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Crumpled wires in two dimensions
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Geometric and statistical properties of wires injected into a two-dimensional cavity with three different
injection geometries are investigated. Complex patterns of folds are observed and studied as a function of the
length of the wire. The mass-size relation and the distribution funati@) of loops with internal area
formed as a consequence of the folded structure of the wire are examined. Several scaling laws are found and
a hierarchical model is introduced to explain the experimental behavior observed in this two-dimensional
crumpling process.
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Crumpling is both a very interesting problem in its own were made to provide three different ways of injecting the
right and a ubiquitous physical phenomeridn In spite of  wire into the cell at the angles of 10°, 90°, and 18Bf. 1).
the scientific and technological importance of phenomendhe photographs were taken with an Olympus
associated with microscopic and macroscopic crumpled m&=-3040ZOOM digital camera with a resolution of 3 mega-
terials, our understanding of the behavior of these systems RiXels that was connected to a computer and assembled 30
still limited. In fact, extreme nonlinear effects and irrevers-cm over the cell. To avoid picture artifacts by light reflec-
ibility observed in crumpling of structures with the topology tions, a cylindrical screen was placed around the cell. An
of the plane introduce great difficulties in the theory of elas-injection experiment begins fitting a straight wire in the op-
ticity and in the geometry of surfacéd]. In the past few posite channels and subsequently pushing manually and uni-
years, however, theoretical and experimental aspects of phy@rl’my the wire on both sides of the cell toward the interior
ics of crumpled sheets have been a subject of growing inteff the cavity. The injection velocity at each channel in these
est in many areas of study, e.g., acoustic emisgfincon-  experiments was typically of the order of 1 cm/s.
tinuous mechanick3], growth modeld4], packing problems When a thin wire of lengthL is injected inside the cell,

[5], polymer, membrane, and interface phydi6§ and uni-  the wire bends if its length is slightly larger than the diameter
versality [7], among others. On the other hand, crumpledof the cavity, R,. There is a critical length .= h, given by
structures with different topologies, as exemplified by athe experimental ratiop.=h,/27R,=0.684+0.008, when
squeezed ball of wire, have been much less studied in thée wire touches itself forming the first logfig. 2(@)]. For
physics literature. Some geometric, statistical, and physicdfrger L, the wire begins to crumple progressively into a
aspects of irreversibly crumpled wires in three-dimensionaFomplex nonuniform shape as illustrated in Figé)22(d).

(3D) space were examined ten years ago and, in particulafhe photographs in Fig. 2 refer to the regime of injection
robust scaling laws and fractal dimensions associated witBlong the 180° channels. For wires with the largest lengths,
these disordered systems were repof&jd the crumpled structures become progressively more rigid, the

Here, on the contrary, we present results of an experimergdifficulty in the injection increases, and the injection velocity
tal analysis of crumpled structures in 2D obtained by irre-
versible squeezing of macroscopic pieces of copper wires 180° injection channels
within a two-dimensionaplanar transparent cavity. Irrevers-
ibility here means that if the constraints due to the cavity are
removed, the crumpled wire does not restore the initial situ-
ation. We will show that the structure of this 2D crumpling
process isemarkablydifferent from crumpling processes of
sheets in 3D. We have also succeeded in explaining the ex
perimental data with a hierarchical crumpling model based
on a cascade of loops of decreasing sizes.

The apparatus used to obtain the digital images of the 2C
configurations of crumpled wird€W) is shown in Fig. 1. It
consists of a transparent cell formed by the superposition of
two disks of Plexiglas with a total height of 1.8 cm, an ex-
ternal diameter of 30.0 cm, and a circular cavity of 20.0 cm .
diameter and 0.11 cm height, which can accommodate con10° injection channels
figurations of asingle layer of CW of diameter(gauge ¢
=0.10 cm. In order to reduce friction, the cavity of the cell
was polished and the 19AWG copper wire used in the ex-
periment had a varnished surface. The cavity and the wire FIG. 1. Diagram of the 2D injection cell used in the experi-
operated in a dry regime, free of lubrication. Radial channelsnents.

SCrews

90° inj ection channels
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FIG. 2. Typical conformations of crumpled wires in 2D with lengéh 42.9, (b) 150, (c) 300, and(d) 470 cm.

