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Multistability, noise, and attractor hopping: The crucial role of chaotic saddles
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We investigate the hopping dynamics between different attractors in a multistable system under the influence
of noise. Using symbolic dynamics we find a sudden increase of dynamical entropies, when a system parameter
is varied. This effect is explained by a bifurcation involving two chaotic saddles. We also demonstrate that the
transient lifetimes on the saddle obey a scaling law in analogy to crisis.
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Systems with a large number of coexisting stable sta
have been the subject of increasing interest recently. T
multistable behavior occurs in many different fields such
optics @1#, chemistry @2#, neuroscience@3#, semiconductor
physics@4#, plasma physics@5#, and coupled oscillators@6#.
Moreover, addition of noise to multistable systems has led
several interesting phenomena, such as noise-induced pr
ence of attractors@7,8#, directed diffusion @9#, noise-
enhanced multistability@10#, and chaotic itinerancy@11#. The
latter effect, which consists of hopping between different
tractors caused by the noise, has also been observed ex
mentally in an optical system@12#.

In this work we focus on the dynamics of the attracto
hopping process by taking a simple model as a paradi
Due to the noise the attractors become metastable and
trajectory starts hopping between the different attractors
the case of fractal basin boundaries, this hopping proc
consists of two steps. In the first one the trajectory leaves
open neighborhood about the attractor according to Arrh
ius’ law @13#, in the second one, the trajectory bounc
around on the chaotic saddle before cascading again into
open neighborhood of an attractor. The general mechan
for the first step of the hopping process is the same
bistable and multistable systems. In both cases we
Arrhenius’ law; quanitative differences are due to differe
relative sizes of basins of attraction@8#. However, for the
attractor-hopping dynamics, our study points out a major
ference between bistable and multistable systems: Whil
bistable systems the structure of the saddle separating
two attractors~saddle point or chaotic saddle! does not play
a role for the hopping characteristics, it is essential for
attractor hopping in a system, possessing a multitude o
tractors. The structure of the chaotic saddles influences
nature of the hopping process, in particular, it determi
which transitions between attractors are possible. Bifur
tions in the chaotic saddles lead to changes in the hop
dynamics and thus to changes in the ‘‘accessibility’’ of
tractors in the hopping process.

Employing symbolic dynamics, we assign one symbol
each attractor, thus transforming our hopping time se
onto a symbolic string. As a next step we compute both
Shannon and the topological entropy, which can be regar
as measures of complexity for the hopping dynamics. A
system parameter is varied, the complexity of the hopp
process changes beyond a certain threshold value. We s
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that this change can be related to a bifurcation, namel
merging of two chaotic saddles accompanied by the em
gence of additional points filling the gap between t
formely separated saddles. This bifurcation is mediated b
snapback repellor@14#, whose eigenvalues determine th
scaling law for the transient lifetimes on one chaotic sad
close to the bifurcation point.

Our basic prototype model of multistablity, which ca
tures the main features of highly multistable system
namely, more than two final states~attractors! and a com-
plexly interwoven fractal basin boundary separating th
states, is given by the tenfold iterate of two coupled logis
maps,

xk1151.02axk
21g~yk2xk!,

yk1151.02ayk
21g~xk2yk!. ~1!

We fix g, the coupling strength, atg50.29, and varya, the
nonlinearity, in the rangeaP@0.72,0.755#. For this param-
eter set, there exists a stable period ten orbit for the
coupled logistic maps themselves. Since we consider the
fold iterate, our map exhibits ten coexisting fixed point a
tractors, where each five lie above and below the symm
axis x5y, respectively. Using only initial conditions below
the symmetry axis, we can restrict our study to a syst
possessing five coexisting fixed point attractors, five rep
lors with two unstable directions, and ten saddle points. E
of the five attractors is surrounded by an open neighborh
of different size, in which all initial conditions converge t
the corresponding attractor inside this neighborhood. The
sins of attraction as a whole have a complex fractal struc
due to a homoclinic bifurcation which occurs already f
smaller values of the nonlinearitya. As a next step we apply
noise to the system, using Gaussian white noise with s
dard deviations added to thex and y components of the
tenfold iterate of Eq.~1!. Small noise causes the system no
to alternate between the different states, where long per
close to a fixed point, comparable to laminar motion, a
interrupted by short, sudden bursts, which are reminiscen
intermittent behavior. During the bursts the motion tak
place on the chaotic saddles separating the attractors,
the trajectory is again being injected in the neighborhood
one of the five fixed points. This complex dynamics is d
picted in Fig. 1.
©2002 The American Physical Society07-1
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According to our aim, we are now interested in the ch
acteristic properties of the hopping dynamics. Thus we
dress the question, how the complexity of the hopping
namics changes with the nonlinearity parametera, namely,
whether every fixed point has a positive transition proba
ity to every other fixed point, via a transient on a chao
saddle. For this purpose, we employ the concept of symb
dynamics. We use an encoding scheme in which we as
one symbol to each attractor@15#: Neglecting the number o
iterations the trajectory spends close to a fixed point, a s
bol is given for every fixed point and only after a jump out
an attractor a new symbol is bestowed, according to the
tractor where the trajectory lands at. Using this scheme,
focus only on the structural properties of the jumps, not t
ing fully into account the complete temporal evolution
each iteration. As a quantitative measure of the comple
of the symbol string we use the Shannon entropy, in anal
to the Kolmogorov-Sinai entropy@16#, given by

