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Random geometric graphs
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We analyze graphs in which each vertex is assigned random coordinates in a geometric space of arbitrary
dimensionality and only edges between adjacent points are present. The critical connectivity is found numeri-
cally by examining the size of the largest cluster. We derive an analytical expression for the cluster coefficient,
which shows that the graphs are distinctly different from standard random graphs, even for infinite dimension-
ality. Insights relevant for graph bipartitioning are included.
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I. INTRODUCTION

The interest in complex networks has exploded over
last five years@1,2#, where data on very large networks su
as the world wide web@3–5#, collaborations in the scientific
community @6#, transportation@7#, movie actor collabora-
tions @8# etc., have become accessible.

Random graphs are often used to model complex
works@9#. Ever since Erdo¨s and Re´nyi’s groundbraking work
more than forty years ago@10#, intense theoretical researc
on random graphs has been taking place@4,11–13#. In con-
trast to random graphs the interactions between the sites
lattice are usually between nearest neighbors, reflectin
myopic world. Lattices are therefore often said to be at
other end of the spectrum of network models@14,15#.

Properties of real networks such as robustness@16,17#,
growth @11,18–20#, and topology have attracted much atte
tion, primarily from physicists. It has been consisten
shown that many of the networks possess small world c
acteristics@8,21,22#. Like random graphs, small world ne
works are characterized by short average distances betw
any two sites, and by a high degree of localness, much lik
lattices. However, individually, random graphs and latt
models in their pure forms are poor models of many r
world networks. One could argue that high-dimensional
tices have the necessary high clustering and low average
length, though this has not been explored much@23#. In the
present paper, we provide results on high-dimensio
systems.

A random geometric graph~RGG! is a random graph with
a metric. It is constructed by assigning each vertex rand
coordinates in ad-dimensional box of unit volume, i.e., eac
coordinate is drawn from a uniform distribution on the u
interval. RGGs have been used sporadically in real netwo
modeling @24# and extensively in continuum percolatio
@25–29#, but almost exclusively in two and three dimension
Although RGGs are the continuum version of lattices, th
deserve some attention of their own, since percolating c
tinuum systems display behavior that lattices are incapa
of @30#. In addition, the connectivity in RGGs can be i
creased in a more natural way than by adding new bo
randomly in lattices.

*Email address: j.dall@fysik.sdu.dk
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Recently, continuum percolation has been used in
study of the stretched exponential decay of the correla
function in random walks on fractals and the conjectur
relation to relaxation in complex systems@31#. However,
continuous systems in general and RGGs in particular
relevant whenever we need a multidimensional system w
a metric, as for example when modeling the spread of d
eases@32#.

In this paper, we study RGGs in arbitrary dimensions.
low dimensions the systems are dominated by local inte
tions. For higher dimensions RGGs are usually believed
approach standard random graphs, which we show is
only in some respects. We focus on ‘‘phase transition
@13,33,34# at the percolation threshold by looking at the si
of the largest cluster, and we determine how the value of
critical parameter in RGGs approaches that of random gra
as the dimension increases. We also extract the distribu
of cluster sizes in the critical region. Furthermore, an expr
sion for the cluster coefficient, a quantity that has attrac
much interest in network theory recently, is derived. Resu
relevant for graph bipartitioning are established. Finally,
discuss how to implement random geometric graphs e
ciently.

The layout of this paper is as follows. In Secs. II and I
we describe random graphs and random geometric gra
respectively. In Sec. IV we present our results and Sec
contains the details regarding the implementation. Fina
we sum up in Sec. VI.

II. RANDOM GRAPHS

Random graphs consist ofN vertices~points/sites! andK
edges~lines! where each possible edge is present with pr
ability p, i.e. K5pN(N21)/2.1 To keep the discussion inde
pendent of the system sizeN, graphs are often characterize
by the connectivity~degree! a52K/N5pN, i.e. the average
number of connections per vertex, instead ofK or p. As the
connectivity increases clusters of vertices appear, whe
cluster consists of all vertices linked together by edges,
rectly or indirectly.

