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Two-dimensional Heisenberg model with nonlinear interactions
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We investigate a two-dimensional classibhiector model with a nonlinear interaction {lo; - 07)® in the
largeN limit. As observed folN=3 by Bldte et al.[Phys. Rev. Lett88, 047203(2002], we find a first-order
transition for p>p. and no finite-temperature phase transitions gerp.. For p>p., both phases have
short-range order, the correlation length showing a finite discontinuity at the transitiop=Huy, there is a
peculiar transition, where the spin-spin correlation length is finite while the energy-energy correlation length
diverges.
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The two-dimensional Heisenberg model has been the omonlinear models is not a new phenomenon. IndeedNfor
ject of extensive studies that mainly focused on the=co it was already shown in Ref20] that a first-order tran-

O(N)-symmetric Hamiltonian sition appears in mixe®(N)-RPN~ models for certain val-
ues of the couplings. It is of interest to understand the be-
H— —N,B(Zj) o 0;, 1) havior for p=p.. For such value op, Ref.[36] found a

peculiar phase transition; while the spin-spin correlation
length remains finite, the energy-energy correlation length
where o is an N-dimensional unit spin and the sum is ex- diverges. Here, we will show that the same phenomenon oc-
tended over all lattice nearest neighbors. The behavior of thisurs forN=cc. However, at variance with what observed in
system in two dimensions is well understood. It is disorderedRef. [36], the critical theory shows mean-field, not Ising,
for all finite B8 [1] and it is described foB— by the per-  behavior.
turbative renormalization group2—4]. The square-lattice Let us consider the Hamiltoniaf2) on a hypercubic
model has been extensively studied numericdb~10, d-dimensional lattice. We normaliz&/(x) by requiring
checking the perturbative predictioh1-15 and the non- W’(2)=1 so that in the spin-wave limit,
perturbative constan{d6-18.

In this paper we study a more general Hamiltonian on the NS
square lattice; more precisely, we consider H= 7f dxd,o-d,0. €)
H=-— N,BE W(1l+ oy oy ,), (20  We also fixW(1)=0 so thatH=0 for a random configura-
X

tion. Then, we introduce two new fields, andp,,, in order

. . . to linearize the dependence of the Hamiltonian on the spin
whereW(x) is a generic function such th¥#(2)>W(x) for coupling. We write

all 0=x<2, in order to guarantee that the system orders
ferromagnetically for3— . A particular case of the Hamil-
tonian(2) has been extensively studied in the years, the case eXINAW(L+ oy 0y )]
in which W(x) is a second-order polynomial. Such a choice Np
of W(x) gives rise to the so-called mixe®@(N)-RPN~1 ”f dpxﬂdhxﬂex%j)\xu(yr Oy Oy i = Pxp)
model[19-28, which is relevant for liquid crystal29—-34
and for some orientational transitiof35].

In a recent papdi36], the authors analyzed a model with +NBW(py,)
W(x)=ax+b and found an additional first-order transition
for large enoughp. Here, we will study the same model
finding an analogous result fqu>p,~4.537 857 a first-
order transition appears, the correlation length—and in ger{—*"
eral, all thermodynamic quantities—showing a finite discon-

: 4

'’ As usual in the larg®N expansion, we also introduce a field
in order to eliminate the constrain=1. Thus, we write

. ot P NS

tinuity. Note that the appearance of a first-order transition in 5(0_2)(_ 1)~J' deeXF{ _ T,Mx((’f— 1. (5)
*Email address: Sergio.Caracciolo@sns.it With these transformations we can rewrite the partition func-
"Email address: Andrea.Pelissetto@romal.infn.it tion as
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where

B
=5 2 Dot M0y = Nt 2W(px,) ]
y7a

— E (UxOF— 1) (7

We perform a saddle-point integration by writing

Mx= Y+ py (8)

A standard calculation gives the following saddle-point equa-

tions [37]:

1 2 2
dB(1—7)+ —[(2d+mp)|(mg) ~1]=0,

a—2W'(7)=
B 1 5
5‘;'(”‘0)—0, 9

where we sety=a(2d+m2)/2,

m0>—f(

2+ m3 (19

and p2=43 sin2p /2. The variablemy has a simple inter-
pretation; it is related to the spin-spin correlation length by.

¢,=1/mg. From Eq.(9) we obtain finally

I (m?
_ o), (12)
W'(7)
where
2 M 12
=M =24 24~ 2di(md) (12
The corresponding free energy can be written as
1 2 L 2
F=—,8dW(r)+Elnl(mo)+§L(m0), (13
where
L(mz)—f—dddp In(p2+m2) (14)
o/ (2#) p o/
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FIG. 1. FunctionB(mg)=1(mg)/W'(7) vsmy, for p=4, 4.5, 5,
and 5.5. For any, 8(my) — o for my—0.

nite, i.e., £,=«, so thatmy=0, only for =c0. Note first
that 7=2 (respectivelyr=1) for my=0 (respectivelym,
=) and thatr(mg) is a strictly decreasing function of,.
Thus,W'(7) is finite for all my. Then, sincd (0)= +, we
find thaté,=« only if 3=, i.e., &, is finite for all f|n|te,8

