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Nonuniversal size dependence of the free energy of confined systems near criticality
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The singular part of the finite-size free-energy densitgf the O() symmetrice* field theory is calculated
for confined geometries of linear size with periodic boundary conditions in the largelimit and with
Dirichlet boundary conditions in one-loop order. We find that both a sharp cutoff and a subleading long-range
interaction cause a leading nonuniversalependence ofs nearT.. This implies a significant restriction for
the validity of universal finite-size scaling for model systems and real systems. For film geometry we predict
a leading nonuniversal contribution to the critical Casimir force above the superfluid transitféteof
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The concept of universal finite-size scaling has played amffect the universal bulk critical behavior d¢f(t) are as-
important role in the investigation of finite-size effects nearsumed to contribute only to the regular pd(0.L) or
critical points over the last decadgls-3]. Consider the free-  f (t,L), but not to the singular paft(t,L) [7—10|.
energy densityf(t,L) of a finite system at the reduced tem-  As a consequence, universal finite-size scaling properties
perature=(T—T.)/T.=0 and at vanishing external field in are generally believed to hold for observable quantities de-
a d-dimensional cubic geometry of voluné with periodic  rived from f¢(t,L), such as the critical Casimir forde in
boundary conditionsPBCQ). It is well known that, for smat, film geometry[7—11]
the bulk free-energy density,=f(t,°) can be decomposed

as F=—0f®t,L)/dL, (4)
fp(t)=fps(t) +fo(t), (1)  Wwhere the excess free energy per unit area is given by
where f,(t) denotes the singular part ¢f and where the fE(L, L) =Lf(t,L)—Lfp(t). 5

regular partfy(t) can be identified unambiguously. Accord-

ing to Privman and Fishef4,5], the singular part of the Equations(1)~(5) yield the singular part oF =F+Fs,

finite-size free-energy density may be defined by Fo(&L)=L"9X(L/&,) (6)
S ’ 1)
wheref is independent of. The finite-size scaling hypoth- X(x)=(d— 1) F(x) = xF (x)+ Y )

esis asserts that, below the upper critical dimendied and
in the absence of long-range interactiomig(t,L) has the with 7 (x)=gF(x)/ox. The universal scaling structure of

asymptotic structuré4—6 Egs.(3), (6), and(7) has been confirmed by renormalization-
4 group (RG) and model calculationg7,12,13. In particular,
fs(t,L) =L F(L/E), 3 guantitative predictions ak(x) for Dirichlet boundary con-

) . ) _ _ ditions (DBC) [7] that are relevant for the superfluid transi-
where F(x) is a universal scaling function ang(t) is the 5 o 4He [14] have been used in the analysis of experi-
bulk correlation length. Bottf and L are assumed to be ontal datd9,15].

sufficiently large compared to microscopic lengtisr ex- In this paper we show that the conditions for the validity
ample, the lattice spacing of lattice models, the inverse of finite-size universality of s andF are significantly more
cutoff A ~1 of field theories, or the length scale of subleadingrestricted than those for bulk universality 6f,. On the
long-range interactionsEquation(3) includes the bulk limit  pasis of exact and approximate results within thfe field
fo(t, ) =fpg(t) = Y& with a universal amplitud?r. Equa-  theory we shall analyze the effect of two sources in ¢fe
tions (1)—(3) are also expected to remain valid for nonperi- Hamiltonian that have recently been sho\6—18 to cause
odic boundary conditions and noncubic geometries provideéonscaling finite-size effects on the susceptibijitjor PBC:
that fo(t) in Eq. (2) is replaced by the nonsingular part (j) a short-range interaction termk? with a sharpcutoff A
fas(t,L) with a regular t dependenc¢5], where now the in k space, andii) an additional subleading long-range in-
scaling function7(x) depends on the boundary conditions, teraction term~b|k|?,2< o<4.

the geometry, and on the universality class of the bulk criti-  The size dependence bfhearT, is more complex than
cal point, but not ona or A and not on other interaction that of y [5]. A priori it is not obvious whether or not and to
details[4—6]. In particular, subleading long-range interac- what extent nonuniversal effects enter the singutather
tions (such as van der Waals forces in fluidkat do not than regular part of f(t,L). In particular, this is an open
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question for caséii) with nonperiodicboundary conditions. The question can be raised whether or not there exists a
Here we shall consider both PBC and DBC and shall showon-negligible cutoff dependence of the finite-size free-
that the singular parts; andF are significantly affected by energy density per componefdivided bykgT),
nonuniversal nonscaling terms.

