theo- dp
retical and numerical methods for investigating such clusters P,= . 1)
is an urgent problem. 1-p

In this paper, we find an approximate system of ordinary
differential equations for a number of finite clusters and ap- Taking into account only the processes of the first order in
ply it to investigate the behavior of large finite clusters abovedp, we have two different ways for the new cluster forma-
the percolation threshold fdp—p¢|<1, i.e., for supercriti- tion. An arbitrarys cluster(cluster ofs siteg is formed either
cal percolation. The proposed approach allows us to obtain as a result of association of two smaller-size clusters such as
refined law of cluster size distribution in supercritical perco-s;+s,+1=s (the first way or from a (s—1) cluster when
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one vacant site belonging to the perimeter of this cluster *
becomes occupiethe second way P(Sl’)=23ns(p) E gssg(p)s3ns3(p)d p, 4
Let us consider the first way in detail. We deal with two S3=1

subensembles of percolation systefp:and{p+dp}. The

s cluster is formed on an arbitrary site of the system if the PZ™)~2sny(p)(1-p)* dp, 5
following set of conditions is fulfilled: the given site is non-
occupied[probability (1-p)]; one of the neighboring site PE)=2sny(p)g(s,p)P(p)dp. (6)

has been “wetted” with as; cluster[probability slnsl(p),

wherens (p) is the number of, clusters per sifg another IHe”’j P(p) is the density of 'E or thﬁ_ part 9f| ';he S_itesf be-
neighboring site has been “wetted” withs cluster[prob- onging to an IC andj(s,p) is the combinatorial function for

ability s,ng (p)], with increasing the fraction of occupied a finite and an infinite clusterg. . .
218y ’ As the next step, the following balance relationship can be

sites (transition from{p} to the {p+dp} subensemblethe  \yritten:
considered site becomes occupféte conditional probabil-

ity according to Eq(1)]. Nng(p+dp)—Nny(p)=N[PIH 4 p@*)
Moreover, two given clusters placed in neighboring sites
should not intersect with each other nor with any third clus- —Pi ) —pEI—pEI ()

ter. We introduce a combinatorial functigg s (p) by means _ _ _ _ o
of which we take into account the above circumstances. This After simple mathematical transformations in the limit
function is defined as a number of mutual arrangements dfP—0 we find the system of ordinary differential equations
all cluster pairs of sizes, ands, at two sites neighboring to  for the number of finite clusters,

an arbitrary nonoccupied site of the considered lattice when

the clusters do not intersect with each other nor with any %%2 D
third cluster. The number of this arrangements is averaged dp s +&71-s
over all sites of these clusters and over all sites of the Iattice.

[9s,s,(P)S1Ns (P)S2Ns (P) ]

Then, the following expression can be written for the prob- +2(1-p)* H(s—Dns1(p)

ability of s-cluster formation at an arbitrary site of the lattice o

through the first way: —2sns| 2, (s (PIsans,(p)]+(1-p)* !
=

(1+) —
p{ 221 Os,s,(P)S1Ns (P)SoN (P)dp.  (2) . g(s,p)P(p)]. @

Here factor 2 appears because wetting of each of these two
sites with aforementioned clusters is equivalent.

An important detail should be outlined. As can be seen
the formation of as cluster through the first way will be
possible if not one, but for example, three neighboring site
near the considered site belong to the sameluster. This

and similar situations are taken into account by means of thR/vo different ways of increasing the IC densitj: joining of
functlonsgslsz(p)._ N an arbitrary finite cluster to IC an@i) joining of one of the
By analogy with Eq.(2), for the probability of the sjtes along the IC perimeter. Whers aluster joins IC, the IC
s-cluster formation through the second way, we can write density increases bys¢ 1)/N. We find, by analogy with Eq.
(8), the following equation for IC:

The developed approach can be applied to an infinite clus-
ter. This will permit us to obtain some information about
functiong(s,p). We emphasize that with increasing the frac-
tion of the occupied sites, an increase in the fraction of sites
%elonging to IC and not the formation of new ICs occurs.
With account for the first-order processesdp, there are

PET~2(s—1)ng_1(p)(1-p)*~'dp. 3
dP ~ E z—1

Herezis the coordination number of the lattice. We note that d—p~2p(p) & g(s,p)(s+1)sny(p)+(1—p)* *|.
in Eqg. (3) only the most essential term is retained; the situa- 9)
tions in which two and more sites nearest to the nonoccupied
site belong to the §—1) cluster are neglected since their  The correlation length tends to infinity at the percolation
probability is proportional tq(s—1)ns_4(p)]™ wherem  threshold. This means that the macroscopic parameters of the
=23,...zand —1)ng_4(p)<1. system in the vicinity of the percolation threshold become

A decrease in the number of theclusters is possible independent of any spatial characteristics. In this case, it is
owing to the joining of these clusters with any finite clusterimportant that such small-scale properties of the system as
or a single site belonging to the perimeter of theluster.  the structure of finite clusters have no substantial effect on
This is also possible due to the attachment ofdletuster to  the behavior of the system, in particular, on IC. Therefore,
the IC. The probabilities of a decrease in the number okthe we suppose that in the vicinity of the percolation threshold
clusters via three aforementioned ways are, correspondinglthe IC structure is important, first of all, for the function
the following: g(s,p) and this function has only a weak dependence on the
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properties of finite clusters. This means tlgds,p) can be old £ is also very large. For the density of IC near the thresh-

factorized near the percolation threshold, old, the well-known scaling relation can be used
9(s,p)=~01(5)92(p), (10 P(p)~Cpy(p—po)”. (16)
and g;(s) depends only slightly ors. Here g,(s) corre- The main problem consists in the determination of the

sponds to the layout of the finite cluster aggip) to the IC  form of the functiong(s,p). This will be made below.
layout.

As lim,_p +09(s,p) =0, we suppose that the following |\, cOMBINATORIAL FUNCTION AND THE CLUSTER
power law is valid: SIZE DISTRIBUTION IN SUPERCRITICAL

N PERCOLATION
92(P)<(P—Pc)™. (11)
Then, taking into account EqgL0) and(11), we conclude

that in the vicinity of the percolation thresholdp( p,|
<1) on the right-hand side of Eq9) the termE{S}szns(p)

A. Basic relationship for g,(s)

Turning to the definition of functiog(s,p), we can write
the following relationship:

x(p—pc)~ 7 dominates, wherey is the mean cluster size ;(13)+;(23)+ .. +;§S)
exponent. Then, for the IC density from E®) we have g(s,p)= S
dP CING! €]
—xP —p )M, 12 ay’tay’+ta
dpoc (P)(P—Pe) (12 ~g,(p) < s (17)

This equation has three qualitatively different solutions —9) - ) )
corresponding to the cases<y—1, A=y—1, and\>y Herea,, is the number of possible allocations of thelus-

—1. The correct power-law-like solutidiP(p) = (p—pc)*?] ter near a site belonging to the IC perimeter, which is aver-
is obtained only withx =y— 1. Forg,(p) in this casé we @agedover allthe IC perimeter sites provided thatsthkister
find ' does not intersect with IC nor with any third cluster. In cal-

culatingE(n?) , it is necessary to displace tbeluster over the
go(p)=(p—pc) . (13)  lattice so that itsmth site (m=1, ... s) will be a nearest
) ) o neighbor to a site belonging to the IC perimeter.
Next, consider the behavior of finite large clusters above  sjnce the dependency gfs,p) onsandp in the consid-

the percolation threshold fgp—pc|<1 with the aid of the  greq case separates, further we can deal only with«{fle
system of equation&) and relationg10) and (13). values.

