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Dynamic critical behavior of failure and plastic deformation in the random fiber bundle model
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The random fiber bundl€RFB) model, with the strength of the fibers distributed uniformly within a finite
interval, is studied under the assumption of global load sharing among all unbroken fibers of the bundle. At any
fixed value of the applied stress (load per fiber initially present in the bungllehe fractionU,(o) of fibers
that remain unbroken at successive time stejgsshown to follow simple recurrence relations. The model is
found to have stable fixed poitt* (o) for applied stress in the ranger< o, beyond which total failure
of the bundle takes place discontinuoufgpruptly fromU* (o) to 0]. The dynamic critical behavior near this
o. has been studied for this model analyzing the recurrence relations. We also investigated the finite size
scaling behavior near. . At the critical pointo= o, one finds strict power law decdwith time t) of the
fraction of unbroken fibertl, (o) (ast—). The avalanche size distribution for this mean-field dynamics of
failure ato <o has been studied. The elastic response of the RFB model has also been studied analytically for
a specific probability distribution of fiber strengths, where the bundle shows plastic behavior before complete
failure, following an initial linear response.
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I. INTRODUCTION certain valueo.; we had derived there the expressions for
the breakdown susceptibility and the relaxation time un-

A typical relaxational dynamics has been observed in aler a stressr <o, and showed that both the quantities di-
strained random fiber bundigRFB) model [1-8] whereN  verge following power laws as approaches . from below.
fibers are connected in parallel to each other and clamped &tere we define an order parameter for the transition from a
their two ends and the strength of the individual fibers hasstate of partial failure of the bundle to a state of total failure
some particular distributiofwhite, Gaussian, or otherwise and also show that at the critical stress, the dynamics
In the global load-sharing approximatida,2], at any in-  follows a precise and strict power law. From the finite size
stant, the surviving fibers all share equally the external loadlependence af. and the order parameter we have identified
(irrespective of their proximity etc. of the fiber to failed fi- the correlation length exponent of the system. We have stud-
bers etg. Initially, after the loadF is applied on the bundle, ied the avalanche size statistics in the model as well. Con-
a fraction of the fibers having strength less than the appliedidering a modified(uniform but shifted from the origin
stresso=F/N fail immediately. After this, the total load on distribution of fiber strengths we have studied analytically
the bundle redistributes globally as the stress is transferretthe elastic-plastic deformation characterisfi¢sof the RFB
from broken fibers to the remaining unbroken ones. Thismodel.
redistribution causes secondary failures which in general
causes further failures and so on. After some relaxation time
7, which depends omr, the system ultimately becomes stable
if the applied stress is less than or equal to a critical value ~ The RFB model consists df elastic fibers clamped at
o, and beyond whichd¢> ¢ .) all the fibers break and the two ends(Fig. 1), where the failure stress of the individual
bundle fails completely. Although the local load sharingfibers are distributed randomly and uniformly in the interval
might be more realistic, we study here the global load sharbetween 0 and fwhite or uniform distribution; Fig. 2 Glo-
ing model because of its simplicity. The study of the scalingbal load sharing is assumed; i.e., the applied load on the
properties of the dynamics of the fiber bundle model systembundle is equally shared among all the existing intact fibers.
is expected to be extremely useful in analyzing the statistic¥ his assumption neglects “local” fluctuations in stressid
of fracture and breakdown in real materials, including earthits redistribution and renders the model as a mean-field one.
quaked9,10!. We work with the fractionld; =N./N; N; being the number

In this paper, we report on the critical dynamics of theof fibers remaining intact aftdrtime-steps andN;_,=N.

