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Scaling exponents of rough surfaces generated by the Domany-Kinzel cellular automaton
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The critical behavior at the frozen-active transition in the Domany-Kinzel stochastic cellular automaton is
studied via a surface growth process in+1) dimensions. At criticality, this process presents a kinetic
roughening transition; we measure the critical exponents in simulations. Two update schemes are considered:
in the symmetric scheme, the growth surfaces belong to the directed percéEpuaniversality class, except
at one terminal point. At this point, the phase transition is discontinuous and the surfaces belong to the compact
directed percolation universality class. The relabeling of space-time points in the nonsymmetric scheme alters
significantly the surface growth, changing the values of the critical exponents. The critical behavior of rough
surfaces at the nonchaotic-chaotic transition is also studied using the damage spreading technique; the expo-
nents confirm DP values for the symmetric scheme.
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[. INTRODUCTION DKCA [12], where they showed that the Hurst exponkint
attains a maximum at the transition. Recently, Atman and
The one-dimensional Domany-Kinzel stochastic cellularMoreira[13] demonstrated that the growth expongqgtalso
automaton (DKCA) is a completely discrete system— presents a cusp at criticality, and is more appropriate for
temporally, spatially, and in its state space—with applica-detecting phase transitions than the method of de &tlak
tions in physics, chemistry, biology, computer science, etcThey used it to construct the DKCA phase diagram and con-
[1,2]. The DKCA also attracts interest as a particle systenjectured that the growth exponent method also can be used to
affording a test of certain conjectures regarding nonequilibdetect phase transitions in other kinds of models. Recently,
rium critical phenomen43]. The DKCA has a unique ab- Redinz and Martin$14] used the Hurst exponent method to
sorbing(“vacuum”) state; its phase diagram presents a criti-find first- and second-order phase transitions in drseate
cal line separating this absorbing phase from an active phasPotts modelfor q=1,3,5, and 10). Bhattacharyya5] stud-
Models with one absorbing state have been conjectured ted the dynamic critical properties of a related one-
belong generically to the directed percolati@P) univer-  dimensional probabilistic cellular automaton, using two dif-
sality class[4]. There is also good numerical eviden@&  ferent procedures to generate the surface growth process.
that the critical behavior along the transition line in the One of them is identical to the growth process studied by de
DKCA belongs to the DP class, except at one of the terminaSaleset al. and belongs to DP universality class. Thus, the
points, where the asymptotic behavior is known exactly anatonjectures presented by Bhattachary$&], which imply
belongs to the compact directed percolati@DP) univer-  DP-like scaling for this model are also valid here.
sality class[1,5,6]. At this terminal point the transition is The procedure used by de Saktsal. [12] and by Bhat-
discontinuous and we have in fact two absorbing states: theacharyyd 15] transforms the spatiotemporal patterns gener-
vacuum and the completely filled state. Martiesal. [7]  ated by the DKCA to a solid-on-solid particle deposition.
found a damage spreading transition line separating the ade nature of the resulting interface is an interesting open
tive phase into a nonchaotic and a chaotic phase. There tuestion since there are many recipes for mapping dynamical
numerical evidence that the critical behavior along this transystems to interfaces, and in many cases the outcome is com-
sition line also belongs to the DP class, as expected on thgletely unknowna priori. The reason is that sometimes the
basis of universality8]. It is important to distinguish this interface turns out to have surface tension, and thus can be
damage spreading transition, involvingpair of automata, expected to be related to a known universality class, while in
from the frozen-active transition, that involves omgeau-  other cases there is no surface tension. At the critical line, the
tomaton. See the reviews by Hinrichsgh10] for a discus- DKCA surface growth process exhibits kinetic roughening,
sion of experimental realizations of directed percolation andand the critical exponents can be measured following the
the relation of growth models to DP. scaling concepts developed by Family and VicEEs]. Very
The surface growth process generated by cellular aurecently, similar methods were used by Lauritsen and Alava
tomata(CA) was proposed by de Sales al. [11] to study [17]to study the Edwards-Wilkinson equation with columnar
Wolfram’s deterministic CA. These authors also used thisoise, by Vespignanet al. [18] to study sandpile models,
process to identify the frozen-active phase transition in theind by Dickman and Muoz [19], to study the contact pro-

