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Crumpled wires in two dimensions
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Geometric and statistical properties of wires injected into a two-dimensional cavity with three different
injection geometries are investigated. Complex patterns of folds are observed and studied as a function of the
length of the wire. The mass-size relation and the distribution functionn(s) of loops with internal areas
formed as a consequence of the folded structure of the wire are examined. Several scaling laws are found and
a hierarchical model is introduced to explain the experimental behavior observed in this two-dimensional
crumpling process.
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Crumpling is both a very interesting problem in its ow
right and a ubiquitous physical phenomenon@1#. In spite of
the scientific and technological importance of phenom
associated with microscopic and macroscopic crumpled
terials, our understanding of the behavior of these system
still limited. In fact, extreme nonlinear effects and irreve
ibility observed in crumpling of structures with the topolog
of the plane introduce great difficulties in the theory of ela
ticity and in the geometry of surfaces@1#. In the past few
years, however, theoretical and experimental aspects of p
ics of crumpled sheets have been a subject of growing in
est in many areas of study, e.g., acoustic emission@2#, con-
tinuous mechanics@3#, growth models@4#, packing problems
@5#, polymer, membrane, and interface physics@6#, and uni-
versality @7#, among others. On the other hand, crump
structures with different topologies, as exemplified by
squeezed ball of wire, have been much less studied in
physics literature. Some geometric, statistical, and phys
aspects of irreversibly crumpled wires in three-dimensio
~3D! space were examined ten years ago and, in partic
robust scaling laws and fractal dimensions associated
these disordered systems were reported@8#.

Here, on the contrary, we present results of an experim
tal analysis of crumpled structures in 2D obtained by ir
versible squeezing of macroscopic pieces of copper w
within a two-dimensionalplanar transparent cavity. Irrevers
ibility here means that if the constraints due to the cavity
removed, the crumpled wire does not restore the initial s
ation. We will show that the structure of this 2D crumplin
process isremarkablydifferent from crumpling processes o
sheets in 3D. We have also succeeded in explaining the
perimental data with a hierarchical crumpling model bas
on a cascade of loops of decreasing sizes.

The apparatus used to obtain the digital images of the
configurations of crumpled wires~CW! is shown in Fig. 1. It
consists of a transparent cell formed by the superpositio
two disks of Plexiglas with a total height of 1.8 cm, an e
ternal diameter of 30.0 cm, and a circular cavity of 20.0
diameter and 0.11 cm height, which can accommodate c
figurations of asingle layer of CW of diameter~gauge! z
50.10 cm. In order to reduce friction, the cavity of the c
was polished and the 19AWG copper wire used in the
periment had a varnished surface. The cavity and the w
operated in a dry regime, free of lubrication. Radial chann
1063-651X/2002/66~1!/015102~4!/$20.00 66 0151
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were made to provide three different ways of injecting t
wire into the cell at the angles of 10°, 90°, and 180°~Fig. 1!.
The photographs were taken with an Olymp
C-3040ZOOM digital camera with a resolution of 3 meg
pixels that was connected to a computer and assemble
cm over the cell. To avoid picture artifacts by light refle
tions, a cylindrical screen was placed around the cell.
injection experiment begins fitting a straight wire in the o
posite channels and subsequently pushing manually and
formly the wire on both sides of the cell toward the interi
of the cavity. The injection velocity at each channel in the
experiments was typically of the order of 1 cm/s.

When a thin wire of lengthL is injected inside the cell,
the wire bends if its length is slightly larger than the diame
of the cavity, 2R0. There is a critical lengthLc5h1, given by
the experimental ratiohc5h1/2pR050.68460.008, when
the wire touches itself forming the first loop@Fig. 2~a!#. For
larger L, the wire begins to crumple progressively into
complex nonuniform shape as illustrated in Figs. 2~b!–2~d!.
The photographs in Fig. 2 refer to the regime of injecti
along the 180° channels. For wires with the largest leng
the crumpled structures become progressively more rigid,
difficulty in the injection increases, and the injection veloc

FIG. 1. Diagram of the 2D injection cell used in the expe
ments.
©2002 The American Physical Society02-1
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FIG. 2. Typical conformations of crumpled wires in 2D with length~a! 42.9, ~b! 150, ~c! 300, and~d! 470 cm.
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is somewhat smaller. However, the observed phenomena
widely independent of the injection speed for all intervals
injection velocities compatible with a manual process. Th
is a moment when the injection velocity goes rapidly to ze
In this particular moment, the CW reaches a tight-pack
~TP! configuration as that shown in Fig. 2~d!. The TP con-
figuration occurs for the maximum occupation probabil
pmax[zLmax/pR0