RFB model in the global load-sharing case, assuming uni- With the application of any small loa (= o N, with o
form distribution of threshold strength of the fibdigp to a  <1) on the bundle, an initial stress(load per fibey sets in.
cutoff), in particular at the critical point.. In a previous At this first step thereforey N number of fibers break, leav-
paper11], we have solved the dynamics of the model, show-ng NU, (o) =N(1— o) unbroken fibers. After this, the ap-
ing a novel critical behavior as the stressapproaches a plied force is redistributed uniformly among the remaining
intact fibers and the redistributed stress becomes
F/[NU;(o)]=0c/(1—0c). Some more fibers, for which the

Il. THE MODEL

*Electronic address: spradhan@cmp.saha.ernet.in strengths are below the value of the redistributed stress, fail
"Electronic address: pratip@cmp.saha.ernet.in thus leavingNU,(o)=N[1—0¢/(1—0c)] unbroken fibers.
*Electronic address: bikas@cmp.saha.ernet.in This in turn increases the redistributed stress and induces
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FIG. 1. The RFB model consists & fibers. The bundle is
subjected to a loadr. Assuming linear elasticity, with identical
elastic constank for each fiber up to the breaking, the loRdtan
be expressed dd« d, whered denotes the strain for the fibers until

any of them breaks. The breaking strengths of the fibers are a

sumed to be random, as discussed later.

further failures. Consequently, as the stress per fik¢) at
timetis given byF/NU,;= o/U, and the surviving fraction is
given by 1-o/U; (see Fig. 2, U,(o) follows a simple re-
currence relation

Ut+l(o-):1_ Ut(O') (1)

Ill. BREAKING DYNAMICS OF THE RFB MODEL

The recurrence relatiofil) has the form of an iterative
mapU,. =Y (U,). Its fixed pointU* is defined by the rela-
tion U*=Y(U*) and from Eq.(1) one gets

U*(U):%i(gc_a)llz’ Oc= 2

1
7

The quantityU* must be real valued as it has a physical
meaning: it is the fraction of the original bundle that remains

intact under a fixed applied stresswhen the applied stress
lies in the range & o<o.. For o>o. the map does not

have a real-valued fixed point and as can be seen from Eq.

/]
po)

1

N

0 1 o
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(1), the dynamics never stops until,=0 when the bundle
breaks completely. Since it requires tHth/dU|U*(U)<1

for a fixed pointU* (o) to be stable, for each value ofthe
value of U* with the positive sign in Eq(2) represents a
stable fixed pointor attractoy while the value ofU* with

the negative sign in Eq2) represents an unstable fixed point
(or repelley. It may be noted that the quantity*—1/2 be-
haves like an order parameter that determines a transition
from a state of partial failuref<o.) to a state of total
failure (o>o0):

1
5.

0=U*—1/2=(0,—0)P, B= 3)

IV. CRITICAL BEHAVIOR
A. For o<o,

To study the dynamics away from criticality(— o, from
below), we replace the recurrence relatigh) by a differen-

Jial equation

du U’-U+o A
a U @
Close to the fixed point we writdJ,(o)=U*(0)+¢€
which, following Eq.(4), gives[11]
e=U(o)—U*(o)~exp —t/7), (5)
wherer=3[%(o.— o) Y2+ 1]. Approachings, from below
we get

=3 (6)
as the relaxation time of the model and it is found to diverge
following a power law asr— o from below. Although we
have used here the continuum-time vers{dnof the recur-
rence relation to evaluate the relaxation timg,(we have
checked numerically as well from the discrete-time recur-
rence relation1) and obtained the same exponent value.
One can also consider the breakdown susceptibjity
defined as the numbéiraction) of fibers that break due to an

infinitesimal increment of the applied strgd4]

T (o,—0) ¢ «

dU*(o)
do

1
2

5

UC_ 0-)7'}"

-

from Eq. (2). Hencey too diverges as the applied stress
approaches the critical value,= ;. Such a divergence ig

had already been observed in the numerical measurements
[5,6].

B. At o=0

At o=0 the fraction of fibers surviving i$)*(o.) =3
and |dY/dU|U,((,C)=1 which suggests that the system will

FIG. 2. The simplest model considered here assumes uniformijake infinite time to reach the fixed point at. From the

random distribution or white distributiop(o) for the strength of
the fibers up to anormalized cutoff strength. This distribution
gives the recurrence relatidm).

recurrence relatiofl) it can be shown that this decay of the
fractionU,(o) of unbroken fibers that remain intact at time
t follows a simple power law:
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= +—
Ui t+1

1
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starting fromUy=1. For larget (t—o), this reduces tdJ,
—1/2«t~1; a simple but strict power law.