The size of the largest cluster in the macroscopic lim

1From here on we considerN.N21 in accordance with the lit-
erature@4,35#, since we are only investigating large systems.
©2002 The American Physical Society21-1
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N→` can be calculated analytically@10,12#. It is NG(a),
where

G~a!512
1

a (
n51

`
nn21

n!
~ae2a!n. ~1!

By the use of@12#

y5 (
n51

`
nn21

n!
xn⇔x5ye2y, ~2!

we can invert Eq.~1!, getting

a~G!52
1

G
ln~12G! ~3!

from which it is trivial to show thatac51. With Eq.~3! it is
an easy task to plot the fraction of vertices in the larg
cluster—the giant component—as done in Fig. 1, where
see the prototype of a phase transition in combinatorial pr
lems.

In random graphs the probability distribution of edgespk
is binomial

pk5S N

k D pk~12p!N2k.
ake2a

k!
, ~4!

where the approximation resulting in the Poisson distribut
is valid for large systems sizesN, which is exactly the limit
in which we are interested. The critical connectivityac for
graphs with arbitrary random degree distributionpk has re-
cently been derived by other techniques than those origin
leading to Eq.~1! @4,36,37#. Unfortunately, we cannot us
these results in connection with random geometric graphs
will become clear in the following section.

FIG. 1. The size of the largest cluster in random graphs a
function of the connectivity. Note that forN.106 the Monte Carlo
data are almost indistinguishable from the theoretical result in
~3!. Error bars are not shown since they are in all cases less tha
width of the lines. Inset: A closer look at the percolation thresh
ac51.
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III. RANDOM GEOMETRIC GRAPHS

A d-dimensional RGG is a graph where each of theN
vertices is assigned random coordinates in the box@0,1#d,
and only points ‘‘close’’ to each other are connected by
edge. The degree distribution of a RGG with average c
nectivity a is therefore given by Eq.~4! as well. However, a
RGG is a special kind of random graph with properties n
captured by the theoretical tools mentioned above. For
thing, the probability that three vertices are cyclically co
nected is different in random graphs and RGGs, regardles
the degree distribution of the random graph.

RGGs are sometimes named spatial graphs@8#. Figure 2
illustrates a RGG in two dimensions~2D!. As in lattices,
different boundary conditions can be applied. We will s
that toroidal~continuous! boundary conditions make a vita
difference compared to having open boundary conditions

The volume of ad-dimensional~hyper!sphere with radius
r is

Vsphere5
pd/2r d

GS d12

2 D , ~5!

whereG(x) is the gamma function. This volume is needed
order to find the edges in RGGs.

To ‘‘visualize’’ a RGG in general, one can think of a bo
filled with small spheres with radiusr and volumeV given
by Eq.~5!, where points are connected by an edge only if
distance between their centers is,2r , i.e., if the spheres
overlap. Since the total volume of our box is 1, the probab
ity that two arbitrarily chosen vertices are connected is eq
to the volume of a sphere with radiusR52r . In continuum
percolation theory this volume is denoted theexcluded vol-
ume Vex , whereVex52dV in a RGG. The excluded volume
is the basic quantity of interest because it is directly rela
to the connectivity

a

q.
the

FIG. 2. A 2D random geometric graph withN5500 anda55.
The graph is bipartitioned—see Sec. IV E. There are no ed
across the boundaries, i.e., the boundary conditions are open
continuous.
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RANDOM GEOMETRIC GRAPHS PHYSICAL REVIEW E66, 016121 ~2002!
a5Np5NVex , ~6!

from which it is clear why the connectivity is frequent
called the total excluded volume of the system. Equations~5!
and ~6! give us

R5
1

Ap
Fa

N
GS d12

2 D G1/d

. ~7!

Figure 3 shows the radiusR of the excluded volume as
function of N/a51/p51/Vex . R decreases monotonically
for a given connectivitya the spheres have to becom
smaller when more vertices are added to the graph.

