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Targeted transfer of solitons in continua and lattices
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We propose a robust mechanism of targeted energy transfer along a line, as well as on a surface, in the form
of transport of coherent solitary-wave structures, driven by a moving, spatially localized external ac field
(“arm” ) in a lossy medium. The efficiency and robustness of the mechanism are demonstrated analytically and
numerically in terms of the nonlinear Schilinger (NLS) equation, and broad regions of stable operation are
identified in the model's parameter space. Direct simulations show that the driving arm can manipulate solitons
equally well in a lattice NLS model. A salient feature, which is revealed by simulations and explained ana-
Iytically, is a resonant character of the operation of the driving arm in the lattice medium, both integer and
fractional resonances being identified. Numerical experiments also demonstrate that the same solitary-wave-
transport mechanism works well in two-dimensional lattice media.
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For dynamical models that can support solitary waves, an We will consider this possibility in a context that includes
issue of obvious interest is a possibility to coherently transfesuch ubiquitous features as dispersion, nonlinearity, and loss,
these localized pulses, especially in a targeted way, i.e., frong¢ading through their interplay to the existence of solitons
an initial position to a prescribed final one. Systems in whichthat may be supported by the ac drive. A fundamental model
this problem is important are ubiquitousee e.g., Refs. incorporating all these features is a damped nonlinear Schro
[1,2]) in various areas, from bioenergetics to optics, and fronflinger (NLS) equation, in both its continuurfi0] and dis-
catalytic reactions to nanoscale condensed matter physics.crete[11] versions. The model will also include a spatially

Re|ated prob|ems were addressed in a number of recemcalizedmobile ac driVing force. The most Straightforward
studies. In particular, a laser beam was used in Rf(see  €xperimental implementation of such a drive can be provided
also references thereito locally modify the catalytic activ- for by a laser or electron beam with a temporally modulated
ity on a reaction surface, resulting in pulling reaction frontsintensity. A continuum version of the model incorporating
coherently by the laser beam, or guiding the front inside ghese ingredients is
confined region. For Hamiltonian models, recent works were. . _ .
focused ongresonance-type phenomena, which were demon Yt (12 Uyt [u[2u= —iyu-+iT'seclix— &(t) Jexplit/2).
strated in Ref[4] to be responsible for very sharp and selec- (1)

tive resonant transfer of energy between coupled dit@rs a0 >0 is the loss coefficient, the frequency of the ac

donor-acceptor pair Another direction recently pursued in rive,is normalized to be 1/2 ari1a is the strength of the

the studies of conservative systems is blocking, routing, anaech—localized drive. The func,:tiof(t) determines how the

channeling of small-amplitude mobile discrete solitons by anbbject(the soliton is to be moved from an initial position

Elr]ray of large-amplitude strongly localized immobile onesgin to the final oneg;, : for instance ’

5]. ' ' '
In this work, we aim to explore a different but somewhat () = (L[ (&n+ &) + (E3n— &) tanhr], )

related possibility to manipulate solitons, which can be real-

ized in a variety of physical systems. We will consider awherer=et ande is a small parameter setting the temporal

model of a manipulating arm in the form of an ac driving scale of the arm’s action. The model based on @g.ne-

force, localized at a moving spatial spot, with the objectiveglects depletion of the driving field and its intrinsic spectral

to transfer a solitary pulse from an initial position to a targetstructure. For the actual sizes of the driven objects and small

spot, in one- and two-dimensiondlD and 2D cases. Pos- distances they should be moved across, both these assump-

sibilities to control the surface catalytic activity by laser tions can be easily justified.

beamd 3], or affect local properties of a surface by the tip of  The pulse dragged by the arm is sought for as a the un-

a scanning tunneling microscop@] are particular examples perturbed NLS soliton,

of a broad spectrum of systems where this scheme can be

implemented. Other examples are the use of a transversey_ (x,t)= 7 sech n(x— Z(t)Jexfi ¢(t) +iZ{x— Z(t)}],

laser beam to switch spatial solitons in optical waveguides 3

[7], and the use of narrow electron beams for sensing soliton

states in long Josephson junctid@3$. The model considered where 5, ¢(t), and {(t) are its amplitude, phase, and the

in the present work may also be a step in the design oposition of its center, the overdot standing for the time de-

micromachines using laser beams as manipulating {€ls rivative. In the first approximation, the soliton’s phase
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evolves according to the unperturbed equatiahfdt= (7> 80 .0
+{%)/2. Note that the choice of the arm's width in Ed) 7o} —
implies that the dragged soliton hgs=1. As we expect the ol _.""7 I 0.63
soliton’s position{(t) to follow the slow motion of the arm, - —
which is described by(t), we define the lagging distance 50 025
6(t), along with a phase lag(t), 0 . , , , pgod
20 40 60 80 100 (a)
()= — &), p(t)=¢(t)—t/2. 4 80 U g
Assuming that the parametess and I' in Eq. (1) are 70 70
small, evolution equations for the amplitude and velocity of x x 60I
the soliton can be derived by means of balance equation: [a .
(BE9 [12] for the soliton’s massM = [*Z|u|?dx=27 and 30 7 30 o
momentumPEfiiuufdx=2n§. In particular, BE for the T 33 o0 (b) A e D)
mass takes the forndz/dt=—2y»n+27I'(6/sinb)cosy, t t

where it was taken into account thgt=1. Adding BE for

th i d ki fth uti tion f FIG. 1. (a) Gray-scale plot showing the evolution of the field
€ molmer,l um and making use of the evolution equation 0|’ntensity [u(x,t)]? in the driven solitons in thex(t) plane. (b)
the soliton’s phaseb, we obtain

