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Ising model on networks with an arbitrary distribution of connections
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We find the exact critical temperatureTc of the nearest-neighbor ferromagnetic Ising model on an ‘‘equi-
librium’’ random graph with an arbitrary degree distributionP(k). We observe an anomalous behavior of the
magnetization, magnetic susceptibility and specific heat, whenP(k) is fat tailed, or, loosely speaking, when the
fourth moment of the distribution diverges in infinite networks. When the second moment becomes divergent,
Tc approaches infinity, the phase transition is of infinite order, and size effect is anomalously strong.
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The Ising model is one of the immortal themes in physi
It is a traditional starting point for the study of the effects
cooperative behavior. Networks with complex architectu
display a spectrum of unique effects@1–6#, and so they are
an intriguing substrate. The simulation of the Ising model
a growing scale-free network@7# has demonstrated that it i
extremely far from that on regular lattices and on ‘‘plan
graphs’’@8#.

In this paper, we report our exact results and resu
which, we believe, are asymptotically exact, for the therm
dynamic properties of the Ising model on the basic constr
tion for ‘‘equilibrium’’ random networks. These networks a
the undirected graphs, maximally random under the c
straint that their degree distribution is a given one,P(k).
Here,degreeis the number of connections of a vertex. Co
relations between degrees of vertices in such graphs are
sent. In graph theory, these networks are called ‘‘labeled
dom graphs with a given degree sequence’’ or ‘‘t
configuration model’’@9#. The earlier interest was mainly i
the percolation properties of complex networks and
spread of diseases on them@10–17#, and most of the analyti-
cal results were obtained just for this basic construct
~however, see Refs.@18–20#, where the Berezinskii-
Kosterlitz-Thouless percolation phase transition was stud
in growing networks!.

Our results demonstrate the strong effect of the fat tai
the degree distribution on the phase transition in the Is
model. The most connected vertices induce strong ferrom
netic correlations in their close neighborhoods at very la
temperatures, and so their role is very important. Surp
ingly, we observe very strong effects of these vertices, e
when they, at first sight, must be insignificant, namely, wh
the first and the second moments of the degree distribu
are still finite but the fourth moment already diverges (^k4&
→`).

It is convenient to use the power-law degree distribut
P(k)}k2g for parametrization. Then,̂k4& diverges forg
<5, ^k3& diverges forg<4, and ^k2& is divergent forg
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<3. When^k4&,`, the phase transition is similar to that i
the Ising model on high-dimension regular lattices. Howev
for g,5 its nature is quite different. Asg decreases and th
role of the highly connected vertices turns to be more imp
tant,Tc grows and the phase transition becomes more ‘‘c
tinuous.’’ Below g54, it is of higher order than the secon
in Ehrenfest’s terminology. Furthermore, atg53, Tc ap-
proaches̀ , and the order of the phase transition is infinit

When^k2& diverges (g<3), the effect of the highly con-
nected vertices is crucial. In the infinite network, long-ran
magnetic order is not destroyed by any temperature,
finite-size effect is very strong. Formally speaking, we d
velop a theory for infinite networks, but it also allows us
describe the finite-size effect. Our main results are prese
in Table I.

INTUITIVE ARGUMENTS

The large networks that are studied in this paper hav
treelike ‘‘local structure.’’ When we start from a random
chosen vertex, and add its first nearest neighbors, sec
. . . ,nth with all their connections, the resulting subgraph
almost surely a tree. Of course, in a finite-size network, th
is a boundary forn, above which loops appear in such
subgraph.

Cooperative properties, which we study in the present
per, are determined by this ‘‘local’’ environment, where ve
tices have a quite different structure of connections than
the entire net. Interactions are transmitted through ed
from vertex to vertex. Hence, the following characteristic
crucial: the distribution of the number of connections of t
nearest neighbor of a vertex. In the networks under con
eration, it is kP(k)/^k&. Then, the nearest neighbors of
vertex have the average number of connections~the average
degree! ^k2&/^k&, its second nearest neighbors have the sa
average degree, and so on. Notice that this value is gre
than the average number of connections for the entire
work ^k&, and it is much greater than̂k& if ^k2& is large.
Therefore, we estimate the critical temperature of the Is
model on the network using the formulaTc /J52/ln@q/(q
22)# for the Ising model on a regular Cayley tree@21# with
the coordination numberq5^k2&/^k&. The result is
©2002 The American Physical Society04-1
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TABLE I. Critical behavior of the magnetizationM, the specific heatdC, and the susceptibilityx in the Ising model on networks with
a degree distributionP(k);k2g for various values of exponentg. t[12T/Tc . The right column represents the exact critical temperat
in the casê k2&,` and the dependence ofTc on the total numberN of vertices in a network.