cess(CP).
In this work, we measure the scaling exponents at criti-
*Email address: atman@fisica.ufmg.br cality in simulations, and compare them with known DP and
"Email address: dickman@fisica.ufmg.br CDP values. We use two different schemes to update the
*Email address: jmoreira@fisica.ufmg.br automaton, which lead to entirely different surface growth
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nite), starting at =0 with a finite number of active sites. Let
the probability of this history, given the initial configuration,

be P[hS{a5(0)}]. A history hNS in the nonsymmetric
scheme can be defined in the same manner. Note that there is
a one-to-one correspondence between histories in the two
schemes, given by

o ()=03 _(1). )

FIG. 1. Spatial representation of DKCA, in symmetiieft) and  Since the transition probabilities in the two schemes are
nonsymmetrigright) schemes, showing that the spatiotemporal pat-identical, the probabilities of corresponding histories are as
tern_s are identical in the two schemes, i.e., corresponding historiage||. To extend this correspondence to systems with periodic
are identical. boundaries, we note that if the nonsymmetric systemlhas

. ) ] _ sites, then the corresponding symmetric one Hasifes; in
scaling properties. In Sec. Il, we define the DKCA, describgpe mapping defined above, we now také=2iNS

the two update schemes, and show how the surface growtht(mod ).

process is generated, at the frozen-active and nonchaotic- Ap jmmediate result of this correspondence is that all
chaotic transitions. In Sec. Ill, we present our numerical rescaling propertiege.q., critical exponentsas well as non-
sults and discuss the values obtained, comparing them withniversal propertiege.g., phase boundaries between frozen,
the predictions for thg scaling exponents proposeq by Bhatsctive, and chaotic phases in the-p, plane, are identical
tacharyya[15] and Dickman and Mtoe [19]. We disCuss  in the two schemes. Corresponding histories naturally look

our conclusions in Sec. IV. different in the two schemes: the nonsymmetric scheme rep-
resents a rotating frame of reference in which, moreover,
Il. DKCA SURFACE GROWTH PROCESS distances are rescaled by a factor of 1/2. Thus,pfor 1/2

andp,=1, an interface between domains of 1's and 0’s ex-
ecutes an unbiased random walk in the symmetric scheme,
The DKCA was proposed by Domany and KinZdl],  while in the nonsymmetric case such an interface has a mean
who showed the existence of two phasastive andfrozen velocity of 1/2. The “light cone”i==*t in the symmetric
A more detailed study, using simulation, was performed byscheme becomes the pair of linesO andi=t in the non-
Martins et al. [7], in which a new phase within the active symmetric case. As will be seen below, this difference in
region—achaotic phase—was discovered through the dam-frames of reference has important consequences for the sur-
age spreading technique. face dynamics in the nonsymmetric scheme.
The DKCA consists of a linear chain dof sites ( Depending on the values of the parametgrs, ), the
=1,2,...]), with periodic boundaries, where each site asymptotic {— ) state of the system is eith&ozen with
has two possible states, conveniently denotedoby 0,1.  all sites having value 0, or has a finite fraction of sites with
The state of the system at tinés given by the sefo;(t)}.  value 1, theactivestate. This is a second-order phase transi-
In contrast to the deterministic CA studied by Wolfra&], tion, characterized by the critical exponents of the DP uni-
the DKCA is probabilistic: the rules for updating the systemversality class.
are given by conditional probabilities, which depend on the
neighbors. We study two different schemes, one symmetric, B. Interface representation
the other nonsymmetric. The symmetric scheme is the origi- ) i )
nal one proposed by Domany and King], while the non- The_ surface growth process consists in gccumulatmg
symmetric was usef20] to simplify the algorithm. (summlng_ all 'ghe values assumed by the variableg 7)
In the symmetric scheme, the procesét) is defined on  OVer the firstt time steps:
space-time points with+t even The state of site at time t
t+1 depends owr; _4(t) ando;, 1(t) via the transition prob- h(t)= E o(7). )
ability P[oj(t+1)|oi_1(t),0;41(t)], which takes the form ' =o !
P(1]0,1)=P(1]1,0)=p4, P(1]|1,1)=p,, P(1]0,0)=0. Evi-
dently, P(0|oi_1,0i:1)=1—P(1|oi_1,0i4+1). The differences between the schemes become explicit at this
In the nonsymmetric scheme, the process is define@llon point. In Fig. 2, we show the temporal evolution of the au-
space-time points. The state of sitat timet+ 1 depends on tomaton and the profiles generated by the accumulation
oi—1(t) andgi(t), rather than orr;_;(t) ando;.4(t), asin  method, close to criticality f,=0.5p,;=0.75), in each
the symmetric scheme. The transition probabilRyo;(t scheme. It is evident that the two schemes lead to entirely
+1)|oi_1(t),0i(1)] is identical to Ploi(t different profiles.(In this figure, we choose an initial condi-
+1)|o;-1(t),0741(t)] given above for the symmetric case. tion of a single active site, to highlight the evolution of the
It is easy to see that the two schemes are connected viasaitomaton and profiles.
simple relabeling of space-time poir(tee Fig. 1 Consider, Thus, we obtain growth processes, the nature of whose
for example, aistory h° in the symmetric scheme, that is, a correlations can be investigated through the analysis of the
sequence of configurationsrS(t)} for t=0,....T (T fi- roughnessv(L,t) [21], defined by