Trajectories of the centers of the solit@olid line) and driving arm
2 (dashed lingwhen the soliton and the arm are initially centered at
d ‘/’+26d‘/’_ 0 (5) the same place, withf;,= {(t=0)=50, or (c) at different places,

—=—-20+2G ——cosy, . . .
d2 dr 9 siné 4 with &,=60, {(t=0)=50[see the lower inset at)]. The inset of
panel(b) shows a detail of the transport process indicating the lag
29 de 2§ dé¢ between the preceding arm and the following soliton. The param-
-4 — = = i eters arey=1, I'=1.1, ande= 7/20, &;,=50, andé;,= 70.
4.2 eGfi(0) ar 4.2 eGfq(6) at Gfy(0)siny, ey n &fin

6 the arm and dragged by it very robustly, even if the initial
separation between the soliton and the arm is considerable
[Fig. 1(c)]. As it is seen in Fig. (), at the initial and final
stages of the simulation, when the arm is quiescent, the soli-

whereg=1y/e?, G=I/¢?, and

+e zsinhz 4 " k
f(0)= f dz, ton is at the same position as the aas predicted aboygat
= cost{z+ 6)costfz the intermediate stage, when the arm moves at an approxi-
mately constant velocity, more careful analysis of the nu-
+oo sinhz merical data demonstrates that the soliton is slightly lagging
fa(0)= wa coshz+ 0)cosiz Z behind the arm as expected. Despite the approximate nature

of the theoretical calculation and the fact that the speed of

If the arm is trying to move the soliton at a constant speedhe arm is not really constant, fairly good agreement is ob-
Vo,=dé&/dt, Egs.(5) and(6) have two fixed-pointFP) solu-  tained between the theoretid@l.888 and numerica(0.792

tions with small values ob: values of the lag in Fig. ().
In accordance with the prediction of the perturbation
3 Vo theory, the simulations demonstrate that the arm can support
=+cos Y(g/G), =75 l——g/G (7)  and drag the soliton in the lossy medium if its strengjth

exceeds a minimum valug,,,; for instance I ;;;=~0.05 if

which implies that a necessary condition for the existence of _ 1”; equ]livaIentIy, f(_)r givenl“ the Iolss cqnfstant muslt be
the driven soliton igy<G. To analyze the stability of the FP SMaler ! g?ra_certarlln maxmurr: va U’Ie'ﬂax'l or Examﬁ e, N
solutions, Eqgs(5) and (6) are linearized around them for Yma~1.24 ifI'=1.The numerical results also show that the
infinitesimal perturbations-exp(7), that gives rise to two Sliton-transfer regime loses its stabilitylif exceeds a cer-
equations which determine four eigenvalues tain maxmumvalqel“max. In this case, the soliton do_es not
follow the arm; instead its profile steepens and it emits
0?+2e0+2G?—g?=0, o*+eGo+(2/3)\JGZ—g?=0. Wwakes of radiation. For instancd,(y=1)~2.96. For
(8) givenT’, a related stability condition is that must exceed a
) ) minimum value vy,,; for example, y.(I'=1)~0.42. Thus,
It follows from Eqgs.(7) that the FR(7) with the uppersign  the stable transfer regime occurs in an inter¥al,<I
(i.e., negaﬂvgﬂ) is a stable spiral, while the other solutionis <1 for fixed v, or ymin<7y<7Ymax for fixed I".
a saddle point. Hence, the stable state corresponds to the The same transport problem was also studied for the dis-
soliton trailing behind the arm, while the soliton pushed crete version of Eq(1),
ahead of the arm is predicted to be unstable.

