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Random geometric graphs
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We analyze graphs in which each vertex is assigned random coordinates in a geometric space of arbitrary
dimensionality and only edges between adjacent points are present. The critical connectivity is found numeri-
cally by examining the size of the largest cluster. We derive an analytical expression for the cluster coefficient,
which shows that the graphs are distinctly different from standard random graphs, even for infinite dimension-
ality. Insights relevant for graph bipartitioning are included.
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[. INTRODUCTION Recently, continuum percolation has been used in the

study of the stretched exponential decay of the correlation

The interest in complex networks has exploded over thdunction in random walks on fractals and the conjectured
last five yearg1,2], where data on very large networks suchrelation to relaxation in complex systeni81]. However,

as the world wide wep3-5], collaborations in the scientific continuous systems in general and RGGs in particular are
community [6], transportation[7], movie actor collabora- relevant whenever we need a multidimensional system with

tions[8] etc., have become accessible. a metric, as for example when modeling the spread of dis-
Random graphs are often used to model complex neteasei3_2]- _ _ _ _
works[9]. Ever since Erdsand Rayi’s groundbraking work In this paper, we study RGGs in arbitrary dimensions. In

more than forty years agd0], intense theoretical research low dimensions the systems are dominated by local interac-
on random graphs has been taking plp¢d1—13. In con-  tions. For higher dimensions RGGs are usually believed to
trast to random graphs the interactions between the sites inaPproach standard random graphs, which we show is true
lattice are usually between nearest neighbors, reflecting @nly in some respects. We focus on “phase transitions”
myopic world. Lattices are therefore often said to be at thd13,33,34 at the percolation threshold by looking at the size
other end of the spectrum of network modglg,15. of the largest cluster, and we determine how the value of the

Properties of real networks such as robustrd$s17, critical parameter in RGGs approaches that of random graphs
growth[11,18—20, and topology have attracted much atten-as the dimension increases. We also extract the distribution
tion, primarily from physicists. It has been consistently Of cluster sizes in the critical region. Furthermore, an expres-
shown that many of the networks possess small world chassion for the cluster coefficient, a quantity that has attracted
acteristics[8,21,29. Like random graphs, small world net- much interest in network theory recently, is derived. Results
works are characterized by short average distances betweéglevant for graph bipartitioning are established. Finally, we
any two sites, and by a high degree of localness, much like ifliscuss how to implement random geometric graphs effi-
lattices. However, individually, random graphs and latticeciently.
models in their pure forms are poor models of many real The layout of this paper is as follows. In Secs. Il and Il
world networks. One could argue that high-dimensional latWe describe random graphs and random geometric graphs,
tices have the necessary high clustering and low average patfispectively. In Sec. IV we present our results and Sec. V
length, though this has not been explored m[@8]. In the ~ contains the details regarding the implementation. Finally,
present paper, we provide results on high-dimensionaive sum up in Sec. VI.
systems.

A random geometric graptRGG) is a random graph with
a metric. It is constructed by assigning each vertex random
coordinates in a-dimensional box of unit volume, i.e., each  Random graphs consist &f vertices(points/sites andK
coordinate is drawn from a uniform distribution on the unit edges(lines) where each possible edge is present with prob-
interval. RGGs have been used sporadically in real networkability p, i.e. K=pN(N—1)/21 To keep the discussion inde-
modeling [24] and extensively in continuum percolation pendent of the system si2¢ graphs are often characterized
[25-29, but almost exclusively in two and three dimensions.by the connectivitydegre¢ a=2K/N=pN, i.e. the average
Although RGGs are the continuum version of lattices, theynumber of connections per vertex, insteadkodr p. As the
deserve some attention of their own, since percolating coneonnectivity increases clusters of vertices appear, where a
tinuum systems display behavior that lattices are incapableluster consists of all vertices linked together by edges, di-
of [30]. In addition, the connectivity in RGGs can be in- rectly or indirectly.
creased in a more natural way than by adding new bonds The size of the largest cluster in the macroscopic limit
randomly in lattices.

