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Simulation of Potts models with realq and no critical slowing down
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A Monte Carlo algorithm is proposed to simulate the ferromagriptitate Potts model for any regb>0. A
single update is a random sequence of disordering and deterministic moves, one for each link of the lattice. A
disordering move attributes a random value to the link, regardless of the state of the system, while in a
deterministic move this value is a state function. The relative frequency of these moves depends on the two
parameters) and 8= 1/kT. The algorithm is not affected by critical slowing down and the dynamical critical
exponentz is exactly vanishing. We simulate in this way a three-dimensional Potts model in the rafge 2
<3 for estimating the critical valug. where the thermal transition changes from second order to first order,
and findq,=2.620+ 0.005.
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[. INTRODUCTION ranging over the links of an arbitrary lattice or grafhone
can write the g-state Potts model partition functiod
The Q-state Potts mod¢lL] is perhaps one of the simplest =E{U}e*/’” in the Fortuin-Kasteleyn(FK) random cluster
nontrivial models in statistical mechanics. A broad set ofrepresentatiofi3]
techniques has been brought to bear on it in a variety of
disciplines and it has been the subject of considerable theo- boc
retical attention over the last two decadéx a review, see ZZG;A W(G)=bzc Q(b,c)v°q", (1
[2]). - ’
This model is theoretically well defined for any real or wherey =ef— 1=p/(1—p), the summation is over all span-
complex value ofy [3]. In particular, the limitg— 1" corre- . v P P), T T . . P
sponds to the random percolation problem and the lonit ning subgraphngA, W(G)=v"qg" is their weight, ex-
—.0* has a fundamental role in enumerating the spannin@reSSEd in terms of the numbeof edges ofG, called bonds,
trees of a graphi3]. Two-dimensional2D) conformal field ~@nd the numbec of connected components or FK clusters,
theory[4] suggests exact formulas for the critical indices and®d{2(b.c) is the number of subgraphs withbonds anct
for other universal quantities as continuous functiong of  clusters. This representation now defines a model for any real
the range 8.q<4. Another interesting problem involving ©Of comple{(q. _ _
nonintegerg in three-dimensional Potts models is the deter- In principle, one could directly use Eql) to define a
mination of the universal value, for which the thermal Metropolis algorithm working for positive nonintege{13],
transition changes from second order to first order. A varietput this is a difficult problem to simulate because, for each
of techniques have been usg&-9], which locateq, in the ~ Proposed change of a link, the numbeof FK clusters, a
range 2<q.<3. All these methods require extrapolations in nonlocal property, must be.determlned. Large lattices require
q because the standard simulations work only at integer va@ huge amount of CPU time. As a matter of fact, such a
ues ofg. Reweighting techniqudd.0,11] and transfer matrix method has_ been app_hed only to two-dimensional systems,
methods[12] allow one to estimate some thermodynamicWhere special topological relations can be ugEg].
functions[8] in a wider range ofj; however, there is no way Our strategy is different. We start by considering a useful

to evaluate correlation functions there. identity that can be derived using the methods described in
In this paper we remove this limitation by constructing aRef.[14]. . N
Monte Carlo(MC) algorithm which works for any reaf Let | be any link ofA. Denote by{G,"} the set of span-

>0. Although the time required for a sweep through thening subgraphs wheréis a bond and by{G, } those in
system grows faster than its size because at some step of tiich this bond is missing. We hai=2,"+ 2", with Z;*
algorithm nonlocal information is required, the simulationSZEGIrW(G,i). Introducing a bond variable;, equal to 1
are not affected by a_crltlcal slowing down and the _dyr?‘i‘m"whenl is a bond and 0 otherwise yields

cal critical exponent is exactly zero. We test the reliability

of the method by comparison with some exact results for the z

2D Potts model at criticality. We probe its effectiveness by (a))= - 2
performing large scale MC simulations of a three-

dimensional Potts model for estimating the universal valuel_he same quantity can be evaluated in a different way by

Ge- addition of a bond to each graph of ty@g . There are two
Il. THE ALGORITHM kinds of missing bonds. Those joining two different clusters,
called potential bridges, are picked out by a variaie
Starting with the Hamiltoniatd = — 2,6, where the  which takes the value 1 only on them and is zero otherwise;
site variableo; takes the valuesr;=1,2,... ¢, with (ij) their addition lowers the numberof FK clusters. We have
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<p), the value attributed tb(bond or no bongis unambigu-
ously determined by(™.