V. FINITE SIZE EFFECTS AND CORRELATION LENGTH
EXPONENT

For a finite bundle oN fibers, the recurrence relatigm)
will be replaced by

N2o

Nir1(0)=N— N

, ©)

where| x| denotes the greatest integer less than or equal to
Here the fixed point is obtained whéh, ;=N;=N* and the
value of N* is bounded by the relation

1 1/2
1 U)

4

1 1/2
—+

N2

(10

1
Z(N+1)2—N2<r

=N*<Z(N+1)+

which clearly depends on the finite size of the system. Con-

sequently the effective critical point;(N) for the finite RFB
model is bounded as

2

1
1+ =

1
iO’C(N)<Z N

1
2 (11)

It follows from Eq. (10) that, ato.= %, the fixed point value
N* for a finite bundle decays with the initial bundle sikkle
following a power law

N
* N N2
NG~ 5 ~NY (12)

Since the quantity*—1/2 in Eq.(3) behaves like an order
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fully approach the failure point by breaking the weakest fiber
and looking for the avalanches of successive failures of the
fibers, following the avalanche definition of Hemmetral.
[2,3]. If we apply this definition in the abovérestricted
model, we will end up with only two distinct sizes of ava-
lanches: N/2) avalanches of unit size and one avalanche of
size (N/2). This will occur due to the perfectly uniform
strength distribution of the fibergwith the successive
strength of fibers differing by N). To work therefore with a
more general definition of avalanche, we increase the exter-
nal load on the bundle steadily such that the external foad
increases by an equal amoumtH=Ndo) at each stefcf.

[7]). This ensures the bimodal, yet decreasing, distribution
function mentioned above to become a smotacaying
function. Operationally also, this procedure is quite common
and can be applied to different cases and to bundles with
different types of strength distribution(o) of fibers. Here,

the fraction of fibersm which eventually fail due to this
increase in load or stress may be considered as the avalanche
size:

M
——: M=1-U*0).

m= do (15
With U*(o) from Eq. (2) we get
g.—o~m 2, (16)

If we now define the avalanche size probability distribu-
tion by P(m), thenP(m)Am measures\ o, the number of
times one has to change(by do) to get a changadm along
the m versuso curve in Eq.(16). In other words,

do
—~m 7

dm '

P(m)= 7=3. 17

This mean-field result foP(m) (power law decay with

parameter for a phase transition, the corresponding quanti§xponenty=23) is obtained here for global load sharing and

in a finite bundle ofN fibers would be

13

Expressing the correlation length @s<(o.— o) " in the
infinite system and combining it with E¢3) for a finite size
system(where&~N), the finite size scaling behavior can be
written as

UN(oe)— 3 ~N7F™". (14)
Since B=1/2, as obtained earlier from E@3), we getv
=1 by comparing Eq(14) with Eq. (12).

VI. AVALANCHE SIZE DISTRIBUTION

uniform fiber strength distribution when the external load is
increased by a fixed amount. We have checked this result
numerically for differentdo values & 1/N) for bundles with
50000 fibers having both strictly uniform and uniform-on-
average strength distributions. The results are shown in Fig.
3. The earlier numerical results of Morerad al. [7] for
Weibull type distribution of fiber strength also confirms the
relation (16), which implies that the cumulative distribution
decreases with avalanche sizeasm™?, in agreement with
Eq. (17).

