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Nonuniversal size dependence of the free energy of confined systems near criticality
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The singular part of the finite-size free-energy densityf s of the O(n) symmetricw4 field theory is calculated
for confined geometries of linear sizeL with periodic boundary conditions in the large-n limit and with
Dirichlet boundary conditions in one-loop order. We find that both a sharp cutoff and a subleading long-range
interaction cause a leading nonuniversalL dependence off s nearTc . This implies a significant restriction for
the validity of universal finite-size scaling for model systems and real systems. For film geometry we predict
a leading nonuniversal contribution to the critical Casimir force above the superfluid transition of4He.
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The concept of universal finite-size scaling has played
important role in the investigation of finite-size effects ne
critical points over the last decades@1–3#. Consider the free-
energy densityf (t,L) of a finite system at the reduced tem
peraturet5(T2Tc)/Tc>0 and at vanishing external field i
a d-dimensional cubic geometry of volumeLd with periodic
boundary conditions~PBC!. It is well known that, for smallt,
the bulk free-energy densityf b[ f (t,`) can be decompose
as

f b~ t !5 f bs~ t !1 f 0~ t !, ~1!

where f bs(t) denotes the singular part off b and where the
regular partf 0(t) can be identified unambiguously. Accord
ing to Privman and Fisher@4,5#, the singular part of the
finite-size free-energy density may be defined by

f s~ t,L !5 f ~ t,L !2 f 0~ t !, ~2!

wheref 0 is independent ofL. The finite-size scaling hypoth
esis asserts that, below the upper critical dimensiond54 and
in the absence of long-range interactions,f s(t,L) has the
asymptotic structure@4–6#

f s~ t,L !5L2dF~L/j!, ~3!

whereF(x) is a universal scaling function andj(t) is the
bulk correlation length. Bothj and L are assumed to b
sufficiently large compared to microscopic lengths~for ex-
ample, the lattice spacingã of lattice models, the inverse
cutoff L21 of field theories, or the length scale of subleadi
long-range interactions!. Equation~3! includes the bulk limit
f s(t,`)5 f bs(t)5Yj2d with a universal amplitudeY. Equa-
tions ~1!–~3! are also expected to remain valid for nonpe
odic boundary conditions and noncubic geometries provi
that f 0(t) in Eq. ~2! is replaced by the nonsingular pa
f ns(t,L) with a regular t dependence@5#, where now the
scaling functionF(x) depends on the boundary condition
the geometry, and on the universality class of the bulk cr
cal point, but not onã or L and not on other interaction
details @4–6#. In particular, subleading long-range intera
tions ~such as van der Waals forces in fluids! that do not
1063-651X/2002/66~1!/016102~4!/$20.00 66 0161
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affect the universal bulk critical behavior off bs(t) are as-
sumed to contribute only to the regular partf ns(0,L) or
f ns(t,L), but not to the singular partf s(t,L) @7–10#.

As a consequence, universal finite-size scaling proper
are generally believed to hold for observable quantities
rived from f s(t,L), such as the critical Casimir forceF in
film geometry@7–11#

F52] f ex~ t,L !/]L, ~4!

where the excess free energy per unit area is given by

f ex~ t,L !5L f ~ t,L !2L f b~ t !. ~5!

Equations~1!–~5! yield the singular part ofF5Fs1Fns ,

Fs~j,L !5L2dX~L/j,!, ~6!

where

X~x!5~d21!F~x!2xF8~x!1Yxd, ~7!

with F8(x)5]F(x)/]x. The universal scaling structure o
Eqs.~3!, ~6!, and~7! has been confirmed by renormalizatio
group ~RG! and model calculations@7,12,13#. In particular,
quantitative predictions ofX(x) for Dirichlet boundary con-
ditions ~DBC! @7# that are relevant for the superfluid trans
tion of 4He @14# have been used in the analysis of expe
mental data@9,15#.

In this paper we show that the conditions for the valid
of finite-size universality off s andFs are significantly more
restricted than those for bulk universality off bs . On the
basis of exact and approximate results within thew4 field
theory we shall analyze the effect of two sources in thew4

Hamiltonian that have recently been shown@16–18# to cause
nonscaling finite-size effects on the susceptibilityx for PBC:
~i! a short-range interaction term;k2 with a sharpcutoff L
in k space, and~ii ! an additional subleading long-range in
teraction term;bukus,2,s,4.