Specifically, we find for 22d<4 that Egs.(3) and (6) fag(t,L,LA)=—n"L 9 IimT 9 Inz,,, @1
must be complemented as Too

fs(t,L,A) =L 2A920(E A )+ L7 9ALIE) (8  where

for case(i), and

‘Pp q

Zga(t,L,L,A J exp(—H 12
Fo(&L,b)=—bL 9" 2 9B(L/&)+LIX(L/E)  (9) o'l )= H A 2R H) 12
for case(ii), respectively, where the functich has a finite
critical value®(0)>0 and where the functioB(L/£) has a
nonexponentiatiecay~ (L/&) 2 aboveT, for both PBC and
DBC. This implies(i) that the nonscaling ~2 term in Eq.(8)
exhibits a dominant size dependence compared td_tffe ;
scaling term andii) that the nonuniversal term proportional b =3¢ (_0 244 )2
to b in Eg. (9 implies an algebraicL dependence Z 2 % olef)? 2 (('D'
~b&?L 977 that dominates thexponentiafiinite-size scal- (13
ing term of X aboveT for both PBC and DBC. By contrast, _ _ _ _ _
for the ¢* lattice model with short-range interaction and with a nearest-neighbor couplinjon a simple-cubic lattice
PBC, we find that Eqs(3) and (6) are indeed valid except with a lattice spacin@. The factor kgT) ! is absorbed iH
that forL> & aboveT, the exponential scaling arguments of 5,4
J andX must be formulated in terms of the lattice-dependent  \ye shall answer this question in the exactly solvable limit

is the dimensionless partition function ofld xL4~9" ge-
ometry. For comparison we shall also consider the free-

energy densityf (t,L,a) of the ¢* lattice model

“exponential” correlation lengttj19,20. o n—o at fixedugn where the free-energy density[21]
The new nonscaling finite-size effe@ exhibited in Eq.
(8) is pertinent to the entiré *—L ! plane. In particular, it (ro—x H)2

1
exists afT, where it implies the nonuniversality of the criti- ~ fgq/(t,L,A)= —EAd Inm——e
cal Casimir forceL "2A972d(0) in film geometry. Further- 0

more, the new nonscaling effe@t) exhibited in Eq.(9) has ,

relevant physical consequences in systems with subleading + EL_d > f'”[/\_z()(_lﬂL p*+g?)].
long-range interactions. These consequences are significantly P

more important than those considered previously for the (14)

finite-size susceptibility for PBE16—18. The latter are of L S

limited physical relevance since in real systems they ardlerexy - is determined implicitly by

dominated by the surface terms@fL ~1). In this paper we

predict a leading nonuniversal nonscaling effect on the sin- “1_y taunL-9 f -1y 24 g2)-1 15
gular partF, (rather than on the regular paft, [7]), not Fot4uonL =2, q(X poran . (19
only for model systems with PBC but also for real systems

with DBC. The bulk free energy,, and bulk susceptibility(b aboveT,
critical point is determined byy=ry.= — 4u0nfkk 2 where

1
—roﬂP += (pr) 21 up(9?)2 (100 k=(p,q). The bulk correlation length abovg. is {= xi?

=&t ™" where v=(d—2)"1. The regular part of, reads
fo=CyA9—r3/(16ugn) where?:l is ad dependent constant.
The singular part of , aboveT, is f,= Y& ¢ with the uni-
versal amplitude Y=(d—2)A4/[2d(4—d)], where Ay
=22"47792(d—2)"1I"(3—d/2). For the singular parf
=Tfq4.q-— fo Of the finite-size free energy above andlatwe
find the form of Eq.(8) with the leading nonscaling part

4= o

with ro=rq.+agt for the n-component fieldp(x) in a par-
tially confinedL9 x %9~9" geometry. This model requires a
specification of thex dependence op(x) at short distances.
We decompose the vectaras (y,z), wherez denotes the
coordinates in theld’<d confined directions. We consider

two cases.