Equation ~7! provides us with the required relation b
tweena andR when creating a RGG. The distance betwe
every pair of vertices must be calculated, and an edg
added if the distance is less thanR. Thus, it seems unavoid
able to have a runtime ofO(N2) making it unfeasible to
investigate as large systems as with random graphs—see
1—where the number of calculations for a givena needed to
create all the edges isO(N). To overcome this obstacle w
have designed a data structure that is described in Se
with a runtime ofO(Nb), whereb.1.3. This allows us to
study RGGs with up toN5411.43106 vertices, which is
more than an order of magnitude larger than usually acc
plished@38#.

IV. RESULTS

In our simulations of RGGs we defineac to be the lowest
connectivity at which the fraction of vertices in the large
cluster is.0 in the macroscopic limit. We make the bo
claim that the systems we are able to analyze consis
enough points to make the critical connectivity almost
sharply defined as in Fig. 1. However, our main purpose
not to derive high precision percolation thresholds. Inste
we are more interested in the critical connectivity as a fu

FIG. 3. The critical distance in random geometric graphs
various dimensions. Points within this distance of each other
connected by an edge. The critical distance is equivalent to
radiusR of the excluded volume associated with each point.
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tion of the dimension of the RGGs.
In this paper, we express our threshold values in term

a. Other popular choices are the fractional volumes occu-
pied by the spheres@30# or the densityN of spheres. The
relation between these parameters at the percolation thr
old is

ac5NcVex522d ln~12sc! ~8!

~see e.g. Ref.@25# for a derivation!. Usually, in continuum
percolation the volumeV of each sphere is fixed whileN is
the independent variable in a system of size@0,L#d. The
approach of measuringNc or sc for various values ofL has
been used in both two@39# and three@38# dimensions, i.e.,
for discs and spheres, where the critical values are de
mined by the use of finite size scaling. This procedure
sembles site percolation in lattices. From the previous s
tions it is clear that we take a route closer to bo
percolation in lattices by fixingL51 while tuning a for
different values ofN. In Sec. V we describe how this ha
been carried out in practice.

A. The size of the largest cluster

Let Gd(a) denote the fraction of vertices in the large
cluster ind dimensions. Since a RGG in the limit of infinit
dimension is often assumed equivalent to a random gra
we expect that Eq.~3! provides us with an expression fo
G`(a). But what doesGd(a) look like for finite d? And
what is the behavior ofac(d)? How does it approachac(`)
asd increases? These are the questions addressed in thi
the following section.

Figures 4 and 5 illustrate the average size of the larg
cluster in RGGs in 2, 3, 4, and 5 dimensions with and wi
out toroidal boundary conditions. The curves correspond

re
e

FIG. 4. The average fraction of vertices in the largest cluster
various system sizesN ~see the legend in Fig. 5! in random geo-
metric graphs with no edges across the boundaries. The inset i
illustrates a finite size scaling—see the text. In higher dimensi
the general shape of the curves asN increases is nontrivial. Com
pare with Fig. 5. Error bars are,1023 for all curves and therefore
omitted.
1-3
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JESPER DALL AND MICHAEL CHRISTENSEN PHYSICAL REVIEW E66, 016121 ~2002!
N54k vertices withk55,6, . . .,11, where the larger system
display the sharpest transitions. The legend in Fig. 5 app
to all diagrams in Figs. 4 and 5. In these eight diagrams e
curve is based on 300 data points. In other words,Gd(a) is
calculated in intervals ofDa50.005 resulting in the smooth
lines in the figures. For every data set we have averaged
enough runs for error bars to be completely negligible.

Since continuous boundary conditions mean addition
extra edges, the size of the largest componentG(a) obvi-
ously grows faster in Fig. 5 than in Fig. 4, especially in t
smaller systems. These relatively few extra edges mak
decisive difference, connecting vertices not already in
same cluster. Since toroidal systems are models of bulk
tems, G is much lessN dependent in that case. Howeve
‘‘unphysical’’ RGGs with open boundaries may seem th
they are the most popular RGG versions in the literatu
Consequently, we consider them alongside the continu
case.