A. Model
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FIG. 2. Interface representa-
tion generated by spatiotemporal
patterns of the DKCA with differ-
ent update schemes: the symmet-
ric scheme is shown on the left
and the nonsymmetric on the
right. Upper panels: spatiotempo-
ral patterns of the automata. Black
sites are active; time increases up-
ward. Lower: Interface representa-
tion of the patterns shown above.
Here, they axis corresponds to the
height h(i,t) of the profiles[see
Eg. (2)], and thex axis to the lat-
tice positionsi. The fill color is
changed after every 50 time steps
to highlight the profile roughness
evolution. System size =500 for

150
7;2100
50
OO 100 . ‘ . 30 40 - 500
wA(L,t)= <2 [hi(t)— h(t>1> (3)

150

100

Whereﬁ(t) is the mean value oh;(t) at timet and the

brackets(- - -} denote an average over realizations.
We expect thatv(L,t) has the scaling forril6]

t
~Lef| —
w(L,t)~L (L) (4

wheref(u) is a universal scaling functiony is the rough-

ness exponeng= a/B,, is the dynamic exponent, arg, is

the symmetric and. = 250 for the
nonsymmetric; 900 time steps are
shown. Both systems are very
close to criticality £,=0.5, p;
=0.75), in the active phase.

the growth exponent. The functioh(u)=const, at large
times ¢>L%), andf(u)~u”w at short times {<L?). So at
short times, we expeat(t)~tPw; we measures,, from the
slope of the log-log plot ofv(L,t) vst. At large times, the
roughness saturates and beconmesdependent:w(L,x)
~L% The crossover timé, between these two regimes
grows ast, ~L% The exponentsr andz are defined in the
frozen phase just at the transition line. In the active phase,
the roughness does not saturate, growing instead(ast)
~t%2, corresponding to uncorrelated growtts]. Thus, the
relations above, used to measure the scaling exponents, are
valid just at criticality for the DKCA.

The profiles have self-affine properties quantified by the
Hurst exponent, defined via
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W(e)~ e, (5  chaotic phase, which implies no contribution to the height
h;(t), and is positive in chaotic phase, implying steady

whereW(e€) is the width of the interface on length scale  growth in the height.
We measure the Hurst exponétin a profile generated very In order to preserve the stationary density of active sites
close to the transition. We apply the method introduced byve generate a “rotation” damage at a certain tiig in
Moreiraet al. [22], valid for self-affine profiles, that consists which the replica is rotated 180° with respect to the original
in measuring the roughness around the straight line detesystem, that i® (i,tg) = o (i +L/2t), subject to the periodic
mined by a least-squares fit to a segment of the profile. Thboundary condition.
roughnesaN(L,e,t), at the scales, is given by

