PHYSICAL REVIEW E 66, 016114 (2002
Ordering of the lamellar phase under a shear flow
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The dynamics of a system quenched into a state with lamellar order and subject to an uniform shear flow is
solved in the largeN limit. The description is based on the Brazovskii free energy and the evolution follows a
convection-diffusion equation. Lamellas order preferentially with the normal along the vorticity direction.
Typical lengths grow agit®* (with logarithmic correctionsin the flow direction and logarithmically in the
shear direction. Dynamical scaling holds in the two-dimensional case while it is violatee- .
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Many systems in nature exhibit lamellar order. One ex-of the fluid into frozen intertwined structur¢31,32. In this
ample is a diblock copolymer melt where chains of type case the effects of hydrodynamical modes are crucial for
andB covalently bonded end to end in pairs segregate at loweaching order on large scalg33].
temperatures witt\-B junctions forming a stack of lamellae When shear is applied, our results show that lamellas
[1]. In ternary mixtures a lamellar phase is stable with or-grow preferentially with the perpendicular orientatifi®],
dered sheets of surfactant separafisay oil and water do- namely, along the plane formed by the flow and the shear
mains[2]. Lamellar order is also observed in Raleighrged  (velocity gradient directions. Their typical size, obtained
cells, where convective rolls form above the convectivefrom the second momentum of the structure factor, grows as
threshold[3]. Further examples include smectic liquid crys- yt54\/Int in the flow direction and as/int in the shear di-
tals [4], dipolar fluids with long-range interactio§], and  rection. Surprisingly, we find that the dynamical scaling is
chemically reactive binary mixturd$]. A theoretical model obeyed in two dimensions but not li=3. Our results con-
for the general description of the lamellar-disordered phaseern the cases of conserved and not conserved order param-
transition was proposed by Brazovskii] who showed the eter, and apply to most of the systems mentioned above.
first-order character of the transition induced by fluctuations. We consider the Brazovskii free energy,

Lamellar phases under an applied shear flow show a very
rich behavior that is relevant for many applicatidi&y. A _ Jfr ,u , b
variety of transitions in morphology and orientation occur as ]:{‘ﬁ}_f dr §¢ +Z¢’ )
shear rate and temperature are changed. Stable configurations
of lamellas lying along the flow with the normals differently where ¢(r't) is the order parameter field and>0. With a
oriented have been observE310] and analyzed evaluating negative value of andb<0 the system orders in one of the
the effects of the flow on the fluctuation spedid—14. two minima of the local potential. However, whér-0 in-

I mqnstatlonary pioger:'fs afrfe ff‘r '?55 CQ”S:d@lﬁ‘la- A terfaces are favored and a modulated state with wave vector
flow o the ordering of the lamellar phase in a system ™y el 2,5 SE0IE7) o .

— k - When a flow is imposed, the kinetics can be described by
quenched from an initially high temperature disordered stateyo convection-diffusion equatidis4]
We present the first analytical results on the kinetics of this
system by solving the Brazovskii model in the limit of an d
infinite number of components of the order parameter. This is ot
one of the few methods allowing an explicit solution for
phase ordering systenjd9]. A similar approach for fluids
under shear flow has been used in RE29-27.

The behavior of quenched binary mixtures without im- [o=I, I,=-IV?2 3
posed flows is characterized by dynamical scaling: The struc-
ture factor obey€(k,t) = R(t)Pf[kR(t)], whereR(t)~t%is  andI is a mobility coefficientp=0 describes systems with
the typical domain size anD is the space dimensionality nonconserved order parame(®COP and corresponds to
[28,19. In the case of a fluid with lamellar order, if the order the Swift-Hohenberg equatid29]; the casgp=2 is for con-
parameter is not conserved as in the Swift-Hohenberg modelerved order paramet¢é€OP) and applies, for example, to
for Raleigh-Baard convectiorf29], regimes exhibiting dy- copolymer melts. For uniform shear flow in thedirection,
namical scaling have been fouf@0]. In models with con- v,=vyy, y being the shear rate. Equatié®) neglects ther-
served order parameter, when diffusion is the only segregatnal fluctuations and possible effects due to differences in
ing physical mechanism, simulations show the entanglementiscosities between the two componefitg]. The complete