For the 6+ 1) cluster, it is possible to write
Ill. STATEMENT OF THE PROBLEM
a(s+1)+ a(25+1)+ o+ a(s+l)

Let us consider a situation in the vicinity of the percola- (s+1)= s+l (18
. . » 91 1
tion threshold above the latter, i.e., the case of supercritical S
percolation. As the first approximation, we suppose that the ) ] ] )
change in the number of clusters in supercritical percola- It is obvious that the following relationship should be sat-

tion is determined only by the “interaction” o§ clusters isfied:

with the infinite cluster. According to Ed8) it means that (s+1)_ (8 a(s+1)

for determining the cluster size distribution, the following ay = ay = Oy, (19
equation will be solved:

wherem=1,2, ... s and 6" is the decrease in the aver-
Ng age number of possible allocations of thecluster in the
d—pm—ZSnS(p)g(s,p)P(p). (14 neighborhood of IC whers-cluster size is increased by 1.

Relation(19) reflects the fact that certain combinations of the
It should be noted that a solution is sought in the limit of Mutual allocations of the finite and infinite clusters, which

larges values. The boundary condition for E44) should be ~Were possible earlier, become prohibited because the site
set in a percolation threshold. It is known thag in the added to thes-cluster will superimpose on the sites already

percolation threshold behaves as follo#g,13: occupied by other clusters. _ _
Substituting Eq.(19) into Eq. (18), we obtain the basic
Nglp— p.=Cs ", (15  relationship forgy(s):

. a(ls)_ 0(ls+ 1)+ S a,(ss)_ 0gs+ 1)+ as:rll) s
s+1)= -
gu(s+1) s+1 s

where 7 is the Fisher exponeiffi,14] and C is the constant
independent o§. It should be noted that the power lad5)
holds for clusters of a linear exteRs<¢, where ¢ is the (s+1)
correlation length. Using Eq15) as boundary condition for _ S " Fs+1' 0
large clusters is justified because near the percolation thresh- =01() s+1 s+1 s+1°

(20
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6
ga(s+ 1)_91(5)~_g- (22)

Expanding the functiog,(s+ 1) into the Taylor series in the
neighborhood of (s>1) , we derive the ordinary differen-
tial equation:

dgi(s) 0
ds s @3

In this case, the boundary condition for functigr(s)
must be written on the “right boundary,” i.e., fa—o. For
compact clusters, the boundary condition takes the form

FIG. 1. Examples of compadeft) and noncompadtight) clus-
ters for the honeycomb lattice. J1ls==0. (24

Here 6=(35,_,6%) is the total decrease in the number of It means that a very large compact cluster cannot be placed

possible allocations of the cluster in the neighborhood of adjacentto IC. In the case of noncompact clusters, the latter

IC with increasing the size of the former by 1. assertion is controversial. Therefore, the boundary condition
To estimate the order of magnitude &fsimple numerical ~ for such clusters is written as follows:

simulation has been carried out. A two-dimensioK2D)

square lattice is filled with occupied sites in a random way 91|s:s0:C0- (25

with a prescribed probabilityp(|p—p¢/<1). An infinite

(percolation cluster is found on the lattice and is labeled. A Formula(25) can be interpreted as a boundary condition for

sufficiently large finite cluster of a given size is generated orfinite clusters of a maximal size, i.e., $>sy, theng;(s)

another(unoccupiedl lattice. After that, each site of this clus- =0. This means that i§>sy, such a cluster on the given

ter is placed successively onto vacant sites adjacent to tHattice is an infinite one. It should be noted that genersdly

perimeter sites of IQrotations of a finite cluster were also depends on the lattice size. Here, exact numerical values for

considereg Thus, all sites of the IC perimeter have beens, and Cy are of no significance. It is important only that

traced. The number of combinations when the finite clustethese values are positive.

completely lies on empty sites of the lattice has been calcu- Returning to Eq(23), we write its solution with boundary

lated. Further, one site is randomly added to this cluster, andondition (25):

all the operations are repeated once again with the same IC.