D. Theoretical descriptions

1
W(L,e,t)= Izl wi(e,t), (6) One of the first theoretical analyses of critical growth ex-
- ponents in the DP universality class was presented by
Kertesz and Wolf23], who considered a polynuclear growth

where the local roughness(e,t) is defined by model. Theoretical descriptions of surface growth scaling at

j=ite absorbing-state phase transitions were proposed by Bhatta-
w2(e t)= > {hi(t)—[a(e)x +bi(e)]}2 charyya[15], and Dickman and Muoe [19]. Bhattacharrya
2e+1 57! b proposed an analytical treatment in analogy to the random

deposition(RD) process. We clarify that this is not a general
wherea;(€) andb;(e€) are the linear fitting parameters to the description, being valid only at criticality. Considering an
profile on the intervali—e,i + €] centered at sité initial disordered state, the growth process can be described
by a continuum equation, very similar to the RD process:

C. Damage spreading ah(x,t)

ot

Martins et al.[7] used the damage spreading technique to =F+n(x,t) (RD), (8)
show that the active phase of the DKCA in fact consists of

two phases, chaotic and nonchaotic. The order parameter of

this transition is the difference between two replicas startedvhere F is the average number of deposited particles and
with different initial configurations. One allows the system to 7(x,t) corresponds to the white nois¢z{(x,t))=0) in the
evolve until it attains a stationary state, and then a replica ofleposition.

the configuration is created with some sites altétzinage The difference between the surface growth processes gen-
The two replicas, one with state;(t) and the other with erated by DKCA and RD lies in the noise correlations. While
stateg;(t), evolve with the same sequence of random num-RD involves spatially and temporally uncorrelated noise, the

bers, and the difference between the configurations correlations in time and space developing in the DKCA ap-
pears in the noise fluctuations of the accumulation method.
Li(t) =|ai(t)—ei(t)], For values of p1,p2) away from the critical ling(in the

_ ) o ) ~active phaskg the correlation lengtl§ and correlation time-

is measured. The fraction of sites in the two replicas withof the DKCA are finite, which means that the noise in the

o;# @; is called the Hamming distance, defined as deposition process is correlated over short ranges. In this
limit the noise autocorrelation decays exponentigfy|:

1
Dy()=1 2 Ti().
(X0, (X' ")) ~e X It=tlim )
The stationary Hamming distance is null in the nonchaotic

phase and positive in the chaotic phase. Thus, the noise appears uncorrelated for times greater

~To study the chaotic-nonchaotic boundary, we use &nhanr, and the RD exponents are obtained in this limit. This
slightly different method, where the difference between theyehavior was confirmed in earlier simulatiof3]. As we
two automata is used to generate the surface growth procesg,proach the transition ling and 7 increase, and it takes
as we did in the accumulation method longer for the growth process to reach the RD limit. Finally,
. at the critical line, botk¢ and r diverge, and the correlations

B are long ranged represented by a power law decay of the

hi(t)= Zo Ti(7). ™ hoise autocorrelatiof21]
Thus, the profile generated by the difference between the PV ! | = 2By [+ _+1|—2Blv
replicas behaves exactly as the profiles generated in the (7060, 7(X" 1))~ x=X| He=r] L (10
frozen-active boundary: the roughness reaches a stationary
value in the nonchaotic phase and grows indefinitely in thevhereg, v, , andy| are, respectively, the critical exponents
chaotic phase. This behavior can be understood if we nottor the order parameter, correlation length, and correlation
that the difference between the replicas vanishes in the noriime of the DKCA.
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The value of the growth exponeg, at the critical line N ' '
p,=0.749(1) [transition] p,=0.5

can be derived from the continuum equatit®) and the 0.80 | _
noise(10); the heighth(x,t) can be obtained integrating Eq.
8,
. . 070 | S0 T
h(x’t):fodTF+fodTn(X’T)' (11 o o200
e A— - AL=500
) ) == ; *-¢ =200
If we now let h(x,t)—h(x,t)—Ft, considering only the 0.60 - 5\ == L=100

fluctuations around the mean height, we can write the mean
square roughness, which is the variancenf,t), as

0.50 |-
t T
var[h(x,t)]zj dTJ dt’{n(x,7) p(x,t")). (12
0 0
0.40 AR ] I |
Thus, using Eq(10), making the change of variables 0.70 0.75 0.80 0.85 0.90
=7—t', we obtain Py

t - t FIG. 3. Growth exponenB,, in the DKCA for several system
Wz(t)~f de dww_Z'B/”I\~f dT(wl‘ZB’VH);O~t2‘2B’”H. sizes in the symmetric scheme. Note tfsgtattains a maximum at
0 wo 0 the frozen-active transition and depends strongly on the system size.