From Figs. 4 and 5 we see that the continuous bound
conditions make the transition whereG.0 is more abrupt,
but that an estimation ofac does not depend much on th
boundary conditions if only we base our judgment on la
enough systems. This is confirmed in the inset of Fig.
whereac54.53 is obtained by finite size scaling, i.e., plo
ting G(x), where x5N1/n(a2ac). However, it is clearly
easier to make precise estimates of the critical connecti
with than without continuous boundary conditions. We no
in passing that the exponentn53 is equal to the value ofn
found in random graphs@13#.

B. The critical connectivity

With numerically obtained knowledge ofG(a), it is pos-
sible to extractac . The procedure is simple. By inspectio

FIG. 5. Like Fig. 4 but withcontinuousboundary conditions.
We see that the point at which the largest cluster becomes ma
scopic is sharply defined and can immediately be determined by
eye with high precision~Table I!. The overall behavior of the
graphs for higher dimensions is much closer to Fig. 1 than Fig. 4
As d increases thea interval where there is a significant differenc
between curves with differentN get smaller and smaller. Error bar
are,1023 for all curves and therefore omitted.
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of Fig. 5 we can estimateac for d<5. To obtain further data
points we have to run our algorithm on RGGs withN5410

for systems of larger dimensions as well. Though this res
in increased runtime per graph, the results get more ho
geneous and fewer runs are needed in order to get a de
estimate ofGd(a). Our findings presented in Table I and Fi
6 strongly suggest that

ac~d!5ac~`!1Ad2g, ~9!

where ac(`)51, g51.74(2), and A511.78(5). As ex-
pected, Eq.~9! predicts thatac(`) is equal toac in random
graphs, confirming that RGGs and random graphs beco
more and more similar asd increases. However, when w
derive the cluster coefficient, we will see that this is not tr
in all respects.

Finally, we note that our findings are in accordance w
the most precise estimates that we know ofac
54.512 23(5) @29# and ac52.734(6) @38# in 2D and 3D,
respectively, obtained by the use of finite size scaling.
d.3, we have not been able to find any estimates ofac to
compare with@40#.

C. The distribution of cluster sizes

Having examined the size of the largest cluster and
critical connectivity, we now look at the distribution of clus
ter sizes in RGGs.

ro-
he

s.

TABLE I. The critical connectivityac in random geometric
graphs of dimensiond with continuous boundary conditions. Th
data are plotted in Fig. 6. The estimated errors inac in the last row
are rather conservative.

d 2 3 4 5 6 7 8

ac 4.52 2.74 2.06 1.72 1.51 1.39 1.30
6 0.01 0.01 0.02 0.02 0.02 0.02 0.02

FIG. 6. Scaling of the critical connectivity as a function of th
dimension of the random geometric graphs reveals a power
relation @Eq. ~9!#. For d<5 the data points are estimated by clo
inspection of Fig. 5. Ford.5, ac is based on runs withN5410

points. Error bars are included. See Table I.
1-4
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RANDOM GEOMETRIC GRAPHS PHYSICAL REVIEW E66, 016121 ~2002!
The inset illustrates the scale-free power-law distribut
at a52.6. Right belowac , clusters of all sizes can be en
countered. The small hump at large cluster sizes is alw
present because the clusters cannot contain more than
the vertices. The clusters pile up when their size approac
this boundary, in this case a cluster size of 1000, just be
the inevitable cutoff.

Our simulations show that fora significantly belowac
the distribution is approximately exponential. As the conn
tivity increases the distribution becomes power-law-like.
a is further increased the distribution is separated in t
parts; there are no clusters of medium size, only the larg
macroscopic cluster and a few small ones around it. We h
observed this overall behavior in all our tests of the distrib
tion of cluster sizes in various dimensions.