hS5 lim
n→`

Hn

n
5 lim

n→`

~Hn112Hn!

5 lim
n→`

1

n S 2 (
uSu5n

p~S!ln p~S! D , ~2!

whereS5s1s2•••sn denotes a finite symbol sequence co
sisting of n elementssi51,2, . . . ,5,p(S) its probability of
occurrence, andHn the block entropy of block lengthn. Nu-
merically, the quantity lim

n→`
(Hn112Hn) converges al-

ready for n51, indicating that the hopping dynamics is
Markov process of first order. This corresponds to the in
tive expectation, that the dynamics possesses only mem
of the last state it was dwelling on. Higher correlations a
suppressed by the long laminarlike motion. Consequentl
transition matrix between the different fixed points can
constructed, where the entries are the probabilities for a t
sition between two states.

FIG. 1. Noisy time series of Eq.~1! for a50.73, g50.29, and
s50.012. There are clearly five distinct almost periodic stat
marked with roman numbers on the right-hand side. These state
interrupted by bursts, where the motion takes place on a cha
saddle.
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Another interesting quantity to investigate is the topolo
cal entropy. One way of computing it is to build the Stef
transition matrix@17#, where the entries of the 535 matrix
are 1 and 0, depending on whether a transition took plac
not, respectively. The logarithm of the largest eigenvalue
this matrix yields the topological entropy. In our numeric
implementation, we use a certain, very small cutoff limit
0.001 for the transition probabilities, below which we rega
the value as zero. Thus we neglect transition, having
tremely small probabilities compared to the other transitio
However, the exact value of this cutoff does not change
results significantly, as long as it is small enough. The en
pies shown in Fig. 2 remain unchanged for cutoff limits b
tween 1023 and 1026. It is important to note that, althoug
the escape timesout of the stable states depend on the no
level, thetransition probabilitiesremain constant for a wide
range of noise values. Thus the considered entropies are
affected by the noise amplitude for a rather large interva
noise levels. In Fig. 2 we present the evolution of these t
quantities as the nonlinearitya changes. The curve for th
topological entropy appears to be a monotonic curve wit
devil’s staircase like behavior@18#. Every time it increases
at least one new transition between hitherto unconnec
fixed points is created. Below the homoclinic bifurcationa
,0.72, where the basin boundaries are smooth, only
transition per fixed point is possible, as the fixed points
located on a closed curve made up by the unstable manif
of the saddle points. These unstable manifolds impose a
rection. Consequently, the topological entropy is zero. Abo
a value ofa'0.75, all transitions can occur and the max
mum of the topological entropy is reached. The Shann
entropy is always less than the topological entropy. Besi
the overall increase of both entropies, the plateau betw
0.74,a,0.744 suggests that there is a change in the
namical behavior beyond it. This change is due to a cha
in the topological structure of the system and relates to a n
bifurcation as we show next. We compute the chaotic sad
responsible for the chaotic dynamics, by the proper inte
maximum triple method@19#. The result is depicted in Figs
3 and 4, where the chaotic saddles are shown for two dif
ent values ofa together with the fourfold preimages (1) of

,
are
tic

FIG. 2. The Shannon entropy (L) and the topological entropy
(h) of the symbol sequence generated from Eq.~1! under variation
of the nonlinearity parametera. Both quantities are normalized
to 1.
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one repellor R marked with h. Slightly above the ho-
moclinic bifurcation (a50.725) the saddles are very thi
consisting of two separate rings. At a value ofa50.755,
there exists only one large piece of the nonattracting cha
set~not shown!. This results from the saddle merging, whic
took place ata'0.743 ~Fig. 4!. The two bands of chaotic
saddles merge and the repellor, formerly located ouside
the saddles, is now embedded in the large saddle, inclu
some of its preimages. The merging is accompanied by
successive filling of the formerly empty gap between the t
saddles. A similar effect has been observed in Ref.@20#
where it is called ‘‘spilling,’’ in chaotic scattering@21#, and
in the gap filling crisis@22#. In contrast to the latter this
happens smoothly in the saddle merging.