The size dependence off nearTc is more complex than
that ofx @5#. A priori it is not obvious whether or not and t
what extent nonuniversal effects enter the singular~rather
than regular! part of f (t,L). In particular, this is an open
©2002 The American Physical Society02-1
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question for case~ii ! with nonperiodicboundary conditions.
Here we shall consider both PBC and DBC and shall sh
that the singular partsf s andFs are significantly affected by
nonuniversal nonscaling terms.

Specifically, we find for 2,d,4 that Eqs.~3! and ~6!
must be complemented as

f s~ t,L,L!5L22Ld22F~j21L21!1L2dF~L/j! ~8!

for case~i!, and

Fs~j,L,b!52bL2d122sB~L/j!1L2dX~L/j! ~9!

for case~ii !, respectively, where the functionF has a finite
critical valueF(0).0 and where the functionB(L/j) has a
nonexponentialdecay;(L/j)22 aboveTc for both PBC and
DBC. This implies~i! that the nonscalingL22 term in Eq.~8!
exhibits a dominant size dependence compared to theL2d

scaling term and~ii ! that the nonuniversal term proportion
to b in Eq. ~9! implies an algebraicL dependence
;bj2L2d2s that dominates theexponentialfinite-size scal-
ing term ofX aboveTc for both PBC and DBC. By contras
for the w4 lattice model with short-range interaction an
PBC, we find that Eqs.~3! and ~6! are indeed valid excep
that forL@j aboveTc the exponential scaling arguments
F andX must be formulated in terms of the lattice-depend
‘‘exponential’’ correlation length@19,20#.

The new nonscaling finite-size effect~i! exhibited in Eq.
~8! is pertinent to the entirej212L21 plane. In particular, it
exists atTc, where it implies the nonuniversality of the crit
cal Casimir forceL22Ld22F(0) in film geometry. Further-
more, the new nonscaling effect~ii ! exhibited in Eq.~9! has
relevant physical consequences in systems with sublea
long-range interactions. These consequences are signific
more important than those considered previously for
finite-size susceptibility for PBC@16–18#. The latter are of
limited physical relevance since in real systems they
dominated by the surface terms ofO(L21). In this paper we
predict a leading nonuniversal nonscaling effect on the
gular partFs ~rather than on the regular partFns @7#!, not
only for model systems with PBC but also for real syste
with DBC.

We start from the standardw4 continuum Hamiltonian

H5E ddxF1

2
r 0w21

1

2
~¹w!21u0~w2!2G ~10!

with r 05r 0c1a0t for the n-component fieldw(x) in a par-
tially confinedLd83`d2d8 geometry. This model requires
specification of thex dependence ofw(x) at short distances
We decompose the vectorx as (y,z), wherez denotes the
coordinates in thed8,d confined directions. We conside
two cases.

Case (i). We assume PBC and a sharp cutoffL, i.e., we
assume that the Fourier amplitudesŵp,q of w(y,z)
5L2d8(p*qŵp,qe

i (p•z1q•y) are restricted to wave vectorsp
and q with componentspj and qj in the range2L<pj

,L and uqj u<L. Here *q stands for (2p)2d1d8*dd2d8q,
and (p runs over pj52pmj /L with mj50,61,62, . . . .
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The question can be raised whether or not there exis
non-negligible cutoff dependence of the finite-size fre
energy density per component~divided bykBT),

f d,d8~ t,L,L!52n21L2d8 lim
L̃→`

L̃2d1d8 ln Zd,d8, ~11!

where

Zd,d8~ t,L,L̃,L!5)
k,q

E dŵp,q

L (d22)/2
exp~2H ! ~12!

is the dimensionless partition function of aLd83L̃d2d8 ge-
ometry. For comparison we shall also consider the fr
energy densityf̂ (t,L,ã) of the w4 lattice model

Ĥ5ãdF(
i

S r 0

2
w i

21u0~w i
2!2D1(̂

i j &

J

2ã2
~w i2w j !

2G
~13!

with a nearest-neighbor couplingJ on a simple-cubic lattice
with a lattice spacingã. The factor (kBT)21 is absorbed inH
and Ĥ.

We shall answer this question in the exactly solvable lim
n→` at fixedu0n where the free-energy density is@21#

f d,d8~ t,L,L!52
1

2
Ld ln p2

~r 02x21!2

16u0n

1
1

2
L2d8(

p
E

q
ln@L22~x211p21q2!#.