Figure 7 shows our data in 3D. Fora52.1 (•) the data
points lie on an almost straight line indicating an exponen
distribution. Increasing the connectivity toa52.4 (n) re-
sults in a broader distribution that is no longer exponent
Right at the critical connectivity (s) the distribution flattens
out. Clusters of all sizes are observed. Right aboveac (L)
two separate regions begin to materialize. Already ata
53.3 (!) the largest cluster makes it highly unlikely that
cluster of medium size can be present as well. The distr
tion is cut in two.

D. The cluster coefficient

In network theory the cluster coefficientC is an often
calculated quantity@1,21,23#, which is defined in the follow-
ing way. Let the verticesi and j be connected directly to a
common vertexk. C is then the probability that vertexi and
vertexj are directly connected as well. From this we see t
the cluster coefficient is a measure of the ‘‘cliquishness’’
the graph. In this section, we deriveC5Cd analytically in
arbitrary dimensionsd, showing thatCd decreases in an ex
ponential fashion.

FIG. 7. The distribution of cluster sizes in 3D random geome
graphs withN51000 vertices in the vicinity of the critical connec
tivity ac52.74. The inset shows that fora.ac the cluster sizes are
given by a power law. For each value ofa the data points are base
on 106 graphs.
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To determineCd we make use of concept of the exclude
volume Vex . If we again use the verticesi, j, andk, then i
and j must both be within the excluded volume ofk. Put
differently, the probability thati and j are connected is equa
to the probability that two randomly chosen points in
sphere of volumeVex and radiusR is less than a distanceR
apart. In other words, given the coordinates of vertexi the
probability that there is an edge betweeni and j is equal to
the fraction of the excluded volume of vertexi that lies in-
side the excluded volume ofk. By averaging over all points
in Vex , we get the cluster coefficientCd .

The task of calculatingCd is considerably simplified by
the spherical symmetry of the problem. The fractional v
ume ‘‘overlap’’ rd of two spheres only depends on the d
tancer between the centers and not on any angular parts,
rd5rd(r ). In general, the cluster coefficient can therefore
written as

Cd5
1

Vex
E

Vex

rd~r !dV. ~10!

In the Appendix, we derive that

Cd5H 12Hd~1! even d

3
2 2Hd~ 1

2 ! odd d,
~11!

where

Hd~x!5
1

Ap
(
i 5x

d/2
G~ i !

GS i 1
1

2D S 3

4D i 11/2

. ~12!

Whend is large, Eq.~11! reduces to~see the Appendix!

Cd;3A 2

pdS 3

4D (d11)/2

. ~13!

The cluster coefficient is plotted in Fig. 8 (s) together with

c
FIG. 8. The cluster coefficientC in random geometric graphs

The full line is the asymptotic solution@Eq. ~13!# valid for larged
only.
1-5
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JESPER DALL AND MICHAEL CHRISTENSEN PHYSICAL REVIEW E66, 016121 ~2002!
the asymptotic solution in Eq.~13! ~full line!.
Equation~11! shows that the cluster coefficient is a pure

geometric quantity depending only on the dimensiond; nei-
ther the connectivitya nor the system sizeN are present. In
random graphsC5a/N, since there is per definition no co
relation between edges. So, in contrast to what is usu
believed, RGGs arenot identical to random graphs whe
d→`.

In higher dimensions, the cluster coefficient in RGGs b
comes exceedingly small. This peculiar fact can be explai
by noting that the distribution of distances between two c
nected vertices gets more and more peaked at the max
distanceR as d increases. This implies that if the verticesi
and j are both connected to vertexk in a high-dimensional
space, then it is highly unlikely thati and j are directly con-
nected by an edge as well. Only in low dimensions are RG
dominated by small loops. On the contrary, the way tha
standard random graph is designed implies a cluster co
cient that can only be interpreted statistically, and not g
metrically. Despite the fact thatac51 in both random graphs
and RGGs of infinite dimensionality, they do not have t
same topology.

E. Graph bipartitioning

Random geometric graphs are useful outside netw
modeling and percolation theory as well. In this section
look at RGGs in relation to graph bipartitioning, a we
known problem in combinatorial optimization.