M dC(T,Tc) x Tc

g.5, ^k4&,` }t1/2 jump atTc decreases aŝk4& grows
g55, ^k4&5`, ^k2&,` }t1/2/(ln t21)1/2 }1/ln t21 }t21

2/ln
^k2&

^k2&22^k&3,g,5, ^k4&5`, ^k2&,` }t1/(g23) }t (52g)/(g23)

g53, ^k2&5` }e22T/^k& }T2e24T/^k& }T21 ^k& ln N
2,g,3, ^k2&5` }T21/(32g) }T2(g21)/(32g) }T21 }^k&N(32g)/(g21)
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Tc
5

1

2
lnS ^k2&

^k2&22^k&
D . ~1!

We will show below that this naive estimate is exact.

GENERAL SOLUTION

Consider the Ising model on a network with the Ham
tonian: H52J(^ i j &SiSj2H( iSi , where the first sum is
over all edges of the graph, the second one is over all ve
ces,J.0 andH are the energy of the ferromagnetic intera
tion and magnetic field, respectively. Hereafter, we seJ
51. It is known that the regular Cayley tree is solved exac
by using recurrence relations@21#. As networks under discus
sion have a local treelike structure, we apply this method
the Ising model on such nets. Consider spinS0 on a vertex 0
with k0 adjacent spinsS1,i , i 51,2, . . . ,k0. Due to the local
treelike structure this spin may be treated as a root of a t
We introduce

g1,i~S0!5 (
Sl561

expF S (
^ lm&

SlSm1S0S1,i1H(
l

Sl D /TG ,
~2!

whereT is temperature. The indicesl and m run only over
spins that belong to subtrees with the root spinS1,i , includ-
ing S1,i . Let x1,i[g1,i(2)/g1,i(1), then the magnetic mo
mentM of the vertex 0 is

M5S e2H/T2)
i 51

k0

x1,i D Y S e2H/T1)
i 51

k0

x1,i D . ~3!

The parametersx1,i describe the effects of the nearest neig
bors on the spinS0 In turn, x1,i are expressed in terms o
parametersx2,l5g2,l(2)/g2,l(1), l 51,2, . . . ,k1,i , which
describe effects of spins in the second shell on spins in
first shell, and so on. The following recurrence relation b
tweenxn, j andxn11,l holds:

xn, j5yS )
l 51

kn, j 21

xn11,l D , ~4!

where we introduce the function
0161
l-

rti-
c-

tly

to

ee.

h-
f

the
e-

y~x!5
e(211H)/T1e(12H)/Tx

e(11H)/T1e(212H)/Tx
. ~5!

If a spinSn11,l is on a dead end, thenxn11,l51. Note that at
H.0, xn,l<1, while xn,l>1 for H,0. ForH.0, it is con-
venient to introducexn,l5exp(2hn,l). Here, at a givenn, hn,l
are positive and independent random parameters, which
the role of random effective fields acting on a spin in thenth
shell from neighboring spins in the (n11)th shell. Then,
Eqs.~3! and ~4! take the form

M5

e2H/T2expS 2(
l 51

k0

h1,l D
e2H/T1expS 2(

l 51

k0

h1,l D , ~6!

hn, j52 lnH yFexpS 2 (
l 51

kn, j 21

hn11,l D G J . ~7!

At dead ends we havehn11,l50. At H50 in the paramag-
netic phasehn,l50, while in the ordered phasehn,lÞ0.
Equations~6! and ~7! determine the magnetizationM of a
graph as a function ofT and H. We emphasize that thes
equations are valid for any treelike graph.

While deriving the recurrence relations, we started fro
some spinS0 and then made the recurrence steps along s
trees. While solving the recurrence relations, we start fr
distant spins, i.e., from largen, and descend along subtrees
the spinS0. The recurrence steps Eq.~4! converges exponen
tially quickly. Therefore, we can seth'0 for the starting
spins. In the limitn→` the parameterh1,i is the fixed point
of the recurrence steps. The thermodynamic behavior is
termined by this fixed point, which is reached from t
neighborhood ofh50.

Let us average the magnetizationM over the ensemble o
random graphs with a degree distributionP(k). Introducing
the distribution function ofhn,l , Cn(h)5^d(h2hn,l&, and
its Laplace transformC̃n(s)5*0

`dhe2shCn(h) we obtain
from Eq. ~6! the average magnetic moment

^M &5(
k

P~k!E
0

`

dh
e2H/T2e2h

e2H/T1e2hE2 i`

i` ds

2p i
eshC̃1

k~s!.