Inspecting all the cases leads to the following better
The remaining missing bonds, described by a similar variimplementation of the algorithm.

able y, join two sites of the same cluster; their addition  Step 1 Pick a linkl e A and generate a pseudorandom

,6’|=1=>W(GF)%=W(G|+)- 3

keepsc invariant, and thus number G=X|<1.
_ N Step 2 Update the link according to the following
n=1=W(G, )UZW(GI ). (4) scheme:
Combining Egs.(2), (3), and (4) yields (a;)=(v/q){B)) Move Current state New state
+v{y) which is the wanted identity. Since of coursg
+ B+ v=1, we can rewrite it as (a) X|<B any bond
q
p
(a)=p(ay)+ a<ﬂ|>+p<m>. ) (b X>p any no bond
a=1 bond
where the weighting factors can now be interpreted in terms p -1
of probabilities. The idea is now to regard this identity as the (©) q =Xi=p p no bond
limit of a recursion relation of the type n=1 bond

(n+1) ™ P oo ) Step 3 Return to step 1.
| =pa’+ aﬁ| Py, (6) The first two moves do not need any information on the
state of the system: they just disorder it. The last one is a
where#{"" %) is the probability of having a bond on the link purely deterministic move; its only effect is to put a bond
| in the configuratiorG"* ). It is expressed as a state func- Whenever a link joins two sites of the same cluster. It re-
tion (o, 3, ,0ry,) of the same link in th&™ configuration. ~ quires distinguishing between thg two _klnds of missing
This generates a Markov process - —GM— G+ bonds (3,=1 or y,=1). One can infer this nonlocal prop-
— - where the equilibrium distribution yields E¢5). This ~ erty by ide_ntlfylng the connected components of the colnflgu-
stochastic chain fulfills two important condition) there is ~ ration, as in the Swendsen-Wat§W) algorithm[15]. This
a nonzero probability of going from any configuration to anycluster reconstruction is time demanding; however, it gives
configuration in a single sweep through and(ii) the equi- ~complete information on the state of the missing bonds of the
librium distribution maps to itself as E¢p) is kept invariant ~ Whole lattice. As the update proceeds through the lattice this
by the process. One can then argue that detailed balance 8ount of information is progressively lost because of dis-
satisfied. ordering movegthe deterministic moves never changg |(

To see it directly, assume, for instance, that in tite ~ We may partly keep track of the cluster structure by relabel-
configurationl is a potential bridge/ﬁf”): 1. gM= G/) ing the cluster indices whenever a disordering move creates a

which is promoted to a bond in theng 1)th configuration bond between two of them. Cluster reconstruction is truly
(a|(n+l): 1, GMD=G'). The transition rate iP(G| necessary only when a deterministic move touches a missing
—.G[")=plq. Conversely, Eq(6) yields P(G] —G;")=1 bond of a putative single cluster where some bond has been

B . erased by previous disordering moves.
p. Then, according to Eqg1) and(4), Because of nonlocality, the number of operations involved

- + + every MC step is proportional td“, whereN is the number
PG —G/) WG/ (77 of links and I<a=<2. The efficiency of the algorithm de-
P(G—G;) W(G|) pends crucially on the actual number of cluster reconstruc-

) . i tions per sweep. In our 3D simulations reported below the
as detailed balance requires. The same conclusion can Bction of links requiring cluster reconstruction was about

reached in all the other cases. _ 3% with a decreasing trend for larger lattices.
A straightforward, preliminary, implementation of the re-

cursion relation(6) is the following. (i) Go over each link
e A of the configuratiorG(™ and generate a pseudorandom
numberX; uniformly distributed from 0 to 1(ii) Create a An unusual feature of the described algorithm is the pres-
bond onl only in the following two caseda) X,<p and lis  ence of randomly distributed disordering moves. The mean
a bond @,=1) or a missing bond joining two sites of the number of links subjected to disordering moves in a single
same FK cluster 4,=1); (b) X,<p/q and lis a potential sweep isNp, with p, =1+ p/q— p. For instance, in the Ising
bridge (8,=1). This generates uniquely the configuration model (q=2) at criticality more than 70% of the links are
G+, disordered every sweep. It is now easy to find an upper
Let g>1 for definiteness. It is worth noting that when bound for the mean numberof MC steps needed to gener-
X,<p/q the algorithm adds a bond taregardless of which ate effectively independent configurations. Aftersweeps
configurationG(™ we are dealing with. Similarly, whe, the mean number of links which have not yet undergone a
>p no bond is added. In the remaining casggq= X, disordering move iN(1—p,)". When this number is of the

Ill. CORRELATION TIMES
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TABLE I. The decorrelation time- of the algorithm described
here for the critical 2D Ising model for different linear lattice sizes
L is compared with the same quantity from the SW algorithyyy
and with the upper bound,. The definitions ofr and therg,, data
are taken from Ref.16].