The NP-hard problem of partitioning a graph withN ver-
tices in two subsets withN/2 vertices each, in such a wa
that the cutsizeE, i.e., the number of edges between vertic
in different subsets, is minimized, is called the graph bip
titioning ~GBP! problem. Figure 2 illustrates a bipartitione
RGG, whereN/2 of the points are marked by squares, t
other half being dots.

The GBP problem of RGGs with open boundary con
tions has been tested by various heuristics@41–43#. In this
section we use our numerical findings to establish the crit
connectivity in relation to GBP. Additionally, fora.ac

GBP

we argue that the cutsizeE depends onN anda in a simple
way.

In GBP the connectivity is critical whenG51/2. As soon
as the largest cluster contains more than half of the verti
it becomes impossible to bipartition the graph without v
lating any edges. For random graphs Eq.~3! immediately
gives usac

GBP52 ln 2.1.386.
In RGGsac

GBP(d) can be extracted in the same way asac

was in Sec. IV A. Our numerical findings in RGGs wi
continuous boundary conditions are presented in Table II.
stress that the results are valid only for largeN, as a closer
look at Fig. 5 reveals. In 2D the average fraction of vertic
in the largest cluster is independent ofN only for a
.ac

GBP . This means that if one looks at GBP in 2D wi
N51000, one cannot use the value ofac

GBP in Table II. In
higher dimensions the interval aroundac where Gd(a) is
size dependent gets smaller and does not play a role in
tion to GBP.
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With open boundary conditions the picture is messy,
Fig. 4 shows. In this caseG(a) is highly N dependent, and it
is not possible to speak of a critical connectivityac

GBP with-
out specifyingN. This is true despite the fact thatG(a) is an
averaged quantity, i.e., for smallN will a fraction of the
graphs contain a cluster with more thanN/2 vertices even
when a,ac

GBP . Figure 4 clearly shows thatac
GBP is a de-

creasing function ofN for d.2. In 2D, however, all curves
cross at almost the same~pivotal! point, and it is reasonable
to speak ofac

GBP without specifyingN. As the inset in Fig. 4
shows this would lead to an estimate ofac

GBP54.53(1),
close toac

GBP in RGGs with toroidal boundary conditions.
The size of the largest cluster nearac grows so rapidly in

2D that ac5ac
GBP cannot be ruled out on the basis of o

numerical data. This is true with both open and continuo
boundary conditions. However, as this would imply that t
phase transition is of first order in 2D only, we believe th
the two critical connectivities are close but not identical.

When bipartitioning a RGG, it is obvious that the ‘‘area
contact’’ @44# between the two subsets in the optimal co
figuration must be close to a minimum. In 2D this means t
the best achievable partition must be close to simply cutt
the graph into two at the coordinate valuesx151/2 or x2
51/2. This observation is especially relevant for large co
nectivities where the cutsize is, fluctuations neglected, p
portional to the length of the dividing line. All this tenta
tively indicates how the cutsizeE in GBP behaves as a
function of N and a by looking at RGGs partitioned atxi
51/2, where 1< i<d. As we are about to argue, we expec
scaling relation like@45,46#

Ed}N1/nab~d!, ~14!

where the exponentsn andb only depend on the dimensio
of the RGG.

The exponents in Eq.~14! can be determined in the fol
lowing way. Given the radiusR of the excluded volume of
each vertex, the cutsize must be proportional toNR, since
only vertices with 1/22R,xi,1/2 contribute to the cutsize
~to avoid counting the violated edges twice we only look
the vertices at one side of the partitioning plane atxi51/2)
times the average number of violated edges per vertex in
region, which is proportional toNRd. In other words,

Ed}N2Rd11. ~15!