Il. RANDOM GRAPHS

1From here on we considét=N—1 in accordance with the lit-
*Email address: j.dall@fysik.sdu.dk erature[4,35], since we are only investigating large systems.
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FIG. 1. The size of the largest cluster in random graphs as a  ° 0.25 0.5 0.75 !

function of the connectivity. Note that fod>10° the Monte Carlo FIG. 2. A 2D random geometric graph witth=500 anda=>5.
data are almost indistinguishable from the theoretical result in Edype graph is bipartitioned—see Sec. IV E. There are no edges

(3). Error bars are not shown since they are in all cases less than theoss the boundaries, i.e., the boundary conditions are open, not
width of the lines. Inset: A closer look at the percolation threshold.yntinuous.

a.=1.
. . I1l. RANDOM GEOMETRIC GRAPHS
N—oo can be calculated analyticalj£0,12. It is NG(«),
where A d-dimensional RGG is a graph where each of the
vertices is assigned random coordinates in the g]9,
12 pnt and only points “close” to each other are connected by an
Gla)=1-= > (™ )", (1)  edge. The degree distribution of a RGG with average con-
o n=1 . . .
nectivity « is therefore given by Eq4) as well. However, a
RGG is a special kind of random graph with properties not
captured by the theoretical tools mentioned above. For one
thing, the probability that three vertices are cyclically con-
nected is different in random graphs and RGGs, regardless of
the degree distribution of the random graph.
RGGs are sometimes named spatial graj@sFigure 2
we can invert Eq(1), getting illustrates a RGG in two dimension&D). As in lattices,
different boundary conditions can be applied. We will see
1 that toroidal(continuou$ boundary conditions make a vital
a(G)=—5In(1-G) (3)  difference compared to having open boundary conditions.
The volume of a-dimensionalhypenpsphere with radius
ris

n!

By the use of12]

nnfl

n!

x"ex=ye Y, (2

y=2>
n=1

from which it is trivial to show thatr.=1. With Eq.(3) itis
an easy task to plot the fraction of vertices in the largest

cluster—the giant component—as done in Fig. 1, where we v _ w4 (5)

see the prototype of a phase transition in combinatorial prob- sphere™  [q4+2\"

lems. T

In random graphs the probability distribution of edggs

is binomial wherel’(x) is the gamma function. This volume is needed in

N K order to find the edges in RGGs.
pk:( )pk(l_ p)N K= a’e (4) To “visualize” a RGG in general, one can think of a box

k ki filled with small spheres with radiusand volumeV given

by Eq.(5), where points are connected by an edge only if the
where the approximation resulting in the Poisson distributiordistance between their centers <&2r, i.e., if the spheres
is valid for large systems sizé, which is exactly the limit  overlap. Since the total volume of our box is 1, the probabil-
in which we are interested. The critical connectivity for ity that two arbitrarily chosen vertices are connected is equal
graphs with arbitrary random degree distributipnhas re-  to the volume of a sphere with radié®s=2r. In continuum
cently been derived by other technigues than those originallpercolation theory this volume is denoted #wcluded vol-
leading to Eq.(1) [4,36,37. Unfortunately, we cannot use ume \,,, whereV,,=2% in a RGG. The excluded volume
these results in connection with random geometric graphs, ds the basic quantity of interest because it is directly related
will become clear in the following section. to the connectivity

016121-2



RANDOM GEOMETRIC GRAPHS PHYSICAL REVIEW E6, 016121 (2002

0.5 T T T T 1

1

0.8 0.8

0.6 0.6
G

0.4

o
S

0.4

0.2 0.2

o
w

critical distance R
o
o

o
iy

N

FIG. 3. The critical distance in random geometric graphs in  FIG. 4. The average fraction of vertices in the largest cluster for
various dimensions. Points within this distance of each other argarious system sizel (see the legend in Fig.)5n random geo-
connected by an edge. The critical distance is equivalent to thenetric graphs with no edges across the boundaries. The inset in 2D

radiusR of the excluded volume associated with each point. illustrates a finite size scaling—see the text. In higher dimensions
the general shape of the curvesNéncreases is nontrivial. Com-
a=Np=NV,,, (6)  pare with Fig. 5. Error bars are 10~ for all curves and therefore
omitted.