V¢
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p5_¢v p=0,2, (2)

where
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description should take into account the coupling of &). indicates that wave vectors in the flow direction scale asymp-

with the Navier-Stokes equation. However, the study of Eqtotically ask,~t~%? while in the perpendicular directions

(2) is a prerequisite for any more general theory and usuallk, —ky~t~*2 Then, introducing the new variableX

applies to intermediate temporal regimes, as recognized foe k,L(t), Q=(k, —ky)L, (t), with Lj(t)=2+2/3%yt2

phase separation of simple binary mixtufés]. and L, (t)=22tk?, and taking into account Eq8), Eq.
Equation(2) can be studied analytically generalizing the (6) reads

field ¢ to a vector order parameter witth components and

taking the largeN limit [35]. One obtains the following 2

- > t —_
equation in Fourier space for the structure fac&(k,t) Ck,)=vaAi e [(X.Q.6)+0(X.Q.6.1)] (10
=(o(k,t) p(—k1)),

Cky a0k
A TS

with

f=Q?%+ \/3QXcosh+ X?cogh (12)
=—2I'kP[r+uS(t)— bk*+k*]C(k1), 4 .
[r+us 1Ctk.t) @ andg(X,Q,0,t)==2,t 712y, , whereg; are polynomials in
where we have dropped the component indices due to inteX,Q,8,Int. For long timesg can be shown to provide a rel-
nal symmetry.S(t) has to be computed self-consistently evant contributiong,= 135(X*/kf;) — (3/4k{;)X?Int only in

through the regionQ~ 0, cos#~0. Then the integration ove&) and ¢
R can be performed yielding
dk .
sv- | C(K.0), 5)
Il<A(27r)P _ V34 v2 jw —X2/8—g, It 2
S(t)= 328, 7 it _dee 21 4(X#18),

A being an ultraviolet cutoff. For a symmetric mixture
guenched from a high temperature homogeneous phase an
appropriate initial condition i§(|2,0)=A, whereA is a con-
stant. Equatior{4) can be integrated yielding

(12)

wherely(z) is a Bessel function. The integral of E(L2),
evaluated by the asymptotic expansionlgfz) at largez,
. t behaves as Iti\/7. Hence at large timeS(t) approaches the
C(k,t):AeXﬁ’ —2Ff d7KP(7)[K4(7)—bK*(7) constantS, = \3v,A/327%k3, y. A comparison with Eq(9)
° fixes v,=3272k3, (kg +1)/3A and verifies the ansatz.
Due to the presence ¢f the functionC(k,t) of Eq. (10)
cannot be cast in a scaling form. However, different scaling
behaviors are obeyed in the regions where the functiars
whereC(7)=k+ kaéy, Defining g can be respectively neglecited. In particular, fQr-0,
. cosf~0, whereg dominatesC(k,t) SC%[F\/Si] ths% direction
_ _ with respect to the lengthy(t) =(2/5)""Vkyyt>" different
Q= fodr[r+uS(t m] @ from L(t). InD=2, on thg‘ other hand, where the contribu-

tion of the functiong is always negligible, one finds the
the analysis can be carried out asymptotically through th%caling formC(IZ t)=0v,At2e [(XQO],

+r+uS(t—r)]}, (6)

ansatz Ordering properties are usually inferred from the mo-
1 menta of the structure factor., We defineR,
Q(t) =kl t— (2Int=Inint+Inv,), @  =[SdkC(Kk,t)/fdKkk?C(k,t)]¥? and similarly for the shear
2Tk and vorticity directions. In the absence of dynamical scaling