However, the actual bifurcation takes place at a sligh
lower value ofa'0.7428 ~not shown!. At this parameter
value some of the preimages of the marked repellor touch
unstable manifold, which constitutes the border of the c
otic saddle. Through this mechanism, a snapback repellor
developed. A fixed pointp is called a snapback repellor, if~i!
all eigenvalues ofp have absolute values larger than 1,~ii !
there exists aqPWloc

u (p), the unstable manifold ofp, such
that theM-fold iterate of the mapF M(q)5p for some posi-
tive integerM and ~iii ! detDF M(q)Þ0 @14#. While condi-
tions ~i! and ~iii ! are true for alla considered here, it is
condition~ii ! that becomes fulfilled during the bifurcation, a
the unstable manifold of the repellor touches its preimag

FIG. 3. Two chaotic saddle rings in different gray scale toget
with the fourfold preimages (1) of the repellorR marked with ah

for a50.740.

FIG. 4. Chaotic saddle together with the fourfold preimage
(1) of the repellorR marked with ah for a50.743.
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This bifurcation is responsible for the emergence of the
ditional points in the gaps,~see Fig. 4!. At a slightly higher
value ofa'0.743, the preimages touch not only the unsta
manifold, constituting the border of the chaotic saddle,
also the saddle itself. As the chaotic saddle is an invar
set, the repellor becomes thus embedded in the saddle
the merging of the two rings has taken place. This merg
has an important consequence for the dynamics of the at
tor hopping. Not only jumps between neighbors, but a
arbitrary jumps become, in principle, possible. Above t
critical value, the connected pieces of the chaotic saddle
able the trajectory to jump between the formerly separa
parts, thereby causing a sharp increase in the number o
possible transitions, as can be seen from the topological
tropy abovea50.743 in Fig. 2. Since the bifurcation de
scribed above can be considered as a kind of crisis, i
interesting to see whether the scaling laws for the charac
istic transient lifetimes@23# apply in this case as well. We
compute the average escape times out of one~still separated!
chaotic saddle ring slightly below the bifurcation. In Fig.
the data are plotted, resulting in a scaling relation

^t&;~a2ac!
2e, ~3!

whereac50.7428. The best fit to the data yields an expon
e51.86. That value can be reproduced by

e51/21@ ln~b1!/ ln~b2!#, ~4!

e51/21@ ln~2.45!/ ln~1.9!#51.85, ~5!

whereb1 andb2 are the expanding eigenvalues of the m
diating repellor.

This coincidence has been confirmed also for other val
of the coupling strengthg50.285, 0.287, and 0.292. It i
worth mentioning that in the original derivation of this fo
mula, which applies to the heteroclinic tangency crisis,b1
andb2 are the expanding and contracting eigenvalues of
mediating saddle point@24#. However, in our case bothb1
andb2 are expanding eigenvalues of the mediating repel
We conjecture this relation to hold for the general case o
crisis caused by a snapback repellor. The reason that a
for the heteroclinic tangency is supposed to hold in a

r FIG. 5. Scaling of the transient lifetime to stay in one ring of t
chaotic saddle with the nonlinearitya and ac50.7428. The slope
of the log-log plot ise51.86.
7-3
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moclinic case of a snapback repellor is that the mechan
for approaching the fixed point is different here. The fix
point is not reached by successive iterations, where each
is closer to the fixed point as the former one, but sudde
with a jump of noninfinitesimal size from a finite distance

In conclusion, we have studied a simple paradigma
map possessing a multitude of coexisting stable states u
the influence of a small noise. We have shown that the na
of the attractor-hopping process depends, in contrast to
bistable case, crucially on the structure of the chaotic sad
separating the attractors. Bifurcations of the saddles lead
change in the hopping dynamics which is manifested i
ys

m
t.

nd

ys
.

01520
m

ne
ly

c
er
re
he
es

a
a

sudden increase of dynamical entropies. In particular, we
scribed a bifurcation, a merging of two chaotic saddles
volving a snapback repellor, which results in a change of
‘‘accessibility’’ of the attractors. Finally, a conjecture for th
scaling law of the transient lifetimes on the chaotic sad
has been provided. The hopping dynamics, the bifurcat
and the scaling law should be observable in experime
realizations of such systems. We expect this bifurcation a
to occur in systems with three or more dimensions, where
mediating saddle has at least two unstable directions.

We acknowledge Y. Maistrenko for valuable discussio
and the DFG and INTAS for financial support.
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