~14!

Herex21 is determined implicitly by

x215r 014u0nL2d8(
p
E

q
~x211p21q2!21. ~15!

The bulk free energyf b and bulk susceptibilityxb aboveTc

are obtained by the replacementL2d8(p*q→*k , and the
critical point is determined byr 05r 0c524u0n*kk

22 where
k[(p,q). The bulk correlation length aboveTc is j5xb

1/2

5j0t2n where n5(d22)21. The regular part off b reads
f 05 c̃1Ld2r 0

2/(16u0n) wherec̃1 is a d dependent constant
The singular part off b aboveTc is f bs5Yj2d with the uni-
versal amplitude Y5(d22)Ad /@2d(42d)#, where Ad
5222dp2d/2(d22)21G(32d/2). For the singular partf s
5 f d,d82 f 0 of the finite-size free energy above and atTc we
find the form of Eq.~8! with the leading nonscaling part

Fd,d8~j21L21!5
d8

6~2p!d22E0

`

dyF E
21

1

dq e2q2yGd21

3exp@2~11j22L22!y# ~16!

and the subleading universal scaling part
2-2
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Fd,d8~L/j!5
Ad

2~42d! F ~L/j!d22P22
2

d
PdG

1
1

2E0

`dy

y SAp

y D d2d8

Wd8~y!e2P2y/4p2
,

~17!

whereP(L/j) is determined implicitly by

Pd225~L/j!d222
42d

4p2Ad
E

0

`

dySAp

y D d2d8

3Wd8~y!e2P2y/4p2
, ~18!

Wd~y!5SAp

y D d

2S (
m52`

`

e2ym2D d

. ~19!

This result remains valid also fort,0 after replacing the
terms (L/j)d22 in Eqs. ~17! and ~18! by t(L/j0)d22 and
after dropping the term2j22L22y in the exponent of Eq.
~16!. We have confirmed the structure of Eq.~8! also for the
w4 theory withfinite n within a one-loop RG calculation a
finite L, which yields the same form of the functio
Fd,d8(j

21L21) as in Eq.~16!. This proves that thesingular
part of f (t,L) has a nonuniversal nonscaling form for thew4

field theory with PBC and with a sharp cutoff. A detaile
derivation of Eqs.~16!–~19! will be given elsewhere@22#.

These results have a significant consequence for the c
cal Casimir effect. Instead of Eq.~6! we obtain from Eqs.~8!
and ~16!–~19! in film geometry (d851)

Fs~j,L,L!5L22L22Fd,1~j21L21!1L2dX~L/j!.
~20!

Thus, thesingular part of the critical Casimir force has
leadingnonuniversal term;L22, in addition to thesublead-
ing universal terms;L2d of previous theories@7–10,12#,
both for T>Tc and forT,Tc .

We have also calculatedf d,d8 andFs for the lattice Hamil-
tonian ~13! and for the continuum Hamiltonian~10! with a
smoothcutoff in the large-n limit. In both cases the scaling
form ~3! is found to be valid. For the lattice model, howeve
the second-moment bulk correlation lengthj in the argument
of F must be replaced by the lattice-dependent exponen
correlation length@19,20#. Specifically, we find, at fixedt
.0, the exponential large-L behavior

f̂ s~ t,L,ã!2 f bs52d8~L/2pj1!(d21)/2L2d exp~2L/j1!,
~21!

wherej15(ã/2)@arcsinh(ã/2j)#21 is the exponential corre
lation length in the direction of one of the cubic axes. No
that the nonuniversal dependence ofj1 on ã is non-
negligible in the exponent of Eq.~21! @19#.

The sensitivity of f s(t,L,L) and Fs with respect to the
cutoff procedure can be explained in terms of a correspo
ing sensitivity of the bulk correlation function G(x)
5^w(x)w(0)& in the rangeuxu@j @19#. For example, for the
01610
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w4 continuum Hamiltonian~10! with an isotropic sharp cut-
off uku<L we find, in the large-n limit, the oscillatory
power-law decay aboveTc,

G~x!52Ld22~2pxL!2(d11)/2
sin@Lx2p~d21!/4#

11j22L22

1O~e2x/j!, ~22!

for large x5uxu@j corresponding to the existence of lon
range spatial correlations that dominate the exponential s
ing dependence;e2x/j. By contrast,G(x) has an exponen
tial decay for the lattice model~13! with purely short-range
interaction@19#. An exponential decay ofG(x) is also valid
for the continuum model~10! with a smooth cutoff@19#.