2, whereLmax is the maximum length of wire
that can be introduced within the cavity. An experimen
estimate of this maximum occupation probability ispmax
50.14060.006. The mechanical behavior of the samples
pears to be quite different near and belowpmax. The 2D
crumpled structure is rigid forp5pmax; it is completely
jammed within the cavity and it is impossible to continue t
injection of wire into the cell. To rule out any possibility o
the TP configuration being a consequence of friction effe
we carried out experiments where the cavity was filled w
mineral oil. The results perfectly agreed with the dry regim
ones. Geometric patterns of CW for injection angles of 1
and 90° are different from those exhibited in Fig. 2 only f
the smaller lengths. WhenL increases, the configurations o
CW converge rapidly to a typical structure that does
depend on the injection angle. Because of a lack of sp
only the data associated with the experiments with the 1
channels are shown@9#. The crumpled patterns of wire ob
served within the cell are basically due to the formation o
cascade of loops of decreasing size~Fig. 2!. During the pro-
gressive injection of wire into the cell, the cascade of loo
evolves in such way that it is common to observe localiz
and global rearrangements of loops previously formed.

One of the most basic physical properties when dea
with complex patterns and fractal structures is the dep
denceM (R) of the mass of the system within a circle
radiusR @10#. This quantity is exemplified in the log-log plo
of Fig. 3 in arbitrary units, for an ensemble of 7 CW in th
TP limit, with averageL5438 cm, corresponding to length
varying from 410 to 470 cm. We observe that the mass~or
projected areazL) of the crumpled structures presents a te
dency to scale as a power law inR, from R50.1 cm toR
5R0510 cm. From this figure we obtainM (R);RD, with
D51.960.1, for 0.6 cm<R<6 cm; that is, the TP is two-
dimensional within the statistical fluctuations. At this poin
some information on the method used to obtainM (R) in Fig.
3 is needed. The measurement ofM as a function ofR was
made in two steps: for 4 cm,R,10 cm, M (R) was mea-
sured within a single ball with the origin at the geometric
center of the cell; and for 0.1 cm,R,4.0 cm, M (R) was
taken as the average mass within five to six equivalent
joint balls whose centers were localized in different points
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the wire taken at random but subject to the further constr
of nonoverlap with the border of the cell. This procedure
important to counterbalance a common distortion leading
a depletion of the mass near the center of the cell if a sin
ball is used.

As the length of wire injected into the cavity increase
i.e., as the occupation probabilityp5zL/pR0

2 rises, the total
number of loops,nl , formed as a consequence of wire-wi
contacts, also grows. The experimental dependence onl
with p and the corresponding fluctuations are shown in F
4. The log-log plot ofnl(p) shows two different behaviors:
shoulder forp&0.032 and a power-law asymptotic depe
dencenl;p1.860.2 for 0.032&p&0.140. The rate of loop for-
mation presents the largest value in the beginning of the
region, when the incipient CW behaves as a soft struct
Moreover, the total number of contacts between loops~Fig.
4, inset! scales asnll ;p2.260.2 in the same interval. The las
result is reminiscent of Flory’s mean-field argument@11#,
which suggests thatnll should scale with the repulsive en
ergy within the CW, that is, withp2. The number of coordi-
nation or contacts per loop,g5nll /nl ~not shown!, increases
asymptotically as g;p0.760.2 in the interval 0.032&p
&0.140.

The TP limit in our experiments is associated with 2
configurations of CW with a total number of loops varying
the intervalnl522 to nl545. In all we had 249 loops for
seven equivalent experiments of CW with the largest leng
~i.e., '35.5 loops per experiment withL5Lmax). If loops

FIG. 3. Mass-size dependence for seven equivalent config
tions of CW for ~average! L5438 cm. The averaged mass in th
scaling region, 0.6 cm<R<6 cm, behaves asM (R);RD, D
51.960.1.
2-2
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are divided in bins according to their respective areass, we
obtain the distribution functionn(s), which is shown in Fig.
5. The linear fit in this figure gives an asymptotic power-la
behavior over about a decade:n(s);s21.460.2. The average
loop sizel[L/nl decays asp20.5060.15 along one decade o
variability in p, as shown in the inset of Fig. 5.