This allows us to estimate the values of batff™ and

GS“). From the results of simulation it follows that)

|a$*Y|> |65 Y)| and(ii) for s>1 the value ofd practically

does not depend aom These results will be used below. Substituting Eqgs(10), (13), (16), and(26) into Eq. (14) and
We consider two qualitatively different cases: clusterstaking into account the boundary conditiéhb), we obtain

with a small number of self-intersectiofisoncompagtand  the following expression fong(p):

compact clusters, i.e., the clusters with a minimal possible,

or close to a minimal, surface at a given cluster size. The . S iy

examples of compact and noncompact clusters for the case of ng(p)~Cys” "exp — 5 {1+0(s™ ")}, 27

a honeycomb lattice are presented in Fig. 1.

01(8)=Cpy+In

So\ ?
;) . (26)

whereC, is constant and
B. Clusters without self-intersections

. . . . s~ (p—po) A (28)

First of all, we consider a simpler case of clusters without
self-inte_rsect_ions. Here, each site of a clus_ter makes approxi- The quantitys, in Eq. (27) is known as the “crossover
mately identical contribution to the functiog;(s+1). It gjze” [1,11). Since large clusters are fractal objects, the
means that crossover size and the correlation lengtare related as;
«¢P, where D is the fractal dimension of the IC fop
=p.. Since the correlation length near the percolation
threshold behaves @s<(p—p.) ~”, the following expression

From Egs.(18) and (21) it follows that for noncompact for D from Eq. (28) is obtained:D=(y+ 8)/v. This is a
clusters the relationshipgi+11)~91(5+ 1) is valid. Substi- well-known result[1,15. We note that the case of clusters
tuting this relationship into Eq20) and performing simple without self-intersections formally corresponds to the Bethe
mathematical transformations, we obtain the following equaiattices. Then it follows from Eq27) that we have obtained
tion: a correct critical exponent for these lattices 1 [1].

a(ls+l)%a(25+l)% . ~~a§+1)~a§i+11). (21)
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C. Cluster with a small number of self-intersections

Now let us consider the case of noncompact clusters with dg;
a small number of self-intersections. Here, the sites that are

enclosed with occupied sites on all sidés., internal sites
of a clustej will not contribute to the functiorg,(s). We
define the quantity) as the ratio of the number of cluster

PHYSICAL REVIEW &6, 016124 (2002

1
- 1Ud_
A(s+ 1) 1 0

~ g1(s)— .
_ - 1/d
s+1 A(s+ 1)

(33

s+1 A(s 1)

sitess,, which have one or more vacant neighbor, to thegquation (33) is solved approximately with the boundary

total number of sites in the clustefl =s,/s. Along with a

condition (24) for subcritical dimensionalities of the space

cluster perimeter, this quantity is a measure of the clusteg=2 to 5. Generalizing the obtained solutions the following
surface. Ass is large, we suppose that the sites that contribaxpression fog,(s) can be written:

ute to g4(s) are characterized by approximately equal
contributionst Then, taking into account E¢18), we have

gi(s+1)
§P~—5— (29
Substituting Eq(29) into (20) and carrying out simple math-
ematical transformations, we obtain the following equation:

dg; n

ds s—7g (30

0
gl(s) s— 7 ’
where »=(1/Q2) —1. For compact clusterg>1 while for
noncompact ones with small number of self-intersectigns
—0 and »=0 for clusters without self-intersections.

The boundary condition for Eq30) is similar to condi-
tion (25) for Eq. (23): 91|s=sO:C6- Solution of Eq.(30) for
fixed » can be written as follows:

7
et

el
Taking into account Eqs(10), (13), (14)—(16), and (31)
along with the relationship ligy,o(1—x"7)/n=Inx, fol-

C’+6
" g

S,
So— 7

So— 7
S—7

91(5)~(

lowing expression for the case of small number of self-

intersections can be written:

1-7

ns(p)~CisTexp<— {1+0(s™ 9}, (32

S¢

whereCj is constant and; is the same as in E¢28).