As is illustrated by Fig. 1, in direct simulations of the i(du./dD+ (1/2)A-u-+|u.l2u
systemg1) and(2) we could easily observe, for very differ- (dun/dO)+ (1/2)82Un + gy
ent values of the parameters, that the soliton is captured by =—iyu,+il seclinh— &(t) Jexp(it/2), 9
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FIG. 2. (a) Trajectories of the centers of the solit@olid line) 04+
and driving arm(dashed lingin the discrete model with the spacing
h=2 for the same values of other parameters as in Figh)IThe 0.2t
field intensity at the center of the soliton &t 100 vs the lattice :
spacingh.
0.0 ——4————=—— (b)
where h is the spacing of the lattice, and,u,=(u,., 0 2 4 h 6 8 10

+u,_1—2u,)/h? accounts for the coupling between the ad-

jacent sites. In the discrete case, which is relevant to a num- FiG. 3. (a) A set of contour-plot traces illustrating the evolution
ber of contexts such as optical lattices in Bose-Einstein conof the pulse in the 2D lattice with=I'=1 andh=2, which is
densategsee, e.g., Ref.13]) and coupled arrays of optical transferred fronx;,=y;,;=0 to the target position ats,=Ys,=5.
waveguideg14], stable transfer of the discrete soliton by the The soliton in the eventual position is shown explicitly; obviously,
arm was found too. As is well knowfl5] (see also Ref. it well preserves the shapéb) The field intensity at the center of
[11]), in nonintegrable dynamical lattices a soliton generi-the 2D soliton, in its final position vs the lattice spacing, cf. Fig.
cally encounters a potential-ener(eierls-Nabarrpbarrier.  2(b).

Accordingly, the motion of the driven discrete soliton re-

sembles the saltatory propagation of “lurching wavés8].  the interval|t|=e ! is Vo~ (€/2) (é6n— &n). Since we have
Nevertheless, it relaxes to the prescribed target position evef) =1/2 in Eq.(1), the resonance condition is

if the discreteness igery strong as is seen in Fig.(d). This

result is in contrast with the well-known phenomenon of h=4xVy/m, (10
propagation failurg15] in the case of the free motion of
solitons in lattices. wherem is a positive integefresonance orderThese reso-

Another noteworthy feature of the discrete problem is ob-nances are identified in Fig(l®, except for the one corre-
served if the amplitude of the pulse delivered to the targesponding tom=1. For instance, Eq(10) predicts them

position is considered vs the lattice spacmgo quantify the =2 resonance, in the case examinee=@/20&qn— &in
effects of discreteness. Peaks in Figh)Zlearly indicate the ~=20), ath= 72, while the simulations reveal a resonance at
presence of a resonance mechanism affecting the pulse trarts=10. In all the cases examined, with=2,3,4 . . ., arela-

port in the lattice. In fact, this mechanism was predictedtive discrepancy between the theoretically predicted and nu-
analytically and numerically in a number of theoretical merically found positions of the resonance wa8%, and in
works [17] and observed experimentally in latticgk8] and  most cases it was close to 1%. The residual discrepancy may
quasilatticegperiodically modulated continii@19]. Namely,  be due to the finite precision the numerical experiments and
the lattice spacindy and a given driving-arm’s velocity,  the approximate nature of the resonance condition, given that
define the frequency 2V, /h of the periodic passage of the the arm’s speed is not exactly constant; see(Bg.Interest-
lattice site by the soliton, which can resonate with the acdingly, not only the resonances of integer orders, but also
drive’s frequencywg. In the case when the arm moves ac- fractional resonances were found, satisfying the condiion
cording to Eq.(2), the nearly constant velocity of the arm in =47Vy(l/m), with an integel # 1. For example, the maxi-
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mum resonant value ofi in Fig. 2(b) corresponds to the method[20]. The discrete pulse is then transferred by the
fractional resonance ah/| =5/9, the next one tan/I=6/7, localized arm to a predetermined destination in the 2D lat-
and so on, with accuracy of1%. tice. Results, a typical example of which is displayed in Fig.

To further illustrate the generality and robustness of the3(&), are generic, in the sense that the arm always delivers
proposed mechanism, we also examined the possibility oihe soliton to the target point, which may be expected since
targeted transfer of solitons in the 2D case. In this case, thée transfer is essentially occurring in an effectively 1D way
continuum NLS equation with the cubic nonlinearity is sub- (radially) along the lattice. Resonances similar to those found
ject to wave collaps¢10]. We focus here on the 2D NLS above in the 1D casgFig. 2b)], for the amplitude of the
lattice model with cubic nonlinearity, which readily gives transported pulses as a function lofcan also be readily
rise to stable solitons, provided that the lattice spacing exfound in the 2D case, see Fig(t3.

ceeds a critical valugl1,20. In the latter case, Eq9) be- In summary, we have demonstrated a mechanism for co-
comes herent transfer of solitary waves from an original position to
a specified target position. The mechanism has been demon-
i (dUpn/dt) + (1/2) AUt [ Ul 2Usmn strated, analytically and numerically, in continuum and lat-
tice media, in both one and two spatial dimensions. Fairly
=—iyUnat+il sechiym?+n?h— &(t)]exp(it/2), broad parameter regions in which the mechanism is stable
(11) were identified. In the lattice medium, the analysis and simu-

lations reveal that the stable operation of the soliton-driving

arm is determined by the resonant energy transfer from the
ac drive to the solitary wave, both integer and fractional

resonances being well pronounced.

where

AzumnE(um,n+1+ Um,nfldl' um+l,n+ Umfl,n_ 4um,n)/h2-
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