. . . . The transition point was chosen as thg value at system sizk

(We take the lower limit of integration _8‘80~1’ smce EQ' =10000, where we observe a sharp transition. In this example,

(10) holds for [t—t’[=1, and the scaling behavior arises , _ ¢ 5 andp,=0.749.

from the decay of correlations at large spatial and temporal

separation$.This implies that the width for an infinite sub- NS 1 B(Uy+ U, ) 16

strate, for the symmetric scheme, follows the power law: W, 1)~ : (16
w(eo,t)~ A (13)  Considering[24] v, =1.096 854, the value of growth expo-

o . ) . _nent in the nonsymmetric scheme is expected to be
As it is believed that this transition belongs to the DP uni-

versality class, considering the exponent values furnished by

Jenser]24], the value of growth exponent is expected to be Buw=0.588 46,
B 0.276 49 in agreement with the value found in earlier simulatiph3).
Bu=1- ;H: T 1.73382: 82520-8405- In previous work[13], Atman and Moreira showed that

By attains a maximum at the phase transitisee Fig. 3,
For the nonsymmetric scheme, due the corresponden@nd measured its value along the transition line of the
between histories in the two schemes described by(Bg. DKCA. This behavior of the exponemg,, in the vicinity of
the height is defined by the phase transition can be understood as follows. The
growth ratedh;/dt at sitei is proportional(in the frame of
h(x,t)= ftdﬂ?(zx— 1), (14) reference moving with the average velocityh)/dt) to the
0 excessctivity at that site. Away from the critical point, the
o activity has a finite correlation lengthand correlation time
yielding to 7. Thus on scales much greater thénr, the noise driving
. . the surface growth is uncorrelated, and this process falls in
var[h(x,t)]:f de dt’(p(2x—7,7) p(2x—t',t")) the RD class, withg,,= 1/2. At the critical point, by contrast,
0 0 ¢ and 7 diverge and we have instead the scaling relation
. . Bw=1—6[19], where the exponertt is defined through the
= f d’ff do(n(d—w,t’ +w)p(d,t")), relationp(t)~t~* for the initial decay of the activity density
0 0 p at the critical point, starting fronp(0)=1. Since, in one
(15) dimension, - 6>1/2, we expect a jump iB,, at the phase
boundary. In simulations of finite-sized systems, we expect

where¢=2x—t'. Thus, using Eq(10) not a discontinuity inB,, but a sharp peak at the transition—
see Fig. 3very near to the critical poinE>L, so that inde-
¢ . ; . . ;
wz(t)~J de o] o] ~2AUr ) (226U + iy ) pendently fluctuatlng_r_eglons are not present in the simula-
0 g tion). Below the transition, the apparent value@f— 0 due

to the short lifetime of the activity. It is interesting to note
This implies that the width for an infinite substrate, for thethat for the DP universality class;-16=0.55,0.27, and 0 for
nonsymmetric scheme, increases as the following power a=2,3, and 4, respectively. Thus we should expggtto
the time: decreaseat the phase boundary o= 3.
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TABLE |. Summary of the scaling exponents valuds; 1.

Previous work a Bw z H
DP 1.3286 0.8405 1.5808 0.643
CP (simulationa) [19] 1.33 0.8391) 0.633)
CA (simulational [15] 0.837111)

CDP 2 1 2 1
Present work—symmetric scheme

Frozen-activep,=0.5 1.321) 0.822) 1.591) 0.61(3)
Frozen-activep,=1 2.011) 0.991) 2.085) 0.992)
Nonchaotic-chaotip;=1 1.325%9) 0.81(1) 1.61(1) 0.603)
Nonchaotic-chaotip,=0 1.321) 0.782) 1.642) 0.61(3)
Present work—nonsymmetric scheme

Frozen-activgp,=0.5 0.927) * 1.58(4) 0.266)
Frozen-activegp,=1 0.9847) * 1.9(1) 0.50125)
Nonchaotic-chaotip;=1 0.931) * 1.67(2) 0.302)
Nonchaotic-chaotip,=0 0.91@7) * 1.66(1) 0.283)

