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Ising model on networks with an arbitrary distribution of connections
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We find the exact critical temperatuilg of the nearest-neighbor ferromagnetic Ising model on an “equi-
librium” random graph with an arbitrary degree distributibitk). We observe an anomalous behavior of the
magnetization, magnetic susceptibility and specific heat, vir{éa) is fat tailed, or, loosely speaking, when the
fourth moment of the distribution diverges in infinite networks. When the second moment becomes divergent,
T. approaches infinity, the phase transition is of infinite order, and size effect is anomalously strong.
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The Ising model is one of the immortal themes in physics.<3. When(k*)<, the phase transition is similar to that in
It is a traditional starting point for the study of the effects of the Ising model on high-dimension regular lattices. However,
cooperative behavior. Networks with complex architecturefor y<<5 its nature is quite different. Ag decreases and the
display a spectrum of unique effedtk—6], and so they are role of the highly connected vertices turns to be more impor-
an intriguing substrate. The simulation of the Ising model ontant, T, grows and the phase transition becomes more “con-
a growing scale-free netwofl] has demonstrated that it is tinuous.” Below y=4, it is of higher order than the second
extremely far from that on regular lattices and on “planarin Ehrenfest’s terminology. Furthermore, =3, T, ap-
graphs”[8]. proachese, and the order of the phase transition is infinite.

In this paper, we report our exact results and results, When(k?) diverges ¢/<3), the effect of the highly con-
which, we believe, are asymptotically exact, for the thermo-nected vertices is crucial. In the infinite network, long-range
dynamic properties of the Ising model on the basic construcmagnetic order is not destroyed by any temperature, and
tion for “equilibrium” random networks. These networks are finite-size effect is very strong. Formally speaking, we de-
the undirected graphs, maximally random under the convelop a theory for infinite networks, but it also allows us to
straint that their degree distribution is a given of¥k). describe the finite-size effect. Our main results are presented
Here,degreeis the number of connections of a vertex. Cor-in Table I.
relations between degrees of vertices in such graphs are ab-
sent. In graph theory, these networks are called “labeled ran-
dom graphs with a given degree sequence” or “the INTUITIVE ARGUMENTS
configuration modelT9]. The earlier interest was mainly in
the percolation properties of complex networks and the The large networks that are studied in this paper have a
spread of diseases on th¢t0—17, and most of the analyti- treelike “local structure.” When we start from a randomly
cal results were obtained just for this basic constructiorchosen vertex, and add its first nearest neighbors, second,

(however, see Refs[18-20, where the Berezinskii- ... ,nth with all their connections, the resulting subgraph is
Kosterlitz-Thouless percolation phase transition was studiedimost surely a tree. Of course, in a finite-size network, there
in growing networks is a boundary fom, above which loops appear in such a

Our results demonstrate the strong effect of the fat tail osubgraph.
the degree distribution on the phase transition in the Ising Cooperative properties, which we study in the present pa-
model. The most connected vertices induce strong ferromagper, are determined by this “local” environment, where ver-
netic correlations in their close neighborhoods at very largeices have a quite different structure of connections than in
temperatures, and so their role is very important. Surpristhe entire net. Interactions are transmitted through edges,
ingly, we observe very strong effects of these vertices, evefrom vertex to vertex. Hence, the following characteristic is
when they, at first sight, must be insignificant, namely, whercrucial: the distribution of the number of connections of the
the first and the second moments of the degree distributionearest neighbor of a vertex. In the networks under consid-
are still finite but the fourth moment already divergék®  eration, it iskP(k)/(k). Then, the nearest neighbors of a
—0), vertex have the average number of connectidhe average
It is convenient to use the power-law degree distributiondegreé (k?)/(k), its second nearest neighbors have the same
P(k)xk~” for parametrization. Then(k?) diverges fory  average degree, and so on. Notice that this value is greater
<5, (k) diverges fory=4, and(k?) is divergent fory  than the average number of connections for the entire net-
work (k), and it is much greater thafk) if (k?) is large.
Therefore, we estimate the critical temperature of the Ising
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TABLE I. Critical behavior of the magnetizatiod, the specific heabC, and the susceptibility in the Ising model on networks with
a degree distributiofP (k) ~k ™ for various values of exponent 7=1—T/T.. The right column represents the exact critical temperature
in the casgk?)<e and the dependence ®f, on the total numbeN of vertices in a network.

