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Multistability, noise, and attractor hopping: The crucial role of chaotic saddles
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We investigate the hopping dynamics between different attractors in a multistable system under the influence
of noise. Using symbolic dynamics we find a sudden increase of dynamical entropies, when a system parameter
is varied. This effect is explained by a bifurcation involving two chaotic saddles. We also demonstrate that the
transient lifetimes on the saddle obey a scaling law in analogy to crisis.
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Systems with a large number of coexisting stable statethat this change can be related to a bifurcation, namely, a
have been the subject of increasing interest recently. Thimerging of two chaotic saddles accompanied by the emer-
multistable behavior occurs in many different fields such agience of additional points filling the gap between the
optics [1], chemistry[2], neurosciencd3], semiconductor formely separated saddles. This bifurcation is mediated by a
physics[4], plasma physic§5], and coupled oscillator]. snapback repellof14], whose eigenvalues determine the
Moreover, addition of noise to multistable systems has led tgcaling law for the transient lifetimes on one chaotic saddle
several interesting phenomena, such as noise-induced preféfose to the bifurcation point.
ence of attractors[7,8], directed diffusion [9], noise- Our basic prototype model of multistablity, which cap-
enhanced multistabilitf10], and chaotic itinerancjl1]. The  tures the main features of highly multistable systems,
latter effect, which consists of hopping between different athamely, more than two final stateattractors and a com-
tractors caused by the noise, has also been observed expdfexly interwoven fractal basin boundary separating these
mentally in an optical systefi2]. states, is given by the tenfold iterate of two coupled logistic

In this work we focus on the dynamics of the attractor-maps,
hopping process by taking a simple model as a paradigm.

. _ 2
Due to the noise the attractors become metastable and the X+ 1= 1.0— aXio+ y(Y— X,
trajectory starts hopping between the different attractors. In )
the case of fractal basin boundaries, this hopping process Y+ 1= 1.0— ayi+ y(Xk=Yi)- (1)

consists of two steps. In the first one the trajectory leaves the
open neighborhood about the attractor according to ArrhenWe fix v, the coupling strength, at=0.29, and vary, the
ius’ law [13], in the second one, the trajectory bouncesnonlinearity, in the rangere[0.72,0.75%. For this param-
around on the chaotic saddle before cascading again into theder set, there exists a stable period ten orbit for the two
open neighborhood of an attractor. The general mechanisigoupled logistic maps themselves. Since we consider the ten-
for the first step of the hopping process is the same fofold iterate, our map exhibits ten coexisting fixed point at-
bistable and multistable systems. In both cases we fintractors, where each five lie above and below the symmetry
Arrhenius’ law; quanitative differences are due to differentaxis x=y, respectively. Using only initial conditions below
relative sizes of basins of attractigB]. However, for the the symmetry axis, we can restrict our study to a system
attractor-hopping dynamics, our study points out a major difpossessing five coexisting fixed point attractors, five repel-
ference between bistable and multistable systems: While ifors with two unstable directions, and ten saddle points. Each
bistable systems the structure of the saddle separating tiod the five attractors is surrounded by an open neighborhood
two attractorgsaddle point or chaotic saddldoes not play of different size, in which all initial conditions converge to
a role for the hopping characteristics, it is essential for theghe corresponding attractor inside this neighborhood. The ba-
attractor hopping in a system, possessing a multitude of asins of attraction as a whole have a complex fractal structure
tractors. The structure of the chaotic saddles influences thédue to a homoclinic bifurcation which occurs already for
nature of the hopping process, in particular, it determinesmaller values of the nonlinearity. As a next step we apply
which transitions between attractors are possible. Bifurcanoise to the system, using Gaussian white noise with stan-
tions in the chaotic saddles lead to changes in the hoppindard deviationo added to thex andy components of the
dynamics and thus to changes in the “accessibility” of at-tenfold iterate of Eq(1). Small noise causes the system now
tractors in the hopping process. to alternate between the different states, where long periods
Employing symbolic dynamics, we assign one symbol toclose to a fixed point, comparable to laminar motion, are
each attractor, thus transforming our hopping time seriesterrupted by short, sudden bursts, which are reminiscent to
onto a symbolic string. As a next step we compute both théntermittent behavior. During the bursts the motion takes
Shannon and the topological entropy, which can be regardeglace on the chaotic saddles separating the attractors, until
as measures of complexity for the hopping dynamics. As dhe trajectory is again being injected in the neighborhood of
system parameter is varied, the complexity of the hoppingne of the five fixed points. This complex dynamics is de-
process changes beyond a certain threshold value. We shquicted in Fig. 1.
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FIG. 1. Noisy time series of Eq1) for «=0.73, y=0.29, and
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FIG. 2. The Shannon entropyX) and the topological entropy
(O) of the symbol sequence generated from @gunder variation
of the nonlinearity parametest. Both quantities are normalized

0=0.012. There are clearly five distinct almost periodic statesfo 1.
marked with roman numbers on the right-hand side. These states are

interrupted by bursts, where the motion takes place on a chaotic

saddle.