TABLE II. The critical connectivityac
GBP in random geometric

graphs with toroidal boundary conditions. Only in 2D doesac
GBP

depend noticeably onN for N.1000~see Fig. 5!. Note that without
continuous boundaries Fig. 4 shows thatac

GBP is highly size depen-
dent ford.2. The estimated errors inac

GBP in the last row are on
the safe side.

d 2 3 4 5

ac
GBP 4.52 2.84 2.275 1.99

6 0.02 0.01 0.005 0.005
1-6
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RANDOM GEOMETRIC GRAPHS PHYSICAL REVIEW E66, 016121 ~2002!
If instead of R we want to express the result in terms
a(d)}NRd, we get

1/n512
1

d
, b511

1

d
. ~16!

Since E}N2 in Eq. ~15!, the relation 1/n1b52 holds in
arbitrary dimensions.

Now, it is obvious that the scaling ansatz is reasona
only for a.ac

GBP . As Fig. 2 illustrates, the optimal partitio
at a;ac

GBP is highly complex and not at all close to
straight line. If we incorporate thatE50 for a,ac

GBP and
replace Eq.~14! with

Ed}N1/n@a~d!2ac
GBP#b, ~17!

we do not expect Eq.~16! to hold if we focus only on a
region near the critical connectivity. By the use of extrem
optimization, a heuristic that works particularly well ne
phase transitions in hard combinatorial problems, Boettc
and Percus@45,46# have foundac

GBP.4.1, 1/n.0.6, andb
.1.4 in 2D for 4,a,6, not far from our estimates in Eq
~16! valid for large connectivities. Note that the low estima
of ac

GBP is expected; the algorithm does not always find
best partition, and some graphs witha,ac does haveE
.0.

V. IMPLEMENTATION

The implementation is of major importance when stud
ing random geometric graphs, since a straightforward ch
of all possible edges between theN points will result in
unfeasible runtimesO(N2). We now outline how our pro-
gram works and describe how to avoid runtimesO(N2).

The main idea is to divide and conquer. Partition t
d-dimensional box in smaller sub-boxes and determ
which sub-box each vertex belongs to. Given the connec
ity and thereby the radiusR of the excluded volume, for eac
vertex we then only have to look for potential edges to v
tices in the sub-boxes adjacent to the sub-box where the
tex itself is located. This leads to a huge reduction in
number of comparisons. And this just gets better whenN
increases, resulting in a decrease inR as we saw in Fig. 3. By
partitioning the box further asN increases we avoid a linea
increase in the number of comparisons per vertex, wh
would lead to the undesirableO(N2) growth.

The algorithm used when looking at RGGs is simple.
works like this: ~1! generated coordinates for each vertex
~2! partition the space in small sub-boxes;~3! find the edges;
~4! calculate the relevant quantities (G, cluster sizes etc.! as
a increases. Obviously, a trade-off in step 2 is involved wh
choosing the number of small boxes.

Being the most time consuming part of the algorithm, s
3 is the main contributor when deciding how the runtim
depends onN. The runtimes for most of our runs are show
in Fig. 9. We see that the runtime isO(Nb), whereb'1.3,
resulting in ‘‘feasible’’ runtimes for graphs withN.43106.
Note that the runtime of the much simpler algorithm used
random graphs also grows like a power law withb51.15,
01612
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even though the number of operations is clearlyO(N). In
fact, the number of comparisons with potential neighbors
vertex is very nearly constant in our implementation, i.e.,
total number of neighbor tests isO(N) in RGGs as well. Of
course, this is only possible if the number of sub-boxes a
increases withN. Managing the partitioning part of the algo
rithm adds to the runtime. To sum up, the power-law incre
in the runtime illustrated in Fig. 9 for both random grap
and RGGs is probably mainly due to cache misses. T
slightly higher values ofb in the RGGs stems from the ad
ditional time used when partitioning thed-dimensional box
into smaller boxes.

Step 4 is worth a comment. When running the algorith
we are interested in information at certain values ofa. In-
stead of generating a new graph for every data point nee
we first set up the graph with the minimal connectivity w
want to look at. This is easily accomplished with our alg
rithm. Given ana window @amin ,amax# in which we want to
examine the graph, we find all the edges belonging to
graph whena5amax, but we only add the edges corre
sponding toa5amin . The rest of the edges, those who are
be added whena is gradually increased toamax, are stored
in a priority queue. It is then a simple task to increasea as
one wishes. As mentioned earlier, in Figs. 4 and 5 each cu
is based upon 300 data points, i.e.,Da50.005.