definitions ofR, based on different momenta Gf(lz,t) may
lead to different results. However, in this case it can be
proven that changing the order of the momentum does not
change the growth exponent but only the logarithmic correc-
tion. From Eq.(10) we find R,~ yt*4Int, R,~Int, and
R,~ k[,,l. The behavior ofR, shows the relevance of the
S.=(ky—r)/u. (9)  scaling with respect td(t) for the ordering of the system.
The growth ofR, indicates that lamellas order preferentially
We now briefly illustrate this for COP i =3 [36] setting  in the planex-y. In D=2 we find R,~ yt¥? and Ry~ k,\_,ll.
I'=1=u=b=-r. The same results are obtained with nonconserved order pa-
The symmetry of the problem suggests the use of theameter. The behavior d®,,R,,R, resulting from the nu-
cylindrical set of variablesk .k, ,0), wherek,=k, cos#  merical integration of Eq4) with an adaptive grid algorithm
and k,=k, sinf. Naive power counting applied to E¢6) is shown in Fig. 1. After the initial isotropic evolution, the

wherev,, is a constant to be determined. EquatiBpwill be
justified a posteriori by proving the solution of the self-
consistency problem. Specifically, the large time vatue
calculated through Ed5), inserted into Eq(7), must satisfy
Eq. (8) asymptoatically, namely,
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FIG. 1. The typical lengths as a function of the shear strain in
thex (*), y(O), andz (@) directions. The lines are proportional to
yt54(In )2 and (Int)Y2.

FIG. 3. The excess viscosity as a function of the shear strain.
The straight line has slope 2.

ky=0KkZ+kZ=k% for NCOP. The shape of(k,t) on the
shear-induced anisotropy becomes evident for values of thglanesk,=0 andk,=0 is qualitatively similar for COP and
strain yt larger than 1 and agreement with the analyticaNCOP. Atk,=0, in particular, the wave vectors are not af-
behavior is observed. fected by the flow and the structure factor has a circular
It is also useful to illustrate the behavior of the structurestructure with radiuk,, . At k,=0 ork,=ky, the behavior of

factor (10) shown in Fig. 2. The maxima dE(k,t) are lo-  C(k,t) depends on the conservation law. The maxima of

cated ak="5(1ky »?) (Int/t%) k,=0ki=k}; for COP and at C(K,t) developed with NCOP are splitted with COP into a
pair of symmetric, narrowing peaks. This pattern is typical of
the case with conserved dynamics and has been observed in
other segregating systems under shear fl8v.

Finally we turn to the study of the rheological properties.
In phase separation of binary mixtures the flow acts against
the surface tension inducing stretching of domains followed
by breakup processes and burst of small bubf88s39. An
excess viscositp 7 is measured40]: it reaches a maximum
generally foryt=1 and later decays. In our case we measure
the evolution of the shear stresg, deducible in a general
way from Eg.(1) in terms of the structure factor; it is given
by axy(t)=f(d|2/(27r)D)kxky(2k2—b)C(IZ,t) [24]. An ex-
cess viscosity can be introduced®g(t) = — oy (t)/y [41].
Using Eq.(10) we find A »~ y~1t~2. The numerical results
of Fig. 3 show that, after reaching a maximum, the decay of
A 7 agrees with the analytical behavior. The other rheologi-
cal indicators can be shown to behave similarly.

In conclusion, we have studied the ordering kinetics of a
lamellar phase in shear flow by solving the dynamics of the
convective-diffusion equation in the largetimit. Regarding
the debated question of the stable orientation, our results are
in agreement with the expectation of the stability of the per-
pendicular phase at high shear rdte2]. In D=3 a logarith-
mic growth law is found along the shear direction whig
~yt¥4/Int. Interestingly, the same exponent 5/4 is found for

FIG. 2. The structure factor is shown for the COP case on thesimple binary fluidg26,27. Our results show that the scal-
planesk,=0, k,=0, k,=0, k,=ky and for the NCOP case on the ing depends on dimensionality and is violatedr=3. This
planesk,=0, k,=ky . is at variance with the case without shear where the same
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approach gives a scaling form independenthbDdf42]. Vio-
lation of scaling is quite uncommd3,19. In this context

PHYSICAL REVIEW E66, 016114 (2002

[30]. Simulations of the scalar case with shear could eluci-
date this point; however, strong finite size effects make the

this phenomenon may be related to the existence of twevaluation of the growth exponent difficiftee Ref[39] and

lengthsL |, I} growing with different exponents.
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