We want now to discuss the behavior @ . From Eq.
(11) we see that,8—>oo for my—0 and possibly form,
—m;, whereW’ [T(m )]=0. If there is more than one solu-
tion, the relevant one corresponds to the lowest free energy.
Now, for B—o, we can simply writeg38] F~—2B8W(7).
Sincer(0)=2 andW(2)>W(7) for all 0<7<2 because of
the ferromagnetic condition, the relevant solution is the one
with my— 0. Then, using

I(m2)=—ilnm—2+0(m 2In m2) (15)
0 32 0 0

for my— 0, we obtain
mj=32e"2"AT W' @1+ 0(g~ Y], (16)

in agreement with the standard perturbative renormalization-
group prediction$39].

Let us now discuss the possibility of first-order phase
transitions, which may arise from the presence of multiple
solutions to Eq(11). As in Ref.[36], we consider

X)p 217’3

W(X)=—| = 0

(17)

2

In Fig. 1 we plot the functiorﬁ(mo)zl(mS)/W’(T), for p

=4, 45, 5, 5.5. Fop=4, 4.5, for each3 there is a unique
solutionmg and thus there are no phase transitions. On the
other hand, fop=5, 5.5, there is the possibility of multiple
solutions, in which case the most relevant is the one that
gives the lowest free energy. F@r=5, we plot the free
energy in Fig. 2. We observe a first-order transition for
~1.543 with a finite discontinuity of the correlation length,
A¢,~16.2, and of all thermodynamic quantities. A numeri-
cal analysis of the gap equati¢hl) shows that a first-order
transition exists for allp>p.~4.537 857. Forp=p,, the

Focusing now on the two-dimensional case, let us show thathermodynamic functions are nonanalytic fo8=j.
for any W(x), the spin-spin correlation length is always fi- ~1.334 72. In this case,
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-0.005 It follows Dq(0)~(B—Bc) ?® for any function Q(X).
Thus, all correlation functions of the energy show a critical
0.01 ¢ behavior. In order to compute the associated correlation
length, we determin® (k) for arbitraryk. We obtain
-0.015 |
2 NDq(K)
'S
-0.02 |
_ 2[Q" (N[ Aa(k)Ag(k) —A1(k)?]
0.025 | BALW' (1) TP Ag(K) = BW' (1)[ Ag(K) Ag(k) = Aq (k)]
PO I U (25
1.461.48 1.5 1.521.541.561.58 1.6 1.621.64 where
B
n
FIG. 2. The free energl(B) for p=5. There is a critical point 2 ( 2 cosq#>
C for B,~1.543. _ q ©
An(k)= T e L P T 2
(2m)* [(q+k/2)*+mg][ (q—k/2)*+ mg]
B— B~ —0.035 726mg— Mgc) >+ O[ (Mo — Mgc)*], (26)

For B— B. andk—0, we have
h ~0.387537. C tly, ting the di - _
where my, onsequently, repeating the discus Do(k) 1 a( 8= B.) 25+ bk2+ O(KY), @7

sion of Ref.[20],
with a,b#0. Thus, the energy-energy correlation length

£,(B)~2.5804+7.86828— B)*+ - - -, (19 £.() behaves as
E(B8)~0.162274-0.3143858— B.)*+---, (20 Ee(B)~(B—B) 3 (28)
C(B)~0.10479%8—B;) 3+ - -, (21)  i.e., ve=1/3. We thus confirm the results of Rg86] on the

) __existence of the critical theory fgv=p,, although we dis-
whereE andC are, respectively, the energy and the specificagree on the nature of the critical behavior. Indeed, 38
heat per site. Note thal(3) diverges at the critical point, suggestede=1-1/5, with 5 assuming the Ising valué
indicating that, although spin-spin correlations are not criti-= 15, |nstead, we find the mean-field valde=3. It is un-
cal, criticality is observed for energy-energy correlations. In-clear how to reconcile our large-result with the argument

deed, consider

Do(k)=2 e C(Q(L+ 0y 0y:,)i QL+ 0y 0y 1)),
Xuv
(22)
whereQ(x) is an arbitrary regular function. Fit— oo,
Do(K)=[Q (NP2 (pu(—K)ip,(K), (23
y7a%
so that
Q'(n)*

NDQ(O)Z(W) C(B). (24)

of Ref.[36]. Indeed, they argue that the transition should be
Ising-like because the order parameter is a scalar and confirm
numerically this conjecture fdd= 3. Note that the argument
applies for all values o and thus, if the larg® limit is
smooth, it would predict Ising behavior even fde=. On

the other hand, foN=« one expects mean-field exponents
since fluctuations are neglected. Inclusion of thé tbrrec-
tions is expected to change the valuexgtbut it would make

it N dependentand thus definitely not related to the Ising
exponents. Therefore, either the linhit— is singular, or
the exponentx for this transition is different from that pre-
dicted in Ref[36]. This issue deserves further investigations.

We thank Henk Blte and Henk Hilhorst for many useful
comments.
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