~8!
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HereP(k) is the probability that the vertex 0 hask connec-
tions. Equation~7! gives the recurrence relation betwe
C̃n(s) andC̃n11(s):

C̃n~s!5(
k

P~k!k

^k& E
0

`

dh ys~e2h!E
2 i`

i` ds8

2p i
es8hC̃n11

k21~s8!

~9!

with C̃n11(s)51 at a dead end. HereP(k)k/^k& is the prob-
ability that the neighbor in the (n11)th shell of a vertex
from the nth shell hask connections. We start from distan
spins with C̃n11(s)'1 and largen and make recurrenc
steps toward smallern until we reach the fixed point. In the
limit n→`, the recurrence procedure converges toC̃(s).
The fixed pointC̃(s) is a solution of Eq.~9! in which C̃n(s)
and C̃n11(s) are replaced byC̃(s). Then Eq. ~8! with
C̃1(s)→C̃(s) gives the exact expression for^M &. At H

50 in the paramagnetic phase we haveC̃(s)51.
Let us find the exact critical temperature,Tc . Consider

a starting functionC̃n(s)5exp(2sd), where d is small:
0,d!1, sd!1. After the first m recurrence steps, w
obtain C̃n2m(s)5exp(2sdfm), where f 5^k(k21)&
^k&21tanh(1/T). For f ,1, the recurrence steps lead to t
fixed pointC̃(s)51, which corresponds to the paramagne
phase.f 51 at a certain temperatureTc, which satisfies the
condition ^k(k21)&^k&21tanh(1/Tc)51, so that atT,Tc
we havef .1 and the recurrence steps lead away from
point C̃(s)51. One sees thatTc is given by Eq.~1!. Thus,
the estimate~1! is exact. This result is valid for any degre
distribution with^k2&,`. In this range, the average numb
of the second nearest neighbors isz25^k2&2^k& @11# (z1
[^k&), so

tanh
1

Tc
5

z1

z2
. ~10!

At zero temperature we find the solutionC̃(s)5ts1(1
2ts)ds,0 , whereds,051 at s50 andds,050 at sÞ0, ts is
the smallest root of the equationts5(kP(k)k ts

k21 . This
solution giveŝ M &512(P(k)ts

k , which is exactly the size
of the giant connected component of the network. This re
is evident. Indeed, only vertices in the giant connected co
ponent have a nonzero spontaneous moment, which is e
to 1 atT50.

ANSATZ

To study the critical behavior of thermodynamic quan
ties, we develop an ansatz in the spirit of the ‘‘effective m
dium’’ approach. Notice that the right-hand sides of Eqs.~6!
and ~7! depend only on the sum of the independent a
equivalent random variableshn, j . So, let us use the follow
ing ansatz:

(
l 51

k

hn,l'kh1O~k1/2!, ~11!
01610
e

lt
-

ual

-

d

whereh[^hn,l& is the average value of the ‘‘effective field
acting on a spin. The largerk is, the better this approximation
will be. Therefore, the most ‘‘dangerous’’ highly connecte
spins are taken into account in the best way. With this ans

^M &5(
k

P~k!
e2H/T2e2kh

e2H/T1e2kh
. ~12!

Applying ansatz~11! to Eq. ~7! yields

h52^k&21(
k

P~k!k ln y@e2(k21)h#[G~h!. ~13!

h plays the role of the order parameter. AtH50, h50
aboveTc and is nonzero belowTc .

THERMODYNAMIC QUANTITIES

Let us describe the critical behavior of the thermodynam
quantities of the Ising model on the infinite networks. F
this, one must solve the equation of state~13! nearTc at H
50.

The casê k4&,`. The expansion ofG(h) over smallh
has the formG(h)5g1h1g3h31•••. For brevity, we do not
present exact expressions for the coefficientsgi . Substituting
this expansion into Eq.~13! determinesTc and the order
parameterh'at1/2 as a function of the reduced temperatu
t512T/Tc , where a5@12̂ k(k21)&2/(^k&^k(k
21)3&Tc#

1/2. Note that the critical temperatureTc that fol-
lows from our ansatz coincides with the exact result~1!. At
small h and H50, Eq. ~12! gives the spontaneous mome
^M &'^k&at1/2/2. The magnetic susceptibility can be calc
lated from Eq.~12!, by differentiating overH and then taking
into account the dependence ofh on H from Eq. ~13!. We
obtain x(H50)'„^k&3/@2^k2&^k(k22)&#…t21. At T.Tc
the susceptibility has the same behaviorx(0);(T/Tc
21)21 but with the double prefactor.

In our ansatz, the average internal energy per spin,^E&
5^2J(^ i j &SiSj&T /N ~the average is thermodynamic an
over the ensemble of graphs!, at H50 is

^E&52
1

2
^k&coth~2/T!