This result(17) for the avalanche size distributid®(m)
is therefore valid for other distributions of fiber strengtf.
[7]) when the avalanche size is defined through @&§). If
one looks for the statistics of avalanches initiated by break-
ing the next weakest fiber in bundles with uniform-on-
average fiber strength distribution, as in Hemrmeeal.[2,3],
then one gets;=5/2. This is shown in the inset of Fig. 3,
where the avalanches are defined in both ways: with fixed

We now study the avalanche size distribution in thisincrease ino (giving »=3.0) and by breaking the next

mean-field model. If one considers strictly uniform strengthweakest fibergiving »=2.5). The difference in the above
distribution of the fibers in this model, one cannot meaning-exponent values therefore originates from different ways of
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10° T T
10° T
% FIG. 3. The log-log plot of the average ava-
102 -X;* . lanche size distributiond®(m) againstm for
. N=50 000 withdo=1/N for strictly uniform fi-
X%t ) ber strength distributioricrosg and uniform-on-
’ average fiber strength distributi¢gaveraged over
. or i 501 bundle realizations; plusThe dotted line has
g a slopen=—3.0, representing Eq17). The inset
- shows the avalanche size distributions for
A 10° ] uniform-on-average fiber strength distribution,
when (a) the external load increases by a fixed
“““ amountdo=1/N (plus) and (b) the avalanches
. are triggered by breaking the next weakest fiber
woer 1 (stap. The dotted and dashed lines in the inset
correspond ton=—3.0 and »=—2.5, respec-
! tively.
10% -4 I-3 IIIII I-2
10 10 10
m
defining the avalanches; in our method of defining ava- 0, O<o=<o,
lanches here, the external load on the bundle increases uni- B
formly, while in the other method the external load increase plo)= - o <os<1|’ (18
has intrinsic fluctuations due to the randomness of the fiber 1-o’
strengths and the restriction on initiating the avalanches by For an applied stress<o none of the fibers break,
breaking only the next weakest fiber. though they are elongated by an amouit o/ . The dy-

namics of breaking starts when applied stresbecomes
greater thano_ . Now, for o> o the fraction of unbroken

VII. PLASTIC DEFORMATION AND STRESS-STRAIN ; . . .
fibers follows a recurrence relatigfor p(o) as in Fig. 4:

RELATION

F
NU(o)

1
1_0'|_

One can now consider a slightly modified strength distri-
bution of such a fiber bundle, showing plastic-deformation
characteristic§1,4]. For this, we consider a RFB strength
distribution, having a lower cutoff. Until failure of any of the 1
fibers (due to this lower cutoff the bundle shows linear l-o0, N U(o)
elastic behavior. As soon as the fibers start failing, the stress-
strain relationship becomes nonlinear. The dynamic criticalvhich has stable fixed points:
behavior remains essentially the same and the sthtied
point) behavior shows elastic-plastic deformation before rup- 1 o\ 12
ture of the bundle. U*(o)= 20=0p) 1- U—) }

Here the fibers are elastic in nature having identical force - ¢
constantx (see Fig. 1 and the random fiber strengths dis- 1
tributed uniformly in the interval o ,1] with o >0; the o=
normalizssed distribution of the threshold stress of the fibers ¢ 4(1-oy)
thus has the fornisee Fig. 4

Uire(o)=1—

—o

o
1

: (19

1+

(20

The RFB model now has a critical poiat.=1[4(1-0)]
beyond which total failure of the bundle takes place. The
p©) above equation also requires that<1/2 (to keep the frac-
w tion U*<1). As one can easily see, the dynamicdJfo)
; for <o, and also ab = o remains the same as discussed
1 in the earlier section. At each fixed point there will be an
L equilibrium elongationd(o) and a corresponding stre§s
=U*ké(o) develops in the systeriibundle. This (o) can
be easily expressed in terms bf*(¢). This requires the
evaluation ofo*, the internal stress per fiber developed at the
fixed point, corresponding to the initiéexternal stresso

FIG. 4. The fiber breaking strength distributiptic) considered (=F/N) per fiber applied on the bundle when all the fibers
for studying elastic-plastic deformation behavior of the RFB model.were intact. From the first part of EGL9), one then getéfor
This distribution gives the recurrence relati¢i®). o>0))

0 5 1 &
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discontinuous here and the entire nonlinear response charac-
teristics are analytically calculable in this simple model.