M SC(T<Ty) X T.

y>5, (k*)< o 712 jump atT, decreases ak*) grows
y=5, (kY =%, (k¥)<w % 712/ (In 77112 «1/in7t gt (K%
1< y<s, (=e, (K3 < 16200
’}’:3. <k2>:oo ocefZT/(k) Dc-|-2974T/<k) ocT’l (k)ln N
2<y<3, (K¥)=x LG T~ (r=1I(3-%) wT-1 o (KYNG=/0~1)

3 1 <k2> e~ L+H)IT 4 g(1-H)ITy

T 27 —2(k) . YOO = CamT gt 2y ©
We will show below that this naive estimate is exact. If aspinS, .4, is onadead end, theg ;) =1. Note that at

H>0, x,,<1, whilex, ;=1 for H<0. ForH>0, it is con-
venient to introduce, | =exp(—h,,). Here, at a givem, h,
GENERAL SOLUTION are positive and independent random parameters, which play
Consider the Ising model on a network with the Hamil- the role of random effective fields acting on a spin in titie
tonian: H=—-J%;)SS,—HZ;S, where the first sum is shell from neighboring spins in then¢-1)th shell. Then,
over all edges of the graph the second one is over all vertiEds. (3) and (4) take the form
ces,J>0 andH are the energy of the ferromagnetic interac-

tion and magnetic field, respectively. Hereafter, we et Q2HIT oy E h

=1. Itis known that the regular Cayley tree is solved exactly u

by using recurrence relatioh®1]. As networks under discus- M= Ko ; (6)
sion have a local treelike structure, we apply this method to MM rexpg — > hll)

the Ising model on such nets. Consider sgjron a vertex 0 =1

with kg adjacent spin§,;, i=1,2,... Ko. Due to the local

treelike structure this spin may be treated as a root of a tree. knj 1

We introduce hnj=— exp — |21 Povy |- D

_ At dead ends we havie, =0. At H=0 in the paramag-
(Sp)= e +S,Sy;+H |, : h+ 1)’
91,(S0) s,:zﬂ XF{((Z@ SSmt SoSyy ZI S') } netic phaseh,;=0, while in the ordered phask,,+0.

(2 Equations(6) and (7) determine the magnetizatiad of a
graph as a function of and H. We emphasize that these
whereT is temperature. The indicdsand m run only over  equations are valid for any treelike graph.

spins that belong to subtrees with the root sgjn, includ- While deriving the recurrence relations, we started from
ing S;;. Let x1;=0;(—)/g91;(+), then the magnetic mo- some spinS, and then made the recurrence steps along sub-
mentM of the vertex 0 is trees. While solving the recurrence relations, we start from
distant spins, i.e., from large and descend along subtrees to
ko ko the spinS,. The recurrence steps Ed) converges exponen-
( 2HIT_T] xl,) / (eZH’TJrH Xl,i)- (3) tially quickly. Therefore, we can sdi~0 for the starting
=1 spins. In the limitn— o the parameteh; is the fixed point

of the recurrence steps. The thermodynamic behavior is de-
The parameters,; describe the effects of the nearest neigh-termined by this fixed point, which is reached from the
bors on the spir, In turn, x,; are expressed in terms of neighborhood oh=0.
parametersx,; =gy (—)/g2(+), 1=1,2,...ky;, which Let us average the magnetizatibhover the ensemble of
describe effects of spins in the second shell on spins in theandom graphs with a degree distributiB(k). Introducing
first shell, and so on. The following recurrence relation be+he distribution function oh,,;, W¥,(h)=(8(h—h, ), and

tweenx, ; andxyq, holds: its Laplace transform¥ ,(s)=fdhe s"I (h) we obtain
from Eg. (6) the average magnetic moment

knj— 1
:y( H Xn+1,|)1 (4) Q2HIT_ g=h d _
- (M)=2 P(k)f dh—rr hf iwz—;esh\lfi(s).

where we introduce the function (8)
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Here P(k) is the probability that the vertex O h&connec-  whereh=(h, ) is the average value of the “effective field”
tions. Equation(7) gives the recurrence relation between acting on a spin. The largéris, the better this approximation