The source code, written in C, is available upon reque
For a more accurate and technical discussion of fast a
rithms in relation to RGGs, see e.g. Ref.@47#.

VI. SUMMARY

In this paper, we have illustrated the usefulness of rand
geometric graphs in network theory and how to implem
them efficiently. Several properties of random geome
graphs in the vicinity of the critical connectivityac have
been analyzed. We have determined the size of the lar
cluster numerically and shown thatac(d) approaches
ac(`)51 found in random graphs in a power-law fashio

FIG. 9. The runtimes~on a 400 MHz SUN! of the algorithms
used in Secs. II and IV. The straight lines indicatet;Nb, where
b51.2 in 2D,b51.33 in 5D, andb51.15 in random graphs~RG!.
1-7



cu

w

la
e
a
’’
r

m

o
t

on
n

ry

f
e

es

la

the
.

s.
s.
ing
e

JESPER DALL AND MICHAEL CHRISTENSEN PHYSICAL REVIEW E66, 016121 ~2002!
We have verified that the distribution of cluster sizes is
into two just when the connectivity becomes larger thanac .
Interestingly, the derivation of the cluster coefficient sho
that, even in the limit of infinite dimensionalityd, random
geometric graphs are not identical to random graphs.

Random geometric graphs share properties with both
tice models and standard random graphs. Random geom
graphs allow us to work with random graphs with a loc
structure. In addition, it is straightforward to add ‘‘long
edges if one wishes to simulate, e.g., a small world netwo
With all this in mind, we hope this paper will make rando
geometric graphs more widely used in network theory.
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APPENDIX: DERIVATION OF Cd

In order to determine the cluster coefficient for arbitra
d, one must find the fractional overlaprd . Sincerd has no
angular dependence, Eq.~10! reduces to

Cd5
d

RdE0

R

rd~r !r d21dr. ~A1!

Sincer1512(r /2R), C15 3
4 . From Fig. 10 we see that in

2D the overlapping area—the area circumscribed by the
lines—is 2(A2B), whereA is the area of the part of th
circle swept out by the angleu52 arccos(r /2R) between the
two dashed lines originating from the center of the low
circle, and B is the area of the dashed triangle. Now,A
5 1

2 uR2 andB5R2 cos(u/2)sin(u/2)5 1
2 R2 sinu. The area of

the overlap is thenR2(u2sinu), so r251(u2sinu)/p and
C2512(3A3/4p).

For d>3, the use of cylindrical coordinates and the re
tion

2p )
i 52

n21 E
0

p

sinn2 iu idu i5
npn/2

GS n12

2 D ~A2!

results in
v.
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rd~r !5
2

Ap

GS d12

2 D
GS d11

2 D E0

arccos(r /2R)

sindudu. ~A3!

By reversing the integration inCd , we get

Cd5
3

Ap

GS d12

2 D
GS d11

2 D E0

p/3

sindudu, ~A4!

which can be solved by integration by parts. The use of
duplicate formula for theG function then finally leads to Eq
~11!.

For larged, the ratio of theG functions in Eq.~A4! is
given by Stirling’s approximation. By puttingx5cosu21/2,
the cluster coefficient can therefore be written as

Cd.A6d

p S 3

4D d/2E
0

1/2

expFd21

2
ln f ~x!Gdx, ~A5!

where f (x)512@4x(11x)/3#. Since the contributions to
the integral for larged are significant only whenx.0, ln f
can be expanded to first order and Eq.~13! is recovered.

FIG. 10. Determination of the cluster coefficientC, which in 2D
is equal to the average fractional area overlap of the two circleR
is the radius of the circles andr the distance between their center
The area of the overlap is confined within the fat arcs originat
from the two circles~dotted!. The dashed lines are helpful in th
derivation of the overlap—see the text.
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