VIIl. SUMMARY AND CONCLUSIONS

We have reported here an analytic study of the failure
dynamics and the consequent plastic deformation character-
istics of the random fiber bundle model having the property
of global load sharing. This has been done here for uniform
i strength distributiorp(o) of fibers in the bundlgup to a
Y cutoff). As mentioned before, this has been possible due to

8 the inherent mean-field nature of the model. The recurrence
relation (1) captures essentially all the intriguing features of

FIG. 5. Schematic stressS)-strain (5) curve of the bundle the dynamics. We found that both the breakdown suscepti-
(shown by the solid ling following Eq.(23), with the fiber strength  bility x and the relaxation timer diverge as the applied

distribution (18) (as shown in Fig. # stresso- approaches its global failure poiat, (= 1/4 for the
uniform strength distribution as shown in Fig.f2om below,
. c*—o, 1-0* with the same exponent valug=a=1/2. The critical dy-
U(o)=1- (1-0) 1-o_ 21 namics of the model follows a strict power law decayoat
=0.: U;—1/2xt™ 1. Though we have identifie®=U"*(0)
Consequently, —1/2 as the order paramet@vith exponeni3=1/2) for the
. . continuous transition in the model, unlike conventional
ko(o)=0"=1-U"(1~0y). (22 phase transitions it does not have a real-valued existence for

It may be noted that the internal stresg is universally o>o. From finite-size scaling study, we see that there is a
equal to 1/2(independent ofr, ) at the failure poinir= o correlation length which diverges with an exponentl, as
L —0O¢ . . . .

e . Cctrm X o is approached from below. The avalanche size distribu-

?f:;hsF%u?:(l)thls finally gives the stress-strain relation fortion P(m) for this mean-field dynamics of the RFB model is

given by P(m)~m~7, »=3. This has been confirmed here

K6, O<o<o, numerically. As mentioned before, this result is valid for the

avalanche sizes defined through E1g), where the external
S=4 k6(1=kd)/(1-0y), oL<o<0gcr. (23) |oad on the bundle increases uniformly until the total failure
0, o>0, at o.. The present as well as the earlier numerical results

[5,7,17 all confirm that the analytic results for the exponents

This stress-strain relation is schematically shown in Fig. 54, y, and 5 [for 7,y, and P(m), respectivel} are not nec-
where the initial linear region has slope(the force constant essarily restricted to the uniform distribution of fiber strength
of each fibeJ. This Hooke’s region for stresScontinues up  (assumed hejeand are more generally valid. The model also
to the strain values= o /«, until which no fibers break shows realistic plastic deformation behavior with a shifted
[U*(0)=1]. After this, nonlinearity appears due to the fail- (by ¢ , away from the origin uniform distribution of fiber
ure of a few of the fibers and the consequent decrease @frengths. The stress-strain curve for the model clearly shows
U*(o) (from unity). It finally drops to zero discontinuously three different regions: an elastic or linear patboke’s re-
by an amounioiU*(o)=1[4(1— 0 )]=0, at the break- gion) when none of the fibers breflkl*(o)=1], a plastic or
ing point o=o or = o,/ k= 1/2« for the bundle. This in- nonlinear part due to the successive failure of the fibers
dicates that the stress drop at the final failure point of thé U*(o)<1], and then finally the stress drops sudddlye
bundle is related to the extent() of the linear region of the to the discontinuous drop in the fraction of surviving fibers
stress-strain curve of the same bundle. from U*(o.) to zerd at the bundle failure point af= o,

Here, the plasticitynonlinearity in the response of the [=1[4(1—-0o)] for the failure strength distributioi18)].
bundle comes naturally from partial failure of the fibéasd  Simplicity of the model and consequently of the recurrence
the consequent redistribution of stress among the survivingelation for the breaking dynamics allows it to have exact
fiberg, after the assumed linear region until the lower thresh-analytic results for all its static and dynamic behaviors of
old o of failure (18). The total failure of the bundle is again breaking and the resulting plasticity.
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