from which it is clear why the connectivity is frequently

called the total excluded volume of the system. Equat{ns tion of the dimension of the RGGs.

and(6) give us In this paper, we express our threshold values in terms of
a. Other popular choices are the fractional volumeccu-
pied by the spheref30] or the densityN of spheres. The

() relation between these parameters at the percolation thresh-
old is

1 1/d

Jr

Figure 3 shows the radiuR of the excluded volume as a
function of N/a=1/p=1N.,. R decreases monotonically:

for a given connectivit_ya the spheres have to become (see e.g. Ref[25] for a derivation. Usually, in continuum
smaller when more vertices are added to the graph. percolation the volumd of each sphere is fixed whil is
Equation(7) provides us with the requwgd relation be- e independent variable in a system of sjgeL]%. The
tweena gndR when creating a RGG. The distance betweer_‘approach of measurinly, or s, for various values of. has
every pair of _vertlces_ must be CalcuIaFed, and an ed_ge iBeen used in both twfB9] and three[38] dimensions, i.e.,
added if the distance is less thBnThus, it seems unavoid- for discs and spheres, where the critical values are deter-
able to have a runtime oD(N?) making it unfeasible t0 mined by the use of finite size scaling. This procedure re-

investigate as large systems as with random graphs—see Figamples site percolation in lattices. From the previous sec-

create all the edges 8(N). To overcome this obstacle we nercolation in lattices by fixing-=1 while tuning  for
have designed a data structure that is described in Sec. Vifferent values ofN. In Sec. V we describe how this has
study RGGs with up tdN=4>4x10° vertices, which is
more than an order of magnitude larger than usually accom-
plished[38].

d+2
2

o

R=7ZIN

ac=NcVex= —2¢ In(1-s;) ®)

A. The size of the largest cluster

Let G4(a) denote the fraction of vertices in the largest
IV RESULTS cluster ind dimensions. Since a RGG in the limit of infinite
dimension is often assumed equivalent to a random graph,
In our simulations of RGGs we definge. to be the lowest we expect that Eq(3) provides us with an expression for
connectivity at which the fraction of vertices in the largestG.,(«). But what doesG4(«) look like for finite d? And
cluster is>0 in the macroscopic limit. We make the bold what is the behavior of.(d)? How does it approact()
claim that the systems we are able to analyze consist aisd increases? These are the questions addressed in this and
enough points to make the critical connectivity almost ashe following section.
sharply defined as in Fig. 1. However, our main purpose is Figures 4 and 5 illustrate the average size of the largest
not to derive high precision percolation thresholds. Insteadcluster in RGGs in 2, 3, 4, and 5 dimensions with and with-
we are more interested in the critical connectivity as a funcout toroidal boundary conditions. The curves correspond to
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TABLE 1. The critical connectivitya, in random geometric
graphs of dimensiom with continuous boundary conditions. The
data are plotted in Fig. 6. The estimated errorgrin the last row
are rather conservative.

d 2 3 4 5 6 7 8

a. 4.52 2.74 2.06 1.72 151 1.39 1.30
* 0.01 0.01 0.02 0.02 0.02 0.02 0.02

of Fig. 5 we can estimate. for d<5. To obtain further data
points we have to run our algorithm on RGGs with=41°

for systems of larger dimensions as well. Though this results
in increased runtime per graph, the results get more homo-
geneous and fewer runs are needed in order to get a decent
estimate ofG4(«). Our findings presented in Table | and Fig.