¥ ,(s) and¥ . 4(s): will be. Therefore, the most “dangerous” highly connected
spins are taken into account in the best way. With this ansatz,
J Pk = —h = ds’ s'hqrk—1/ s
\Ifn(s):§k: o dhys(e™ om© PELi(sh) Q2HIT _ g=kh
' (My=2 P(K) - (12
€) 3 e?Tie

with W, ;(s)=1 at a dead end. HeR(k)k/(k) is the prob-  Applying ansata11) to Eq.(7) yields
ability that the neighbor in then(+1)th shell of a vertex

from the nth shell hask connections. We start from distant
spins with ¥, . ;(s)~1 and largen and make recurrence
steps toward smallar until we reach the fixed point. In the

limit n—oo, the recurrence procedure convergesit¢s). h plays the role of the order parameter. At=0, h=0
The fixed point® (s) is a solution of Eq(9) in which¥,(s)  aPoveT. and is nonzero below. .

and ¥, ,(s) are replaced by¥(s). Then Eq.(8) with
¥,(s)—¥(s) gives the exact expression f¢gM). At H

=0 in the paramagnetic phase we hal¢s)=1. Let us describe the critical behavior of the thermodynamic
Let us find the exact critical temperatufg,. Consider quantities of the Ising model on the infinite networks. For
a starting function¥,(s)=exp(-ss), where 5 is small: this, one must solve the equation of stét8) nearT, atH
0< <1, sé<1. After the first m recurrence steps, we :O'I;h (k) ™ ) &(h) i
L5 _ _ <. The expansion o over sma
obtain WV, _.(s)=exp(-=ssf™), where f=(k(k—1)) € cas - 5 )
(k)" tanh(1T). For f<1, the recurrence steps lead to the has the formG(h) =g h+g3h™+ - - - For brevity, we do not

- resent exact expressions for the coefficigntsSubstitutin
fixed pointW¥ (s)=1, which corresponds to the paramagneticp P a9 g

X . L this expansion into Eq(13) determinesT, and the order
phasef=1 at a certain temperatufg,, which satisfies the parameteh~ar*? as a function of the reduced temperature
condition (k(k—1))(k) ‘tanh(1Tc)=1, so that atT<T. __q1_ /T where a=[12(k(k—1))2/((k)(k(k
we havef>1 and the recurrence steps lead away from the 1)3>Tc]1f2j Note that the critical temperatuf®, that fol-
point ¥ (s)=1. One sees thal, is given by Eq.(1). Thus,  |ows from our ansatz coincides with the exact regljt At
the estimatg(1) is exact. This result is valid for any degree smallh andH=0, Eq.(12) gives the spontaneous moment
distribution with(k?)<ce. In this range, the average number (M)=(k)ar*?/2. The magnetic susceptibility can be calcu-
of the second nearest neighborszis=(k?)—(k) [11] (z;  lated from Eq(12), by differentiating oveH and then taking

h:—<k>*12k P(kkIny[e" kDM =G(h). (13

THERMODYNAMIC QUANTITIES

=(k)), so into account the dependence lofon H from Eq. (13). We
L obtain xy(H=0)~((k)*/[2(k?)(k(k—2))])7~ L. At T>T,
tanh— = 4 (10) the susceptibility has the same behavigf0)~(T/T,

hr_c z, —1)~* but with the double prefactor.

In our ansatz, the average internal energy per s{i),
At zero temperature we find the solutioh(s)=ts+ (1 =(—J255))r/N (the average is thermodynamic and
—1ts) 850, Wheredsp=1 ats=0 and5so=0 ats#0, t;is  over the ensemble of graphsitH=0 is
the smallest root of the equatiadR=3>,P(k)k t‘;_l. This
solution gives(M)=1-3P(k)t&, which is exactly the size
of the giant connected component of the network. This result
is evident. Indeed, only vertices in the giant connected com-

(E)z—%(k)cotf{Zl‘l’)

ponent have a nonzero spontaneous moment, which is equal . 1 S P(kk ek (14
to 1 atT=0. 2 sinh(2/T) % 1+e K~
ANSATZ Substituting herdh~ar’?, we find that the specific he&

To study the critical behavior of thermodynamic quanti- =d(E)/dT has a jump al =T,

ties, we develop an ansatz in the spirit of the “effective me- _ _ 2\ 12
dium” approach. Notice that the right-hand sides of E§S. AC=(k(k=2)) (k5 (8(k)). (19

and (7) depend only on the sum of the independent andThis jump disappears d&*) approachese. When(k*) di-

gquwalent random variables, ;. So, let us use the follow- verges, we consider power-law degree distributioRgk)
ing ansatz: k7