According to our aim, we are now interested in the char-
acteristic properties of the hopping dynamics. Thus we ad
dress the question, how the complexity of the hopping dy

namics changes with the nonlinearity parametemamely,
whether every fixed point has a positive transition probab
ity to every other fixed point, via a transient on a chaot

dynamics. We use an encoding scheme in which we assi

one symbol to each attractpt5]: Neglecting the number of
iterations the trajectory spends close to a fixed point, a sy

of the symbol string we use the Shannon entropy, in analo
to the Kolmogorov-Sinai entroplyl6], given by

- Hn
hg= I|m7= lim(Hy,1—H,)

n—oo n—o

1
= "”“(‘%n p<S)Inp<S)>, 2

nHOCn

whereS=s;s,- - -S,, denotes a finite symbol sequence con-

sisting ofn elementss;=1,2, ... ,5,p(S) its probability of
occurrence, an#i,, the block entropy of block length. Nu-
merically, the quantity Iirpﬂm(HnH— H,) converges al-

ic

Another interesting quantity to investigate is the topologi-
cal entropy. One way of computing it is to build the Stefan
transition matrix[17], where the entries of the>65 matrix

are 1 and 0, depending on whether a transition took place or
not, respectively. The logarithm of the largest eigenvalue of
this matrix yields the topological entropy. In our numerical

| implementation, we use a certain, very small cutoff limit of
0.001 for the transition probabilities, below which we regard
‘the value as zero. Thus we neglect transition, having ex-
?remely small probabilities compared to the other transitions.
gI[]owever, the exact value of this cutoff does not change the
results significantly, as long as it is small enough. The entro-

bol is given for every fixed point and only after a jump out O'fnples shown in Fig. 2 remain unchanged for cutoff limits be-

an attractor a new symbol is bestowed, according to the a&-
tractor where the trajectory lands at. Using this scheme, w
focus only on the structural properties of the jumps, not tak-
ing fully into account the complete temporal evolution in
each iteration. As a quantitative measure of the complexit

tween 102 and 10°6. It is important to note that, although
he escape timesut of the stable states depend on the noise
?evel, thetransition probabilitiesremain constant for a wide
range of noise values. Thus the considered entropies are not
affected by the noise amplitude for a rather large interval of
Yoise levels. In Fig. 2 we present the evolution of these two
g}ﬂuantities as the nonlinearity changes. The curve for the
topological entropy appears to be a monotonic curve with a
devil's staircase like behavidi8]. Every time it increases,

at least one new transition between hitherto unconnected
fixed points is created. Below the homaoclinic bifurcatien
<0.72, where the basin boundaries are smooth, only one
transition per fixed point is possible, as the fixed points are
located on a closed curve made up by the unstable manifolds
of the saddle points. These unstable manifolds impose a di-
rection. Consequently, the topological entropy is zero. Above
a value ofa~0.75, all transitions can occur and the maxi-
mum of the topological entropy is reached. The Shannon
entropy is always less than the topological entropy. Besides
the overall increase of both entropies, the plateau between

ready forn=1, indicating that the hopping dynamics is a 0.74<«<0.744 suggests that there is a change in the dy-
Markov process of first order. This corresponds to the intui-namical behavior beyond it. This change is due to a change
tive expectation, that the dynamics possesses only memoiy the topological structure of the system and relates to a new
of the last state it was dwelling on. Higher correlations arebifurcation as we show next. We compute the chaotic saddle,
suppressed by the long laminarlike motion. Consequently, aesponsible for the chaotic dynamics, by the proper interior
transition matrix between the different fixed points can bemaximum triple method19]. The result is depicted in Figs.

constructed, where the entries are the probabilities for a trar3 and 4, where the chaotic saddles are shown for two differ-

sition between two states.

ent values ofx together with the fourfold preimages-() of
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FIG. 3. Two chaotic saddle rings in different gray scale together
with the fourfold preimages+) of the repelloR marked with &

for «=0.740.

one repellorR marked with (J. Slightly above the ho-
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of the log-log plot ise=1.86.