6 strongly suggest that

FIG. 5. Like Fig. 4 but withcontinuousboundary conditions. d)=a.()+Ad"” 9
We see that the point at which the largest cluster becomes macro- () = ae() ' ©
scopic is sharply defined and can immediately be determined by th@/here al(®)=1, y=1.742), and A=11.7§5). As ex-
eye with high pre.cision(.Tava.s ). The overall b.ehavior of.the _ pected, Eq(9) predicts thatr () is equal toe, in random
graphs for higher dimensions is much closer to Fig. 1 than Fig. 4 ISgraphs, confirming that RGGs and random graphs become
As dincreases ther interval where there is a significant difference ,qre and more similar ad increases. However. when we

between curves with differeM get smaller and smaller. Error bars yejye the cluster coefficient, we will see that this is not true
are <102 for all curves and therefore omitted. in all respects

N =4 vertices withk=5,6, . . .,11, where the larger systems  Finally, we note that our findings are in accordance with
display the sharpest transitions. The legend in Fig. 5 applie§!® most precise estimates that we know af,
to all diagrams in Figs. 4 and 5. In these eight diagrams eacfr4-51223(5)[29] and «=2.734(6) [38] in 2D and 3D,
curve is based on 300 data points. In other wolg«) is  'espectively, obtained by the use of finite size scaling. For
calculated in intervals of «=0.005 resulting in the smooth d>3, we have not been able to find any estimateaofo
lines in the figures. For every data set we have averaged ovéPmpare with[40].
enough runs for error bars to be completely negligible. S _

Since continuous boundary conditions mean addition of C. The distribution of cluster sizes

extra edges, the size of the largest compor@() obvi- Having examined the size of the largest cluster and the

ously grows faster in Fig. 5 than in Fig. 4, especially in thecritical connectivity, we now look at the distribution of clus-
smaller systems. These relatively few extra edges make @r sizes in RGGs.
decisive difference, connecting vertices not already in the
same cluster. Since toroidal systems are models of bulk sys-
tems, G is much lessN dependent in that case. However,
“unphysical” RGGs with open boundaries may seem that
they are the most popular RGG versions in the literature.
Consequently, we consider them alongside the continuous
case. T
From Figs. 4 and 5 we see that the continuous boundarygo
conditions make the transition whe@>0 is more abrupt, Il ]
but that an estimation o, does not depend much on the %
boundary conditions if only we base our judgment on large
enough systems. This is confirmed in the inset of Fig. 4,
where a;=4.53 is obtained by finite size scaling, i.e., plot-
ting G(x), wherex=N""(a—a,). However, it is clearly
easier to make precise estimates of the critical connectivity
with than without continuous boundary conditions. We note 0.1 s s . : 0
in passing that the exponent=3 is equal to the value of Dimension d
found in random graphfl3].

10

FIG. 6. Scaling of the critical connectivity as a function of the
dimension of the random geometric graphs reveals a power-law
relation[Eq. (9)]. Ford<5 the data points are estimated by close

With numerically obtained knowledge &(«), it is pos-  inspection of Fig. 5. Fod>5, «. is based on runs witt =4
sible to extracte.. The procedure is simple. By inspection points. Error bars are included. See Table I.

B. The critical connectivity
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FIG. 8. The cluster coefficient in random geometric graphs.

FIG. 7. The distribution of cluster sizes in 3D random geometrlc.l.he full line is the asymptotic solutiofEq. (13)] valid for larged

graphs withN= 1000 vertices in the vicinity of the critical connec-
tivity a.=2.74. The inset shows that far= «, the cluster sizes are
given by a power law. For each value @fthe data points are based

on 16 graphs. To determineC4 we make use of concept of the excluded

volume V,,. If we again use the verticasj, andk, theni

The inset illustrates the scale-free power-law distributionand j must both be within the excluded volume kf Put
at a=2.6. Right belowea,, clusters of all sizes can be en- differently, the probability that andj are connected is equal
countered. The small hump at large cluster sizes is alway® the probability that two randomly chosen points in a
present because the clusters cannot contain more than all sphere of volumé/, and radiusR is less than a distande
the vertices. The clusters pile up when their size approacheapart. In other words, given the coordinates of veiitéke
this boundary, in this case a cluster size of 1000, just belowprobability that there is an edge betweeand]j is equal to
the inevitable cutoff. the fraction of the excluded volume of vertexhat lies in-