1
1

2 sinh~2/T! (
k

P~k!k
e2h1e2(k21)h

11e2kh
. ~14!

Substituting hereh'at1/2, we find that the specific heatC
5d^E&/dT has a jump atT5Tc ,

DC5^k~k22!&^k2&a2/~8^k&!. ~15!

This jump disappears aŝk4& approaches̀ . When^k4& di-
verges, we consider power-law degree distributions,P(k)
}k2g.

The caseg55. The divergence of̂k4& leads to a loga-
rithmic singularity of the functionG(h): G(h)5g1h
1g3h3 ln(1/h)1 . . . . Solving Eq.~13! yields
4-3
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h,M;t1/2/~ ln t21!1/2, dC;1/lnt21, x;t21

~16!

@for any g, we havedC(T.Tc)50#. Note that the critical
behavior ofx is not changed.

The case3,g,5. The functionG(h) has two leading
terms: G(h)'g1h1g3hg22. Solving the equation of stat
~13! yields

h,M;t1/(g23), dC;t (52g)/(g23), x;t21. ~17!

Notice that forg,5 the critical exponents of the magnetiz
tion and specific heat differ from the standard ones. Fog
.4, exponenta of the specific heat (dC;t2a) is above
21. Hence the second derivative of the free energy oveT
diverges atTc . Therefore, the phase transition is of the se
ond order in Ehrenfest’s classification. Forg,4, we have
a52(52g)/(g23),21 and the transition turns to be o
a higher order. The order of the transition tends to infinity
g→3. Nevertheless, forg.3, the susceptibility obeys th
Curie law.

The caseg53. Here,^k2& diverges. Formally speaking
this leads to the infinite critical temperature for the infin
networks@see Eq.~1!#. In any finite network,̂ k2&,` and
the critical temperature is finite, although it may be ve
high, Tc>^k2&/^k& ~see below!. We consider temperature
which are much less than this critical temperature, but wh
h!1, soT@1. Using, for brevity, the continuum approxima
tion for the degree distribution, we obtainG(h)
'(^k&h/2T)ln@2/(^k&h)#. Then,

h'~2/̂ k&!e22T/^k&, M'e22T/^k&,

dC;T2e24T/^k&, x;T21. ~18!

Without the continuum approximation, we have, instead
^k& in the exponentials, a constant that is determined by
completeP(k). Equation~18! describes the behavior of the
modynamic quantities at modest temperatures in the si
tion, where the phase transition is of infinite order and
‘‘infinite temperature.’’ Notice the paramagnetic dependen
x}1/T. Note that the temperature dependenceM}exp
@22T/^k&# coincides with the result of the simulation@7# for
the Baraba´si-Albert model (g53) @see Fig. 1~a! of Ref. @7##.

The case2,g,3. Again Tc for large networks is very
high. Using the expansionG(h)'ghg22/T, we find, in the
range 1!T!Tc , the following behavior:

h,M;T21/(32g),dC;T2(g21)/(32g),x;T21 ~19!

@compare with Eq.~18!#. Notice that the susceptibility keep
the paramagnetic temperature dependence.
int

01610
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re
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FINITE-SIZE EFFECT

Equation~1! shows thatTc diverges when̂ k2&→`. In
finite networks,̂ k2& is finite because of the finite-size cuto
of the degree distribution. In scale-free networks, it is e
mated askcut;k0N1/(g21), whereN is the total number of
vertices in a network,k0 is a ‘‘minimal degree’’ or the lower
boundary of the power-law dependence, and^k&'k0(g
21)/(g22). Then, actually, repeating estimations from R
@4# ~see more detailed discussions in Refs.@16,17#!, we ob-
tain

Tc'
^k& ln N

4
at g53,

Tc'
~g22!2

~32g!~g21!
^k&N(32g)/(g21) for 2,g,3.

~20!

The first expression can be compared with the simulation@7#
of the Ising model on the Baraba´si-Albert growing network
(g53) with minimal degreek055, so ^k&510. From Eq.
~20! Tc'2.5 lnN follows. The simulation@7# yields Tc
'2.6 lnN23. Recall that our results were obtained for t
completely uncorrelated network, and correlations in gro
ing networks are extremely strong.

DISCUSSION

Our results may be compared with those for percolat
on such networks@16# and the disease spread within the
@14#. Of course, the problems are distinct, but one find
great resemblance~the superstability of long-range orde
when ^k2&→`, phase transitions of higher order, etc.!. All
these anomalous features are determined by fat tails in
distributions of connections. Our final results were presen
for uncorrelated networks. However, the quantitative agr
ment with the simulation@7# of correlated nets shows tha
they are applicable in much more general situations. Furt
more, our analytical results can be easily generalized.
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