K The casey=5. The divergence ofk*) leads to a loga-
E h, ~kh+O(kY?), (11) rithmig singularity of th_e functionG_(h): G(h)=g;h
=1 +gsh”In(1/h)+ . ... Solving Eq.(13) yields
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h,M~ 71/2/(|n — 1)1/2, 5C~1/n7t 1, X~ 1 FINITE-SIZE EFFECT

(16) Equation (1) shows thatT, diverges whenk?)—o. In

[for any y, we havesC(T>T,)=0]. Note that the critical ~finite networks,(l_<2>_is finite because of the finite-size cutoff
behavior ofy is not changed. of the degree distribution. In scale-free networks, it is esti-
The case3<y<5. The functionG(h) has two leading Mated askeu~koN""", whereN is the total number of

terms: G(h)~g;h+gsh” 2. Solving the equation of state Vertices in a networkk, is a “minimal degree” or the lower

(13) yields boundary of the power-law dependence, afid~ky(y
—1)/(y—2). Then, actually, repeating estimations from Ref.

hM~ 7073 5C~75"M0=3) v~ 771 (17)  [4] (see more detailed discussions in R¢f5,17)), we ob-

tain

Notice that fory<<5 the critical exponents of the magnetiza-

tion and specific heat differ from the standard ones. #or (KN

>4, exponenta of the specific heat{C~ 7~ %) is above T~

—1. Hence the second derivative of the free energy dver 4

diverges afT .. Therefore, the phase transition is of the sec-

ond order in Ehrenfest’s classification. Fpr4, we have (y—2)2

a=—(5-17)/(y—3)<—1 and the transition turns to be of ~ T¢~ m&w(s*”’(“l) for 2<y<3.

a higher order. The order of the transition tends to infinity as YRy (20)

y—3. Nevertheless, foy>3, the susceptibility obeys the

Curie law.

The casey=3. Here,(k?) diverges. Formally speaking,
this leads to the infinite critical temperature for the infinite
networks[see Eq.(1)]. In any finite network(k?)<e and i ) ,
the critical temperature is finite, although it may be very(20) Tc=2.5InN follows. The simulation[7] yields Tc
high, T.=(k2)/(k) (see below. We consider temperatures, ~2.6InN—3. Recall that our results were obtqlned_ for the
which are much less than this critical temperature, but wher§®MPletely uncorrelated network, and correlations in grow-
h<1, soT>1. Using, for brevity, the continuum approxima- N9 neétworks are extremely strong.
tion for the degree distribution, we obtairnG(h)

at y=3,

The first expression can be compared with the simuldfion
of the Ising model on the BarabiaAlbert growing network
(y=3) with minimal degreek,=5, so(k)=10. From Eq.

~((kyh/2T)In[2/((k)h)]. Then, DISCUSSION
h%(Z/{k))e‘ZT’W, M~e 2Tk Our results may be compared with those for percolation
b ATk . on such network$16] and the disease spread within them
SC~T2e #T0 y~T7L (18 [14]. Of course, the problems are distinct, but one finds a

. . L . reat resemblancéthe superstability of long-range order
Without the continuum approximation, we have, instead Oélvhen(kﬁﬂoo phase transitions of higher order, etall

(k) in the exponentia_ls, a CO”Staf?t that is deterr_nined by th?nese anomalous features are determined by fat tails in the
corgpleteFf(k). quqt|on(18) dSSCI’IbeS the behawpr Or]: the.r- distributions of connections. Our final results were presented
modynamic quantities at modest temperatures in the sitUgq, \ncorrelated networks. However, the quantitative agree-

ti_on_, _Where the phase ”@”Si“‘)” is of infinite_ order and alment with the simulation 7] of correlated nets shows that
infinite temperature.” Notice the paramagnetic dependencgpey are applicable in much more general situations. Further-

x>1/T. Note that the temperature dependenide<exp  ore our analytical results can be easily generalized.
[—2T/Kk)] coincides with the result of the simulati¢] for

the Barabai-Albert model ¢y=3) [see Fig. 1a) of Ref.[7]].
The case2<y<3. Again T, for large networks is very ACKNOWLEDGMENTS
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