Our simulations show that fo# significantly belowa,  side the excluded volume & By averaging over all points
the distribution is approximately exponential. As the connecin V4, we get the cluster coefficiel@, .
tivity increases the distribution becomes power-law-like. As  The task of calculatingCy is considerably simplified by
«a is further increased the distribution is separated in twahe spherical symmetry of the problem. The fractional vol-
parts; there are no clusters of medium size, only the largestme “overlap” py of two spheres only depends on the dis-
macroscopic cluster and a few small ones around it. We havi&ncer between the centers and not on any angular parts, i.e.,
observed this overall behavior in all our tests of the distribu-pg= pq(r). In general, the cluster coefficient can therefore be
tion of cluster sizes in various dimensions. written as

Figure 7 shows our data in 3D. Far=2.1 (-) the data
points lie on an almost straight line indicating an exponential
distribution. Increasing the connectivity =2.4 (A) re-
sults in a broader distribution that is no longer exponential.
Right at the critical connectivity@) the distribution flattens In the Appendix, we derive that
out. Clusters of all sizes are observed. Right abeyé€ ¢ )
two separate regions begin to materialize. Alreadyaat c _[1_Hd(1) even d

4=

1
Cd=—f pa(r)dVv. (10
Vex Vex

=3.3 (x) the largest cluster makes it highly unlikely that a 2 _Hy(%) odd d, 1D
cluster of medium size can be present as well. The distribu-
tion is cut in two. where
D. The cluster coefficient 1 92 gy (3|t
o Ho(0=—= 2>, —(—) : (12
In network theory the cluster coefficie is an often Jri=x [, 1\\4
calculated quantity1,21,23, which is defined in the follow- F( + E)

ing way. Let the vertices andj be connected directly to a

common vertex. C is then the probability that vertexand ~ Whend is large, Eq.(11) reduces tqsee the Appendijx

vertexj are directly connected as well. From this we see that

the cluster coefficient is a measure of the “cliquishness” of C.—3 [ 2 (3)(d+l)/2
72N 7d

the graph. In this section, we deriv@=C, analytically in 4 (13
arbitrary dimensionsl, showing thatC4 decreases in an ex-
ponential fashion. The cluster coefficient is plotted in Fig. &() together with
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the asymptotic solution in Eq13) (full line). TABLE II. The critical connectivitya$®” in random geometric
Equation(11) shows that the cluster coefficient is a purely graphs with toroidal boundary conditions. Only in 2D d@gBP

geometric quantity depending On|y on the dimensibm]ei_ depend noticeably ON for-N>1000(See Fl%5. Note that without

ther the connectivityr nor the system sizhl are present. In  continuous boundaries Fig. 4 shows thg®”is highly size depen-

random graph€= a/N, since there is per definition no cor- dent ford>2. The estimated errors in°® in the last row are on

. ' . . the safe side.
relation between edges. So, in contrast to what is usually

believed, RGGs ar@ot identical to random graphs when d > 3 4 5
d—oo.