L T Tsw To

8 2.653) 5.1769632) 3.3869
16 3.185) 6.516512) 45158
32 3.696) 8.061@18) 5.6448
64 4.31) 9.7944) 6.7737
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order of 1 all the links have been touched by a disordering
move and the upper bounth= 7 is given by the obvious
relation N(1—p,)™~1, i.e., o= —InN/In(1—p,). Thus the
dynamical exponent is 0, as critical slowing down mani-
fests itself by the power law>N? at the critical temperature
where a second-order phase transition ocEL8% A numeri-

cal estimate of the decorrelation time of the dynamics of thist)bservable, which are visible on smaller lattices, allow us to

algorithm for the critical Ising model on a square lattice is

reported in Table. I. Note that the actual valueradoes not

saturate the upper bound and is much smaller than the anaIB

gous quantity of the SW algorithm.
Our algorithm also proves useful in combating anothe

dynamical problem that one deals with in the case of first
order transitions, namely, the exponentially fast suppressiO{h
of the tunneling between metastable states with increasinﬁ1
lattice size.

To reduce this type of slowing down the multicanonical
MC algorithm has been propos¢ti7]; also the method of
simulated tempering18] proves usefu[19]. In a few nu-
merical tests for two-dimensional models wijls=7 and 20

=L =100 we found that the tunnelling time of the canonical
algorithm described in the present paper grows with the sy

tem sizeV as 7,V with a=1.03+0.03, as in an optimal

variant[20] of the multicanonical method, but with a smaller

proportionality factor.
The reason for this performance is that the random moves

accelerate the tunneling between order and disorder. Thgnere A/ is the number of MC sweeps. We can trade the
drawback is that our algorithm is nonlocal, so the CPU timeyymper of bondé for the energy per sitE using the relation

grows asv®

FIG. 1. Plot ofA(E,L) resulting from a simulation of a 3D Potts
model atq=2.75 with 3.3<10" Monte Carlo StepgMCS) for L
=14 (full circles) compared with the extrapolation at the same
value ofq of an actual SW simulation of 4x10° MCS atq=3
(crosseg The latter data are shifted to the right for clarity.

evaluate the critical thermal exponentas a function ofg.
This could be used to check a conjectural formula suggested
y the 2D conformal field theorj4]. We plan to study this

Iproblem in a future publication.

This algorithm allows us to deal with an important issue
of the three-dimensional Potts model, namely, the estimate of
e tricritical pointg,. in the range 2.9.<3, where the ther-
al transition changes from second order @@ g, to first
order forq>q.. Many different techniques have been used
to locate this poinf5-9]. We applied a method very similar
to that described by Lee and Kosterli&] by computing the
double histogranN(b,c) of bond and cluster number distri-
bution in a cubic lattice of volumk? at a giveng andq and
then extrapolating the data to nearby values. Using(EQ.

Sve can write

quc

N(b,c;8,9,L)=NQ(b,c) >

®

with b>1; for instance, in the present case Weg— —p(, +1)/y L% Near a first-order transition the histo-

found b~1.85. Thus this algorithm certainly cannot be rec-gram p(E) =3 .N(b,c)/\ has a characteristic double peak

ommended for integeg, although at a first-order transition it girycture corresponding to the ordered and the disordered
performs much better than any local canonical algorithm.

IV. SIMULATIONS

As a first, simple, application of our algorithm we tested

the reliability of our code by checking a percolation property
of the Potts model on a square lattice which is supposed t

be exact in the range<0q<4, namely, that the mean fre-
quency of active bondéa,) at criticality [corresponding to
v= \/a in Eq. (1)] should coincide, in the thermodynamic whereE,, is the local maximum that separates the two dips
limit, with the random percolation value, i.€q)=3, irre-

spective of the value of] [2]. We simulated critical Potts
models on a 128 128 square lattice witlg ranging from 1.5
to 3.5. In all the cases the mean number of bonds was confoth 8 and q one may locate this point. The region of reli-
patible with the exact result. The finite size effects of thisable extrapolatiorf11] is O(1/L%) for both 8 and g. This

phases. A suitable reweighting through E8j. of the energy
distribution yields the valug.(L,q) where the two peaks at
E.(B,L) andE,(B,L) are of equal height. A typical plot of
the quantityA(E,q;B.,L)=—=.In[N(b,c)/NV] is shown in
Fig. 1. A useful estimator of the interface free energy be-
B/veen the ordered and the disordered phf2&kis given by

AF(q,L)=A(En,9;B:,L) —A(E1,0;8:,L), (9
atE; andE, (see Fig. 1 At a first-order transitiomF (L)

increases monotonically with and is expected to vanish at
the tricritical point. By extrapolating the numerical data in
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TABLE II. The simulations were performed on cubic lattices of T T T T
sideL at the values ofj and 3 listed below. MCS is the number of
Monte Carlo steps considered. 0.04 |