Case (i) We assume PBC and a sharp cutbffi.e., we g4 . N d—1
assume that the Fourier amplitudes of o(y,2) Gy (A H=—| dy dq g 9%

d'y (o icted to 4 | 6(2m) 2Jo | )1
=L Epchppyqe'(p'”q'y) are restricted to wave vectos
and g with componentsp; and q; in the range— A<p; xex —(1+ & 2A2)y] (16)
<A and|qj|<A. Here [ stands for (2r) 44 fdd-9'q,
and X, runs overp;=27m;/L with m;=0,=1,+2,.... and the subleading universal scaling part
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Ay dooma 2 4 ¢* continuum Hamiltoniar(10) with an isotropic sharp cut-

7:d,df(|—/§)=2(4_d) (LI P*= 4P off |k|<A we find, in the larges limit, the oscillatory
power-law decay above,,
+ } md_y( \/E)d_d W, ,(y)efPZy/‘lTrZ SII’[AX—W(d—l)/4]
2Joy\ Vy d ’ G(x)=2A%9"2(27xA ) ~(@+ D2
1+& 27072
(17) »
+0(e™ %), (22)

whereP(L/&) is determined implicitly by
, for large x=|x|> ¢ corresponding to the existence of long-
4—d (= \/; d-d range spatial correlations that dominate the exponential scal-
f y y ing dependence-e *¢. By contrastG(x) has an exponen-

Pd72=(L/§)d72—

2
4mAqo tial decay for the lattice mod€[L3) with purely short-range
X Wy (y)e sz/4w2, (18) interaction[19]. An exponential decay dB(x) is also valid
for the continuum mode(10) with a smooth cutoff19].
i % d The nonuniversal cutoff effects diy, Fg, andG(x) de-
Wd(y):( \/:) —( > e‘ymz) (190  scribed above are a consequence of the long-range correla-
y m= = tions induced by the sharp-cutoff procedure in the presence

of PBC. We consider these consequences not only as a math-
ematical artifact, but also as a signal for a restriction of
finite-size universality in physical systems. We substantiate
this interpretation by demonstrating that a corresponding re-
duction of the finite-size scaling regime should indeed exist
in physical systems with more realistic interactions and
boundary conditions.

Case (i) We assume the existence of a subleading long-
range interaction in the continuugf HamiltonianH, which

This result remains valid also fdr<O after replacing the
terms (L/€)9"? in Egs. (17) and (18) by t(L/&y)% 2 and
after dropping the term- £ 2A 2y in the exponent of Eq.
(16). We have confirmed the structure of E§) also for the
¢* theory withfinite nwithin a one-loop RG calculation at
finite A, which yields the same form of the function
Dy 4 (£7*A7Y) as in Eq.(16). This proves that theingular
part of f(t,L) has a nonuniversal nonscaling form for &
fielq th_eory with PBC and vyith a §harp cutoff. A detailed ; the Fourier representation has the fobfik|” with 2< o
de[||_\;]at|on of Elqsél6)—(19). W'.Ifl. be given eIsewheerZ].h <4, in addition to the short-range terkd. It is well known
cal C:ss,iiqzrese:‘]féit ?r\llset:azl%?llzl(g)n\tv?gs; Ci]:?rT)Cn? Eorst(8$ Critfhat the subleading interaction|k|” corresponds to a spatial
o o q interaction potential/(x)~|x| ~9~ ¢ that does not change the
and(16)-(19) in film geometry @’=1) universal bulk critical behavidr23]. Interactions of this type
Fo(&L,A)=L"2A 2D (£ A1)+ L~IX(L/&). exist in real fluids. As pqinj[ed out.by Dantchev qnd Rudnick
' (20) [18], the presence of this interaction yields leading nonscal-
ing finite-size effects on the susceptibiligy for the case of
Thus, thesingular part of the critical Casimir force has a PBC in the regimé.> ¢ aboveT,, similar to those found for
leadingnonuniversal term-L ~2, in addition to thesublead-  a sharp cutoff16,17.
ing universal terms~L 9 of previous theorie§7—10,13, In real systems with nonperiodic boundary conditions,
both forT=T. and forT<T,. however, these nonscaling finite-size effects become only
We have also calculatefg 4 andF for the lattice Hamil- ~ subleading corrections that are dominated by the surface
tonian (13) and for the continuum Hamiltoniafi0) with a  terms of y of O(L™Y). In the following we show that the
smoothcutoff in the largen limit. In both cases the scaling situation is fundamentally different fd¥s, which, by defini-
form (3) is found to be valid. For the lattice model, however, tion, does not contain contributions 6L ~?) arising from
the second-moment bulk correlation lengtin the argument  the O(L 1) partT of the free-energy density.
of 7 must be replaced by the lattice-dependent exponential We consider fim geometry and first assume DBC in
correlation Iengtf[19,2(] Specifically, we find, at fixed the z direction Corresponding te(y,0)=¢(y,L)=0, i.e.,
>0, the exponential large-behavior we assume thatS, in the Fourier representation of
(p(y,z)=L‘lEpquAop,qeiq'ysin(pz) runs over p=am/L,m
=1,2,... . Thepresence of the subleading interactimk|”
implies, forL> ¢ aboveT,, a nonuniversal term-b in