In higher dimensions, the cluster coefficient in RGGs be-aCGBP 4.52 2.84 2.275 1.99
comes exceedingly small. This peculiar fact can be explained 0.02 0.01 0.005 0.005

by noting that the distribution of distances between two con
nected vertices gets more and more peaked at the maximal
distanceR asd increases. This implies that if the vertices
andj are both connected to vertéxin a high-dimensional

space, then it is highly unlikely thatandj are directly con- is not possible to speak of a critical connectiv&tﬁBP with-

nected by an edge as well. Only in low dimensions are RGG g L - .
dominated by small loops. On the contrary, the way that azm specifyingh. This is true despite the fact théi(a) is an

standard random graph is designed implies a cluster coeff averaged quantity, i.e., for small will a fraction of the

. grapn 9 np raphs contain a cluster with more th&i2 vertices even
cient that can only be interpreted statistically, and not 980, han w< oCBP Figure 4 clearlv shows that®e® is a de-
metrically. Despite the fact that,=1 in both random graphs c -9 y ¢

and RGGs of infinite dimensionality, they do not have theCreasing function oN for (.j>2' In 2.D’ howgv_er, all curves
same topology. cross at almost the sanfgivotal) point, and it is reasonable

to speak ofa$BP without specifyingN. As the inset in Fig. 4
shows this would lead to an estimate af®"=4.531),

E. Graph bipartitioning close toaS®P in RGGs with toroidal boundary conditions.

Random geometric graphs are useful outside networl§ The size of the largest cluster naag grows so rapidly in

_ GBP .
modeling and percolation theory as well. In this section we D ‘h"’?t G Ao c_an_not be “.Jled out on the basis O.f our
look at RGGs in relation to graph bipartitioning, a well- numerical data. This is true with both open and continuous

known problem in combinatorial optimization. bﬁundatry cqtr)d|t|pns.f If—.|ovtvev§r, as tzh[')s W?L"d lmbp|)|/_ thatt;‘h?
The NP-hard problem of partitioning a graph withver- ~ P1ase transition 1S ot irst order in only, we believe tha

tices in two subsets witiN/2 vertices each, in such a way thev\t/vr;/o CEF'CaIt.EonneCt'Vggza.rﬁ clog,e_ but tﬂoi Lﬂer}‘tlcal. f
that the cutsiz&, i.e., the number of edges between verticescontace,iP[ 4I4p]akr)é:\(/)vne|2r? Etihe t\N(_:)ISIqu(;e\t/éOillj’]S ths o gmé;rlec?o?]-
in different subsets, is minimized, is called the graph bipar- P

titioning (GBP) problem. Figure 2 illustrates a bipartitioned Ilr?eur:(;ls(,)tna?#ig/gglglosa?titgo%Tr:BIsTEg]'c:llgszeDtct)h;?rrr]mIaarc]jttt?r?t
RGG, whereN/2 of the points are marked by squares, theth h into t pt th dinat | 1/2py 9
other half being dots. e graph into two at the coordinate values= or X,

The GBP problem of RGGs with open boundary condi—zllz' This observation is especially relevant for large con-
. ! Fib : nectivities where the cutsize is, fluctuations neglected, pro-
tions has been tested by various heurisfs-43. In this Portional to the length of the dividing line. All this tenta-

section we use our numerical findings to establish the Criticatively indicates how the cutsiz& in GBP behaves as a
connectivity in relation to GBP. Additionally, for> aSBP function of N and e by looking at RGGs partitioned a¢
=1/2, where ki=<d. As we are about to argue, we expect a

With open boundary conditions the picture is messy, as
Fig. 4 shows. In this casB(«) is highly N dependent, and it

we argue that the cutsiZe depends ofN and « in a simple

way. ; L
In GBP the connectivity is critical whe@=1/2. As soon scaling relation like[45,46
as the largest cluster contains more than half of the vertices, EqcNYak(d), (14)

it becomes impossible to bipartition the graph without vio-
lating any edges. For random graphs E8). immediately ) )
gives usaCBP=2 In2~1.386. where the exponents and 8 only depend on the dimension

In RGGsa®BP(d) can be extracted in the same wayasgs ~ ©f the RGG. _ N
was in Sec. IV A. Our numerical findings in RGGs with 'I_'he exponents in quA'.) can be determined in the fol-
continuous boundary conditions are presented in Table I1. W&PWing way. Given the radiuR of the excluded volume of
stress that the resuits are valid only for lafgeas a closer €ach vertex, the cutsize must be proportionaNt, since

look at Fig. 5 reveals. In 2D the average fraction of verticeCNY vertices with 1/2-R<x;<1/2 contribute to the cutsize
in the largest cluster is independent df only for a (to avoid counting the violated edges twice we only look at