FIG. 5. Scaling of the transient lifetime to stay in one ring of the
chaotic saddle with the nonlinearity and «.=0.7428. The slope

This bifurcation is responsible for the emergence of the ad-

moclinic bifurcation @=0.725) the saddles are very thin, ditional points in the gapgsee Fig. 4 At a slightly higher

consisting of two separate rings. At a value @% 0.755,

value ofa~0.743, the preimages touch not only the unstable

there exists only one large piece of the nonattracting chaotimanifold, constituting the border of the chaotic saddle, but
set(not shown. This results from the saddle merging, which also the saddle itself. As the chaotic saddle is an invariant
took place ata~0.743 (Fig. 4). The two bands of chaotic set, the repellor becomes thus embedded in the saddle and
saddles merge and the repellor, formerly located ouside ahe merging of the two rings has taken place. This merging
the saddles, is now embedded in the large saddle, includingas an important consequence for the dynamics of the attrac-
some of its preimages. The merging is accompanied by ther hopping. Not only jumps between neighbors, but also
successive filling of the formerly empty gap between the twaarbitrary jumps become, in principle, possible. Above the

saddles. A similar effect has been observed in R2€]
where it is called “spilling,” in chaotic scatterinf21], and

critical value, the connected pieces of the chaotic saddle en-
able the trajectory to jump between the formerly separated

in the gap filling crisis[22]. In contrast to the latter this parts, thereby causing a sharp increase in the number of the
possible transitions, as can be seen from the topological en-
However, the actual bifurcation takes place at a slightlytropy abovea=0.743 in Fig. 2. Since the bifurcation de-

happens smoothly in the saddle merging.

lower value of @~0.7428 (not shown. At this parameter

scribed above can be considered as a kind of crisis, it is

value some of the preimages of the marked repellor touch ithteresting to see whether the scaling laws for the character-
unstable manifold, which constitutes the border of the chaistic transient lifetimeg23] apply in this case as well. We

otic saddle. Through this mechanism, a snapback repellor ha®mpute the average escape times out of(stik separatefl

developed. A fixed poinp is called a snapback repellor,(if
all eigenvalues op have absolute values larger than(il)

there exists a e W,.(p), the unstable manifold gf, such

that theM-fold iterate of the mapF™(q)=p for some posi-

tive integerM and (iii ) detD FM(q)#0 [14]. While condi- _ .
tions (i) and (iii) are true for alle considered here, it is wherea = 0.7428. The best fit to the data yields an exponent

condition(ii) that becomes fulfilled during the bifurcation, as €= 1-86. That value can be reproduced by

the unstable manifold of the repellor touches its preimages.

(+) of the repellorR marked with a1 for «=0.743.

chaotic saddle ring slightly below the bifurcation. In Fig. 5
the data are plotted, resulting in a scaling relation

(~(a—ap)™", )

621/2+[|n(ﬁl)/|n(32)]! (4)

e=1/2+[In(2.45/In(1.9]=1.85, (5)

where 8, and B, are the expanding eigenvalues of the me-

diating repellor.

This coincidence has been confirmed also for other values
of the coupling strengthy=0.285, 0.287, and 0.292. It is
worth mentioning that in the original derivation of this for-
mula, which applies to the heteroclinic tangency crigs,
and 3, are the expanding and contracting eigenvalues of the
mediating saddle poirt24]. However, in our case botf;
and 3, are expanding eigenvalues of the mediating repellor.
We conjecture this relation to hold for the general case of a
FIG. 4. Chaotic saddle together with the fourfold preimages crisis caused by a snapback repellor. The reason that a law
for the heteroclinic tangency is supposed to hold in a ho-
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moclinic case of a snapback repellor is that the mechanisraudden increase of dynamical entropies. In particular, we de-
for approaching the fixed point is different here. The fixedscribed a bifurcation, a merging of two chaotic saddles in-
point is not reached by successive iterations, where each o@!ving a snapback repellor, which results in a change of the

is closer to the fixed point as the former one, but suddenlyaccessibility” of the attractors. Finally, a conjecture for the
with a jump of noninfinitesimal size from a finite distance. scaling law of _the transient I|f_et|mes on _the chaot!c sad_dle
éﬁas been provided. The hopping dynamics, the bifurcation,

In conclusion, we have studied a simple paradigmati nd the scaling law should be observable in experimental
map possessing a multitude of coexisting stable states under 9 P

the influence of a small noise. We have shown that the natur ealizations of such systems. We expect this bifurcation also

. ’ ) occur in systems with three or more dimensions, where the
O.f the attractor—hopplng process depends, in contrast to tlh'i’?]ediating saddle has at least two unstable directions.
bistable case, crucially on the structure of the chaotic saddles

separating the attractors. Bifurcations of the saddles lead to a We acknowledge Y. Maistrenko for valuable discussions
change in the hopping dynamics which is manifested in and the DFG and INTAS for financial support.
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