Since the saturation of surface width is forced by therepresent an average over 100 random initial configurations
DKCA, the crossover timé, behaves exactly as in DP, and in a system with. =10 000. We observe a significant change
the dynamic exponent is given by in the value of the Hurst exponent depending on the scheme
used to update the automaton: in the symmetric scheme, we
haveH>1/2, denoting a positive correlation in the profile; in
Thus, the roughness exponent at the criticality is given by the nonsymmetric schenté=0.253), denoting a negative

correlation. This behavior can be understood considering the
a=128,~=1.3286. (18 nonsymmetric scheme as a deposition over a moving refer-

) - i ence frame, which implies a lateral propagation of correla-
Dickman and Muoz [19] studied the contact process us- tjons.

ing the surface growth representation. They demonstrated
that the Hurst exponent shows clear signs of anomalous scal-
ing (e>H), but no evidence of multiscaling. They verified
Lopez' scaling relation [25]: H=a—zk. Here, «
=0.4336(4) is the exponent associated with the divergence Lo

--------- L=200
of the mean-square height gradient in the continuum growth %8 T Lo
equation that describes the contact process and related mot — - - L=2000
els, such as DP. Inserting the known values in the relation R

above we have for the Hurst exponent in the DP class: 0.6 -

ty~L?% z=z°P=y)/v, ~1.5808. (17)

pt)

H=a—2zx=0.643. (19

04
Il. RESULTS e

z=1.567(9)

In Table I, we summarize our results for the scaling ex- 0
ponents at the frozen-active and nonchaotic-chaotic transi:
tions, and compare them with the values for the DP and CPLC W i
universality classes. L

To extract the exponent values from our simulation data, %° :

10 10
we used the relationsv(L,»)~L¢%, valid at large times, t
w(L,t)~tAw, valid at short times antl, (L) ~LZ The results
show a strong dependence on the scheme used—symmet@&i
or nonsymmetric. In the simulations, we average 10 000several system sizes is shown, for the symmetric scheme (
5090’ 2;:’000' ]jooo’ 500, 259' and 100 samples at the critical 0.5p;=0.749). The horizontal line highlights the valpe-1/2,
point (pz,p3) in systems withL =50, 100, 200, 500, 1000, \hich corresponds to the crossover time. The inset shows the cross-
2000, and 5000 sites, respectively. The initial condition ingyer timet., in function of the system sizes. The slope of this curve
these samples was random, with 50% of sites active. is the value of the dynamical exponentThe error bars are calcu-

The Hurst exponent was measured following the procetated considering an error of 1% in the number of samples frozen at
dure explained in Sec. Il B. The results, shown in Table l,a given time.

FIG. 4. Dynamic exponert for the DKCA interface represen-
on. The density(t) of active samples as a function of time for
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6

10 T T
. 3
10* | i =
)
3
2
10° 1
1 T T T
107 - i
@p,=0.5 p,=0.749 symmetric
Mp=1 p,=0.5 symmetric
Op,=0.5 p,=0.749 nonsymmetric ©
®p,.=0 p,=0.8095 damage spreading o
0 F<' I -~ - (N c ey
10 1 1 = 10 .
100 1000 10000 i
S 3 < - 1 L=2000
) ¥-----¥ L=5000
FIG. 5. Roughness exponeat for the DKCA interface repre- >—= L=10000
sentation. Four cases are shown: directed percolapigr 0.5, py 10° & . . .
=0.749 symmetrig directed percolation,=0, p,=0.8095 dam- 10° 10° ! 10'

age spreading compact directed percolatiop{=1, p;=0.5 sym- yL"

metric), and nonsymmetric DPp;=0.5, p;=0.749 nonsymmet-

ric). The line is the power law regression for the data and furnishes FIG. 6. Famlly-Vlcs_di scaling, Upper_ panel: the. width of the
the value of the roughness exponentThe error bars are the stan- generated profiles at different system sizes. Lower: collapse of the

dard deviations of the saturation width over realizations at eacffU"ves abqve using the_ _exp_onent values measured through numeri-
system size. cal simulation at the criticalityg,= 0.5, p;=0.749).