> a$BP. This means that if one looks at GBP in 2D with ';_he vetrr:ices at one Sid% of t?e_ plar[tit(ilon(ijng planexiattl/Z)_ hi
N=1000, one cannot use the value @f®F in Table II. In - "oo € average number ot vio'aled ecges per vertexin this

higher dimensions the interval arounrg where Gy(«) is region, which is proportional tR. In other words,
size dependent gets smaller and does not play a role in rela-
tion to GBP. EqxN2RITL, (15)
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If instead of R we want to express the result in terms of  10°
a(d)xNRY, we get

Jv= ! _14o 16
Ur=1-5, B=1+3. (16) o' L

Since ExN? in Eq. (15), the relation ¥+ 3=2 holds in émo I
arbitrary dimensions.

(]
Now, it is obvious that the scaling ansatz is reasonable £

only for > aS®". As Fig. 2 illustrates, the optimal partition 5

=

107t

at a~aS®P is highly complex and not at all close to a 42|~
straight line. If we incorporate th&=0 for a<a$® and
replace Eq(14) with 102k
EqN""[a(d) — ag®")?, 17) 107l , , ‘ w
10° 10 10° 10° 107 10°
we do not expect Eq(16) to hold if we focus only on a N

region near the critical connectivity. By the use of extremal g 9 The runtimegon a 400 MHz SUN of the algorithms
optimization, a heuristic that works particularly well near ,seq in Secs. Il and IV. The straight lines indicateN?, where
phase transitions in hard combinatorial problems, Boettcheg—1 2 in 2D, 5=1.33 in 5D, ang3=1.15 in random graph&kG).
and Percu$45,46 have foundaS®P=4.1, 1»=0.6, andg

=1.4in 2D for 4<a<6, not far from our estimates in Eq. even though the number of operations is clead¢N). In

(16) valid for large connectivities. Note that the low estimatefact, the number of comparisons with potential neighbors per

of aSBP is expected; the algorithm does not always find thevertex is very nearly constant in our implementation, i.e., the

best partition, and some graphs with< . does haveE  total number of neighbor tests @(N) in RGGs as well. Of

>0. course, this is only possible if the number of sub-boxes also
increases withN. Managing the partitioning part of the algo-

V. IMPLEMENTATION rithm adds to the runtime. To sum up, the power-law increase

in the runtime illustrated in Fig. 9 for both random graphs

The implementation is of major importance when study-and RGGs is probably mainly due to cache misses. The
ing random geometric graphs, since a straightforward checklightly higher values of3 in the RGGs stems from the ad-
of all possible edges between ti points will result in  ditional time used when partitioning thiedimensional box
unfeasible runtime©(N?). We now outline how our pro- into smaller boxes.
gram works and describe how to avoid runtin@&N?). Step 4 is worth a comment. When running the algorithm,

The main idea is to divide and conquer. Partition thewe are interested in information at certain valuesaofin-
d-dimensional box in smaller sub-boxes and determingstead of generating a new graph for every data point needed,
which sub-box each vertex belongs to. Given the connectivyve first set up the graph with the minimal connectivity we
ity and thereby the radiuR of the excluded volume, for each want to look at. This is easily accomplished with our algo-
vertex we then only have to look for potential edges to verrithm. Given ana window[ amin, @max i Which we want to
tices in the sub-boxes adjacent to the sub-box where the vegxamine the graph, we find all the edges belonging to the
tex itself is located. This leads to a huge reduction in thEgraph Whena:a’max: but we 0n|y add the edges corre-
number of comparisons. And this just gets better When sponding tox= a;,. The rest of the edges, those who are to
increases, resulting in a decreas®ias we saw in Fig. 3. By pe added whewm is gradually increased ta,,y, are stored
partitioning the box further all increases we avoid a linear i g priority queue. It is then a simple task to increasas
increase in the number of comparisons per vertex, whiclyne wishes. As mentioned earlier, in Figs. 4 and 5 each curve
would lead to the undesirab@(N?) growth. is based upon 300 data points, i&g=0.005.