The nonuniversal cutoff effects onf s , Fs , andG(x) de-
scribed above are a consequence of the long-range cor
tions induced by the sharp-cutoff procedure in the prese
of PBC. We consider these consequences not only as a m
ematical artifact, but also as a signal for a restriction
finite-size universality in physical systems. We substanti
this interpretation by demonstrating that a corresponding
duction of the finite-size scaling regime should indeed ex
in physical systems with more realistic interactions a
boundary conditions.

Case (ii). We assume the existence of a subleading lo
range interaction in the continuumw4 HamiltonianH, which
in the Fourier representation has the formbukus with 2,s
,4, in addition to the short-range termk2. It is well known
that the subleading interaction;ukus corresponds to a spatia
interaction potentialV(x);uxu2d2s that does not change th
universal bulk critical behavior@23#. Interactions of this type
exist in real fluids. As pointed out by Dantchev and Rudn
@18#, the presence of this interaction yields leading nonsc
ing finite-size effects on the susceptibilityx for the case of
PBC in the regimeL@j aboveTc , similar to those found for
a sharp cutoff@16,17#.

In real systems with nonperiodic boundary condition
however, these nonscaling finite-size effects become o
subleading corrections that are dominated by the surf
terms ofx of O(L21). In the following we show that the
situation is fundamentally different forFs, which, by defini-
tion, does not contain contributions ofO(L21) arising from
the O(L21) part f̃ of the free-energy density.

We consider film geometry and first assume DBC
the z direction corresponding tow(y,0)5w(y,L)50, i.e.,
we assume thatSp in the Fourier representation o
w(y,z)5L21(p*qŵp,qe

iq•y sin(pz) runs over p5pm/L,m
51,2, . . . . Thepresence of the subleading interactionbukus
implies, forL@j aboveTc , a nonuniversal term;b in

f s~ t,L,b!2 f̃ 52bL2d122sC~L/j!1L2dG~L/j!,
~23!

where G(L/j) is the known universal scaling function fo
purely short-range interaction with anexponentiallarge-L
behavior@7#. By contrast we find thatC(L/j) has an alge-
braic L dependence. Performing a one-loop RG calculat
we obtain
2-3
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C~L/j!5
1

2
~2p!s24E

(L/j)2

`

dxS 11x
]

]xD C̃~x!, ~24!

C̃~x!5E
0

`

dy y(22s)/2e2xy/4p2SAp

y D d21

3W̃1~y!g* S 22s

2
, 2

xy

4p2D , ~25!

whereg* (z,x)5x2z*0
xdte2ttz21/*0

`dte2ttz21 is the incom-
plete gamma function and

W̃1~y!5Ap

y
2

1

2 (
n52`

`

expS 2
y

4
n2D . ~26!

We have found that cutoff effects are negligible for the fun
tion C(L/j). At fixed j, the large-L behavior isC(L/j)
;(L/j)22. Equation~23! yields the following form:

B~L/j!5~d231s!C~L/j!2~L/j!C8~L/j! ~27!

for the nonuniversal contribution toFs in Eq. ~9!. The crucial
1,

a

a
,

of

01610
-

consequence is that the leading critical temperature de
dence;bj2L2d2s of Fs for L*j aboveTc is algebraic and
nonuniversal, whereas the critical temperature dependenc
the scaling partX(L/j) derived fromG(L/j) is exponential
and universal@7#. This prediction is applicable to4He above
Tl after specification of the interaction parametersb ands,
and may have significant consequences for the interpreta
of existing@15# and future experimental data. A detailed de
vation of Eqs.~23!–~27! will be given elsewhere@22#.

Finally, for comparison we present our result forC(L/j)
for film geometry in the presence of PBC. In one-loop ord
we obtain for CPBC(L/j) the same form as given fo
C(L/j) in Eqs. ~24! and ~25! but with W̃1(y) replaced by
W1(y), Eq. ~19!. For the large-L behavior we find
CPBC(L/j);(L/j)22, which dominates the exponentia
scaling dependence ofX. This is parallel to the algebraic
decay ofG(x) in the presence of van der Waals type inte
actions@24#. Our prediction of a nonexponential nonscalin
effect onFs aboveTc for PBC can be tested by Monte Car
simulations@9#.
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