D. Compact clusters

(d—1)A%0
d

gi(s)~Aps M+ s 24+0(s3). (39

Then from Eqgs(10), (13), (14)—(16), and(34) for ny(p) we
have
gld—1)/d A(d—1) gld—2)/d

S¢ d s¢ |’
(35

ng(p)~Cjs™ " exp( -

whereC] is constant and, is the same as in E¢28).

It follows from expressiong26), (32), and (35) that for
fixed p and larges the number of clusters with a greatar
will be smaller in comparison with the number of clusters of
the same size but having a smallér Hence, in supercritical
percolation the majority of large finite clusters located on a
lattice will be compact, and the cluster size distribution will
be determined only by expressid&5). It should be noted
that Eq. (35 without the second term in the exponential
function is a widely used empirical expression for the cluster
size distribution in supercritical percolatidf,16]. This re-
sult agrees also with the results of numerical experiments
[17] and the exact inequalities are proven in R&8].

V. NUMERICAL SIMULATION

To verify the predictions of the preceding section, Monte
Carlo simulation for a site problem has been carried out on a
periodic 2D square lattices with sizBis= 100 and 1008 for
p=0.59 274 621(the percolation threshold 9]), 0.60, 0.62,
and 0.64, and on 3D simple cubic lattices with siZés
=50° and 106 for p=0.3 116 08Qthe percolation threshold
[20]), 0.320 and 0.340. The boundary conditions for all the
lattices are free. For each combination d¢f,p) from 2

Let us consider the case of compact clusters using th&10° to 2x 10’ histories were treated. The central pro-

drop model. ThenQ~A(s+1) Y and »~1/A(s+1)Y
—1, whered is the spatial dimension andl=27%%/T'(d/2)

cessing unit time on a dual-processor Pentium 1ll computer
with 800 MHz processors was about 2500 h.

is the surface area of a sphere of a unit radius in For numerical simulation, the well-known Hoshen-

d-dimensional space. Then E@30) takes the following
form:

Kopelman cluster-labeling algorithf21] has been modified.

It was supplemented with the possibility of calculating not
only the size of any cluster but also the number of sites with
one or more vacant neighbors, i.e., of determining the quan-

we may assume that each cluster site makes a contribution to tH&Y 2. It turned out that this value f@>1 lies in a narrow

function g4(s) and this contribution is proportional to the number

range(Fig. 2). Thus, for a 2D square lattide =0.82—-0.86 at

of the vacant sites adjacent to the given site. Unfortunately, thi9=0.60 and, respectivelyy=0.78-0.84 in Eq/(32). This
additional assumption does not give anything new since additiondndicates that the occurrence of large clusters with a
information about the structure of finite clusters is necessary fobranched surface is a rare event for supercritical percolation.

using it.

This result agrees with work®2], where it has been shown
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d FIG. 4. Verification of the cluster decay |a®5) for a 2D square
lattice as plot of 1ing(p)/ny(ps)] versussY? For solid curvesN
=100C, for dashed curvebl=10C".

FIG. 2. Number of clusters per site as function of their sizes an
values of() on a two-dimensional square lattice fpr=0.60 and

N=100".