The algorithm used when looking at RGGs is simple. It The source code, written in C, is available upon request.
works like this:(1) generated coordinates for each vertex; For a more accurate and technical discussion of fast algo-
(2) partition the space in small sub-box€3} find the edges;  rithms in relation to RGGs, see e.g. RBt7].

(4) calculate the relevant quantitie&( cluster sizes etcas

a increases. Obviously, a trade-off in step 2 is involved when
choosing the number of small boxes.

Being the most time consuming part of the algorithm, step In this paper, we have illustrated the usefulness of random
3 is the main contributor when deciding how the runtimegeometric graphs in network theory and how to implement
depends oM. The runtimes for most of our runs are shown them efficiently. Several properties of random geometric
in Fig. 9. We see that the runtime @&N”), whereg~1.3, graphs in the vicinity of the critical connectivity. have
resulting in “feasible” runtimes for graphs witN>4x10°.  been analyzed. We have determined the size of the largest
Note that the runtime of the much simpler algorithm used orcluster numerically and shown that.(d) approaches
random graphs also grows like a power law wigh=1.15,  «a.(>)=1 found in random graphs in a power-law fashion.

VI. SUMMARY
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We have verified that the distribution of cluster sizes is cut
into two just when the connectivity becomes larger than
Interestingly, the derivation of the cluster coefficient shows
that, even in the limit of infinite dimensionalitgt, random
geometric graphs are not identical to random graphs.
Random geometric graphs share properties with both lat-
tice models and standard random graphs. Random geometric
graphs allow us to work with random graphs with a local
structure. In addition, it is straightforward to add “long”
edges if one wishes to simulate, e.g., a small world network.
With all this in mind, we hope this paper will make random
geometric graphs more widely used in network theory.
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APPENDIX: DERIVATION OF Cjg d+2
. . . I ——
In order to determine the cluster coefficient for arbitrary 2 2 ) arccos(/2R) "
d, one must find the fractional overlag . Sincepy has no pa(r)= T A1) Jo sifodo.  (A3)
angular dependence, E@.0) reduces to T)
Cd:id de(r)rd—ldr_ (A1) By reversing the integration i€y, we get

RO d+2
Sincep,;=1—(r/2R), C;=%. From Fig. 10 we see that in 3 r wl3
2D the overlapping area—the area circumscribed by the fat Cd:\/_— ﬂfo sinfode, (A4)
lines—is 2(A—B), whereA is the area of the part of the & (T

circle swept out by the anglé=2 arccos(/2R) between the

two dashed lines originating from the center of the Ioweslwhich can be solved by integration by parts. The use of the

cirfle,zandB s t2he area of the dalShfd. triangle. NO&, g hjicate formula for th@ function then finally leads to Eq.
=5 0R* andB=R~ cos(@/2)sin(@/2)= 3R sind. The area of (11).

. 2 . _ .
the overlap is therR“(6—sind), so p,=1(¢—sing)/m and For larged, the ratio of thel' functions in Eq.(A4) is

Co=1—(3/3/4m). o ) given by Stirling’s approximation. By putting=cos#—1/2,
For d=3, the use of cylindrical coordinates and the rela-ihe cluster coefficient can therefore be written as

tion
n—1 n/2 Bd(s)dlzfllzexp{d_lln f(x)|dx, (Ab)
on ] J S 1 6,df, = — (A2) TN wla] o 2 !
i=2 Jo n+2
F( 2 where f(x)=1—[4x(1+x)/3]. Since the contributions to
the integral for larged are significant only whex=0, Inf
results in can be expanded to first order and Eff) is recovered.
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