It is important to note that the exponengs, andz mea-
sured for the chaotic-nonchaotic transition p¢=0 are

For the symmetric scheme, our results for the critical ex-slightly different from the exponents measured away from
ponents agree with the DP values, except at terminal poirthis point. This can represent evidence of long-range corre-
p,=1 where CDP values were obtained. The critical pointdations du_e the co!ncidence O_f the_damage ;preading and
(pS,p%) were determined through the growth exponentfrozen—actlve transitions at th|§ point, as p0|_nted out by
method[13] (Fig. 3. This method consists in fixing, and Grassbergel8], but also is consistent to corrections to scal-
varying p, until the maximum of the growth exponegt, is
attained.

To determine the crossover timg(L), we plot the frac-
tion of realizations with at least one active site as a function
of time (see Fig. 4, and define the crossover time such that
half of the initial sample has frozen. The inset of Figure 4

A. Symmetric scheme

4

10 E T T T

weakly
correlated
regime

03

shows the power law behavior of the crossover time; the
slope of this line corresponds to the exponent =
To obtain the saturation width, we let all samples evolve &
to the absorbing state, at a given system size, and determin
the final averaged roughness. The exponemtas measured
as the slope ofv(L,>) vsL in a log-log plot. In Fig. 5, we
present the results for the saturation roughness in the case
directed percolation @,=0.5, p;=0.749, symmetrig di-
rected percolation g,=0,p;=0.8095, damage spreading
compact directed percolatiorp{=1, p;=0.5, symmetrig,
and nonsymmetric DPp,= 0.5, p;=0.749, nonsymmetrjc
In order to verify Family-Vicsk scaling, we use the mea-

L stron
corre

| regime 7 7
E oy

7 nonsymmetric scheme |

p,=0, p,=0.8095
L=50
—-— L=500
—— L=5000

sured Va|U?S for the Scaling exponents to collapse the Widt_h FIG. 7. Profile roughness behavior for a nonsymmetric scheme.
curves at different system sizes to a single curve, as shown iNote the two regimes in ther(L,t) vst curve; fort<L we have a
Fig 6. Note the collapse of the width curves, corroboratingstrongly correlated regime with8,,~0.65 and forL<t<t,, a

the Family-Vice scaling relation.
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weakly correlated regime wit,,~0.45.
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ing. At this moment we are not able to perform calculationscussed in Sec. Il A; in facgz~1.6(1) for nonchaotic-chaotic
to distinguish these effects. and frozen-activeéat p,# 1) transitions, whilez~1.9(1) at
p2: 1,p1: 0.5.
B. Nonsymmetric scheme

A significant change in the roughening occurs in the non- IV. CONCLUSIONS

symmetric scheme, as shown in Fig 7; we observe two dis- Growth surfaces generated by the spatiotemporal patterns
tinct regimes in the roughness growth: a strongly correlategf the DKCA along its critical lines are studied. The critical
regime, for timest<L, and a weak correlation regime, for roughening exponents, expected to belong to the DP univer-
longer times. Again, this behavior can be understood by consgjity class, were measured using power law relations valid
sidering the nonsymmetric scheme as deposition in a movingy criticality. Except for the terminal poinp,=1, all the
reference frame. The correlations inherent in the dynamicgca"ng exponents agree with the DP values, in the symmetric
are propagated by the moving reference frame until thegcheme, and the scaling lag,= /z remains valid. Atp,
reach the system size; then the correlations due the local 1 e confirm CDP values for the exponents. Since the
rules of the automaton take over, decreasing the growth raictuations in uncorrelated regions are effectively super-
of the roughness. These two regimes for the roughnessyseq, it is not surprising that the apparent valuegpénd
growth implies that is not possible to collapse all the curves, sre smaller in the nonsymmetric scheme. At the

using the Family-Vicek scaling law. _ nonchaotic-chaotic transition, the exponents measured also
The apparent exponent values measured in the nonsyMyree with the DP values.

metric scheme are markedly smallerr~0.92(1) for

nonchaotic-chaotic and frozen-active transitions; [at

=1,p,=0.5, ®~0.9847). As discussed above, the growth ACKNOWLEDGMENTS

exponent presents two values, depending on the roughness

growth regime(The * in the Table | denotes this behavjor. We thank the Brazilian agencies CNPq and Fapemig for
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