_ o . lowing coordinates: abscissas? and ordinate
that the perimeter distribution function narrows t@4dunc- |y (p)/inyp,)]. Results of Monte Carlo simulation for square
tion if s—oo. All the aforesaid confirms the conclusions of |attices of various sizes are presented in Fig. 4, where it can
Sec. IV about the cluster size distribution law. be seen that the linear dependence in these coordinates really

To verify formula (32) Monte Carlo simulations have takes place. As is seen from Fig. 4, the straight lines corre-
been _carne_d out on a 2D square lattice. For this purpose, tI"@ponding to the samp but different lattice sizes. differ
quantity () is divided into 100 equal parts. For example, the gpproximately twice in logarithmic scaleEstimating the
value()=0.78 is assigned to all the clusters for whidflies  gcaling effects for the investigated problem we have found
in the range 0.780.005. The results of simulations are pre- that these effects can introduce an error that is not more than
sented in Fig. 3. It can be seen from the Fig. 3 that thej_29,. Really, the displacement of a percolation threshold on
behavior predicted by formuled?) is the case. the lattice of finite sizeL has the order ofp.(L) — p¢(=°)|

The fact that all large clusters are characterized by the_ 1/ » |n the case of exponential dependence of cluster
sameX) for fixed p allowed us to use the standard Hoshen-pnymbers on a cluster sifEq. (35)] the correction on scaling
Kopelman algorithm for verifying Eq(35). It should be (in logarithmic scalg is A{In[ng(p)/ns(pc)]}~stL~C. For
noted that in the two-dimensional case the last term in th‘?nvestigated lattice sized (~10P—1C%) and cluster sizess(
exponential function of Eq(35) is independent o$. There- ~10P—1C%) the upper estimation for this cor-
fore, the cluster size distribution should be linear in the fol-

T T
o 4
% K =
a A%, =
< 2k d s-a=1] =
= &% =
E,,, \o N e-0.9 )
», 7]
a R \.\ %0?0 0-0.85 =
& Yoy %®xr =
= -4t \ -, ¢ 4
p R
i= <
-6 1 1
0 100 200
s7

FIG. 3. Verification of the behavior of the cluster sizes predicted FIG. 5. Verification of the cluster decay la(85) for a simple
by Eq.(32) as plot of Iin(p,Q)/nyp..Q)] versuss:~7 ( where 3D cubic lattice as a plot of [n(p)in(p)] versus s
=(1/Q) - 1), for differentQ). For solid curvep=0.60, for dashed + (87/3)s'®. For solid curvesN=10F, for dashed curves
curvesp=0.64. N=50°.
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rection is 1-2%. The discrepancy between the numericdinear dependences is observed than in the case of g&thg
data for various sizes of a lattice is explained by a smalbs the abscissa for the aforementioned distribution.
absolute value of cluster numbers for lagEL6]. Thus, for
number of histories-10" an absolute error of determination
of cluster numbers is-104—~10"°. For larges this error is

VI. CONCLUSION

comparable to cluster numbers. For moderatelyf.n.ltg tg'ssiﬁzefrc’)rtie Sé?grs.:!gz: bg?ggll':tro%f :]ges ngeisn cholr?;,'g de-
s (~100-300 the relative errors are 10-20%, and for Iargeéréd ItLijs demonstruart)ed olnlce af) ain thallt the cluster surfacle is
s (~1000) they reach 50—100%. It should be noted that in ’ 9

spite of a large relative error, the linear dependence of averQf primary importance for the cluster behavior. The sug-

age cluster numbers in coordinates mentioned does tak%e.Sted approach has allowed us to consider fr<_)m the general
place. point of view such a characteristic of a percolation system as

In the case of three-dimensional lattices, the second teriihi€ cluster size distribution above the percolation threshold.

in Eq. (35) is no longer constant. In the range of the clusters he next logical step in this direction should consist in.the
sizesé~ 1P—10F the second te.rm is comparable with the replacement of the drop model for compact clusters with a

first one in the order of magnitude. To verify relationship (r;c’tﬁfsrga“srg;crﬁc\ﬁiﬁl'al\llgsvSbueﬁfe?sfnfjh;tsgggir cfiien\:jelsoopl\r/?r?nt
(35) for a simple 3D cubic lattice, we also plot the cluster PP 9 9

size distribution in special coordinates: the abscis4a
+(87/3)s*® and the ordinate [myp)/n{p)]. As is seen

a number of problems of the percolation theory.
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