L q B MCS AF

12 2.70 0.52270 3010
13 2.70 0.52270 3010 002 -
14 2.75 0.52721 38107

does not cause a problem f@, since it can be adjusted 0 -
continuously, bug cannot in standard simulations, being by 26 265 27 205 28 2
necessity an integer value. Actually Lee and Kosterlitz per-
formed their simulations aj=3 and found that the extrapo- FIG. 3. Plot ofAF(q,L) nearq=2.7.
lated data become too noisy fbfg|>0.3[22]. In our case

we can directly evaluate the range of reliable extrapolations.

Indeed, the main advantage of the algorithm described in thi4S€d by' necessity in the present approach. In particular, the
paper is that now alsq can be adjusted continuously. Bc(L.q)’s are shifted and ouAF(q,L) is always smaller.

Our simulations were performed on three different lattices Simple finite size scaling considerations sugdéstthat
as listed in Table II. The statistics is good since in all thenear qc the interface free energy has the simple form
cases the mean flipping time between coexisting states wasF (d,L)~(q—0gc)’L?® which fits our data very wellsee
no larger than 30 MC steps. The errors were calculated b¥ig. 3. To within our numerical accuracg=4.8+0.1 and
gathering the histogram(b,c) every 16 MC steps and then ¢.=2.620+0.005. This agrees with the valug,=2.55
performing a standard analysis. +0.12 obtained in the largg expansion of the latent heat

In all the cases the energy histogram showed a doublgs]. Lee and Kosterlit 8] extrapolatingg=3 data found a
peak structure, providing a direct evidence of the first-ordegsmaller valueg.=2.45+0.10. The difference could be due
nature of the transition for these valuesqosee Fig. 2 This {0 the fact that extrapolations wifl#q|>0.25 give an over-
yields the upper bound.<2.7. In shorter simulations & estimate ofAF (this is already visible in Fig.)L Other ap-
=2.6 we found no trace of a double peak structure. Thigyroximate methods give even smaller values: real space
suggestsq.>2.6. Using the reweighting method we esti- ranormalization group methods] yield g.~2.2 while an

mated the valueg(L,q) where the two peaks are of equal § nstein-Zernike approximatidi®] gives g~ 2.15.
height for eaci. and for few values of) nearqg=2.7 and the

corresponding values oAF. The results are reported in
Fig. 3.

A further reweighting up tay=3 allowed us to compare
the extrapolated data with those coming from a similar ex-  This work provides a MC algorithm to simulate the fer-
trapolation of standard SW simulations g 3. This com-  romagneticg-state Potts model which has two very unusual
parison showed that the range of reliable extrapolations igatyres: it works for any rea>0 and does not suffer any

|80|<0.25. It has to be noted that we could not use for thiseitical slowing down. The former property is an obvious
comparison the high precision data of Re#5], because the - .,hsequence of the fact that it is based on the Fortuin-

energy distribution in terms of spin variables used there doeRasteIeyn random cluster representation, whewcts as a

not coincide with that expressed in terms of bond Va”able%ontinuous parameter. The latter is more tricky and is due to

the implementation of the algorithm with a random sequence
of disordering moves, randomly distributed over the lattice.
There is no reason to believe that this disordering mechanism
is specific to the Potts model and it would be very interesting
to try to implement it in other, more general MC methods. A
drawback of the algorithm is that it is nonlocal, so the CPU
time of a single sweep grows with the volureasV® with
1<b<2; thus itis not recommended for integgmwhere the
SW algorithm works withb=1. Actually, at a first-order
transition our algorithm performs better than the SW method,
but there the multicanonical MC algorithms are more suit-
able.

It is straightforward to extend the algorithm in order to
take into account quenched bond randomness, provided that

FIG. 2. Energy histogram g(L,q) obtained by a simulation all the couplings are ferromagnetic. On the contrary, gener-
atq=2.7 andL=13. alizing to systems with frustrations seems a rather difficult

V. CONCLUSIONS

0.004 T T T

0.003
P(E)

0.002

0.001
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task, because it is not obvious how to define in this case thealues ofg, while the algorithm described here simulates the
FK clusters for nonintegeq [14]. system at nearby values qf .

We used such an algorithm to study the regiond<3
of a three-dimensional Potts model in order to estimate the

critical value g, for which the thermal transition changes ACKNOWLEDGMENTS
from second to first order. We obtain a rather precise estimate
compared to other method§-9], the reason being that all The author would like to thank M. Caselle and A.

the other methods are based on extrapolations from integé®oniglio for helpful discussions.
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