Hierarchical model for CW in2D. As shown in Fig. 2,
loops are the constitutive units of the spatial configuratio
of CW studied in this Rapid Communication. Let us divid
the total number of loops within the cell in a hierarchy
iterationsi 51,2,3, . . . in such a way that at iterationi there
are ni loops with a unitary characteristic perimeterhi . The
total perimeter of all loops is the lengthL of wire introduced
into the cavity, i.e.,

L5(
i 51

I

nihi , ~1!

whereI is the maximum number of iterations. If we suppo
that there are cascades ofhi andni controlled, respectively
by two constantsh and n such thathi 11 /hi5h,1 and
ni 11 /ni5n.1, then we have

hi5h i 21h1 , ~2a!

ni5n i 21, i 51,2, . . . ,I , ~2b!

whereh1 is the perimeter of the largest loop. From the la
two equations, we can eliminatei to obtain the distribution
function of the perimeter of loops,n(h)5(h/h1)2D, where
D5D(h,n)5 ln n/ln h21 is the fractal dimension@10# of the
CW in the TP limit~see Fig. 3!. If we assume that the areas
enclosed by a loop of perimeterh scales ass;hd, we find
that n(s);n(h)(dh/ds);h2Ds(1/d)21;s2(D/d)1(1/d)21,
that is,

FIG. 4. Log-log plot of the numbernl of loops belonging to a
crumpled wire that occupies a fractionp of the area of the cavity as
a function ofp: (j) experimental data; the continuous line repr
sents the theoretical values obtained from the hierarchical m
discussed in the text. The inset shows the number of contacts l
loop, nll (p). See text, sixth paragraph.
01510
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D1d21
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. ~3!

Using the Euclidean exponentd52, which is valid for the
loops in our experiments, and takingD51.960.1 found in
Fig. 3, we gett51.4560.10, which is in agreement with th
exponent found in Fig. 5. If we adopt the simplest assum
tion n52 in the expression forD(h,n) above, i.e., if the
number of loops duplicates at each iteration, and if we
D51.960.1, we obtainh50.6960.01, which is essentially
the experimental value introduced in the fourth paragraph
the ratio h1/2pR0. From now on we will assume tha
hi 11 /hi5h[hc50.68, ; i . Using Eq. ~2a!, with h5hc ,
and Eq.~2b! in Eq. ~1! we get

L5
Lc@~hcn! I21#

@hcn21#
, ~4!

whereLc52pR0hc , hc50.6860.01, andn52.
If we solve Eq.~4! for I and apply the result in the ex

pression for the total number of loops,nl5(n i5(n I

21)/(n21), we obtainnl5(26.5p11)2.1121 after the sub-
stitutions L5ppR0

2/z and R0 /z5100. The last expression
for nl(p) is plotted as a solid line in Fig. 4 and shows go
agreement with the experimental data. Again from Eq.~4! we
obtain L/Lc>2.7@1.3I21# or L/R0>11@1.3I21#, and the
maximum length of wire which can be introduced into t
cavity, Lmax, depends on the estimate of the maximum nu
ber of iterations,I max. An upper bound forI max is easily
obtained if we consider a 2D iterative regular folding proce
for a wire of lengthL and widthz submitted to a shortening

ratio of 1
2 in the lengthxi[( 1

2 ) iL and a widening in the
transverse direction given byyi[2iz. This packing process
finishes~i.e., a rigid structure is attained! when i→I 0 and

FIG. 5. Experimental~normalized! distribution functionn(s) for
loops with areas. The straight line indicates the best fit and has
slope of 1.460.2 close to the estimatet51.4560.10 obtained with
the hierarchical model discussed in the text. The inset shows
power-law decay of the average loop size,l, with p, and the con-
tinuous line represents the best fitl;p20.5060.15.
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xi5yi , that is, for I 05 ln(L/z)/ln 4. If this upper bound for
I max is introduced in the last equation forL/R0, we obtain
Lmax/R0>11@1.3ln(Lmax/z)/ln 421#. Numerical solution of this
equation for the parameters used in our experimentz
50.1 cm,R0510 cm—givesLmax,theory>420 cm, which is
in good agreement with the average experimental va
^Lmax,exp&5438 cm. Moreover, we getI max,ln(Lmax,theory/
z)/ ln 456.0, which means that the theoretic upper bou
used forI max is overestimated by about 13% relative to t
average experimental value,^I max,exp&>5.2.

The CW studied in this paper is a disordered 2D cellu
structure composed of two different phases, namely air
n,

c.
,

01510
e

d

r
d

solid. If p,0.1460.01, we can introduce wire in the cavit
without difficulty, but as long as the solid fractionp ap-
proaches the critical limit 0.1460.01, the injection of wire in
the cavity becomes rapidly difficult and the process of inje
tion is impractical for p.pmax50.1460.01; that is, the
crumpled structure becomes rigid.
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