fo(t,L,a)—fpe=—d'(L/2m&) @~ D2 ~dexp — L/ ¢y),
(21)

where¢; = (a/2)[arcsinh@/2¢£) ]~ is the exponential corre-
lation length in the direction of one of the cubic axes. Note

that the nonuniversal dependence of¢; on a is non-
negligible in the exponent of E@21) [19]. where G(L/¢) is the known universal scaling function for

The sensitivity offg(t,L,A) and Fg with respect to the purely short-range interaction with axponentiallargel
cutoff procedure can be explained in terms of a correspondsehavior[7]. By contrast we find thaW (L/¢) has an alge-
ing sensitivity of the bulk correlation function G(x) braic L dependence. Performing a one-loop RG calculation
={¢(X)¢(0)) in the ranggx|> & [19]. For example, for the we obtain

fo(t,L,b)—F=—bL™ 92709 (L/&)+L9G(L/¢),
(23
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~ consequence is that the leading critical temperature depen-
W(x), (249  dence~bé&’L 97 of Fq for L=¢ aboveT, is algebraic and
nonuniversal, whereas the critical temperature dependence of
. d-1 the scaling parX(L/¢) derived fromG(L/¢) is exponential
q;(x):f dy y(2cr)/2exy/4w2( \/E) and universal7]. This prediction is applicable téHe above
0 y T, after specification of the interaction parametbrand o,
and may have significant consequences for the interpretation
~ L 270 Xy of existing[15] and future experimental data. A detailed deri-
XWy(y)y o 4_772 ' (25 vation of Eqgs.(23)—(27) will be given elsewherg22].

Finally, for comparison we present our result fB{L/¢)
wherey* (z,x) =x"2f¥dte 't?~ 1/ [5dte 't L is the incom- for film geometry in the presence of PBC. In one-loop order
plete gamma function and we obtain for Vpg(L/€) the same ~form as given for

W(L/¢) in Egs.(24) and (25) but with Wy(y) replaced by
~ \/; 1 y , Wi(y), Eqg. (19. For the largd- behavior we find
WiY)=V7y 3 n:z_m exp —Zn°|- (26 yoo(L/&)~(L/&) 2, which dominates the exponential
scaling dependence of. This is parallel to the algebraic
We have found that cutoff effects are negligible for the func-decay ofG(x) in the presence of van der Waals type inter-
tion W(L/£). At fixed ¢, the largek behavior isW(L/§) actions[24]. Our prediction of a nonexponential nonscaling
~(L/¢) 2. Equation(23) yields the following form: effect onF aboveT, for PBC can be tested by Monte Carlo
simulations[9].

Y (L/ —12 U“‘fw dx| 1 i
(L/§)=5(2m) T X

B(L/§)=(d=3+0o)W¥(L/§)—(LIHW'(LIE (27)
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