is somewhat smaller. However, the observed phenomena atiee wire taken at random but subject to the further constraint
widely independent of the injection speed for all intervals ofof nonoverlap with the border of the cell. This procedure is
injection velocities compatible with a manual process. Theréemportant to counterbalance a common distortion leading to
is a moment when the injection velocity goes rapidly to zeroa depletion of the mass near the center of the cell if a single
In this particular moment, the CW reaches a tight-packingoall is used.
(TP) configuration as that shown in Fig(d). The TP con- As the length of wire injected into the cavity increases,
figuration occurs for the maximum occupation probabilityi.e., as the occupation probabilip= L/ 7R3 rises, the total
pmaXEg“LmaX/wRé, whereL ., is the maximum length of wire number of loopsn,, formed as a consequence of wire-wire
that can be introduced within the cavity. An experimentalcontacts, also grows. The experimental dependencs, of
estimate of this maximum occupation probability pg,,,  with p and the corresponding fluctuations are shown in Fig.
=0.140+0.006. The mechanical behavior of the samples ap4. The log-log plot ofn;(p) shows two different behaviors: a
pears to be quite different near and bel@y.,,. The 2D  shoulder forp=<0.032 and a power-law asymptotic depen-
crumpled structure is rigid fop=p..; it is completely  dencen,~ p*®%2for 0.032< p=0.140. The rate of loop for-
jammed within the cavity and it is impossible to continue themation presents the largest value in the beginning of the first
injection of wire into the cell. To rule out any possibility of region, when the incipient CW behaves as a soft structure.
the TP configuration being a consequence of friction effectsMoreover, the total number of contacts between logpg.

we carried out experiments where the cavity was filled with4, insej scales a®, ~p

2.2+0.2;

in the same interval. The last

mineral oil. The results perfectly agreed with the dry regimeresult is reminiscent of Flory’s mean-field argumei],
ones. Geometric patterns of CW for injection angles of 10°which suggests that; should scale with the repulsive en-
and 90° are different from those exhibited in Fig. 2 only for ergy within the CW, that is, witlp?. The number of coordi-
the smaller lengths. Wheln increases, the configurations of nation or contacts per loop,=n,, /n, (not shown, increases

+0.2

CW converge rapidly to a typical structure that does notasymptotically as y~p%™©%2 in the interval 0.03Zp

depend on the injection angle. Because of a lack of spaces0.140.

only the data associated with the experiments with the 180° The TP limit in our experiments is associated with 2D
channels are show®]. The crumpled patterns of wire ob- configurations of CW with a total number of loops varying in
served within the cell are basically due to the formation of athe intervaln, =22 to n,=45. In all we had 249 loops for
cascade of loops of decreasing s{&ég. 2). During the pro-  seven equivalent experiments of CW with the largest lengths
gressive injection of wire into the cell, the cascade of loopgi.e., ~35.5 loops per experiment with=L,,,,). If loops

evolves in such way that it is common to observe localized
5

and global rearrangements of loops previously formed. 10
One of the most basic physical properties when dealing
with complex patterns and fractal structures is the depen-
denceM(R) of the mass of the system within a circle of 10
radiusR [10]. This quantity is exemplified in the log-log plot
of Fig. 3 in arbitrary units, for an ensemble of 7 CW in the
TP limit, with averagd. =438 cm, corresponding to lengths
varying from 410 to 470 cm. We observe that the mass
projected aredL) of the crumpled structures presents a ten-
dency to scale as a power law ®) from R=0.1 cm toR
=Ry,=10 cm. From this figure we obtaid (R) ~RP, with 10°

3

@10
=

D=1.9+0.1, for 0.6 cm<R<6 cm; that is, the TP is two- i

dimensional within the statistical fluctuations. At this point,
some information on the method used to obtdi(R) in Fig.

1
: : 10
3 is needed. The measurementhdfas a function ofR was 0.1

made in two steps: for 4 cmR<10 cm, M(R) was mea-

R (¢m)

10

sured within a single ball with the origin at the geometrical  FIG. 3. Mass-size dependence for seven equivalent configura-
center of the cell; and for 0.1 cmR<4.0 cm,M(R) was tions of CW for(average L=438 cm. The averaged mass in the
taken as the average mass within five to six equivalent disscaling region, 0.6 cssR<6 cm, behaves asM(R)~RP, D

joint balls whose centers were localized in different points of=1.9+0.1.
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FIG. 4. Log-log plot of the numbem, of loops belonging to a FIG. 5. Experimentalnormalized distribution functiom(s) for

crumpled wire that occupies a fractiprof the area of the cavity as loops with areas. The straight line indicates the best fit and has a
a function ofp: (M) experimental data; the continuous line repre- slope of 1.4+ 0.2 close to the estimate= 1.45*+ 0.10 obtained with
sents the theoretical values obtained from the hierarchical modehe hierarchical model discussed in the text. The inset shows the
discussed in the text. The inset shows the number of contacts loopower-law decay of the average loop sixe,with p, and the con-

loop, n, (p). See text, sixth paragraph. tinuous line represents the bestNit-p~05%015
are divided in bins according to their respective argase B D+d-1
obtain the distribution function(s), which is shown in Fig. n(s)~s " r=—f - ()

5. The linear fit in this figure gives an asymptotic power-law

H . —-1.4+0.2
behavior over about a decadgs) ~s - The average ging the Euclidean exponedt=2, which is valid for the
loop sizex=L/n, decays ap ">"""along one decade of |54 in our experiments, and takimy=1.9+0.1 found in
variability in p, as shown in the inset of Fig. S. Fig. 3, we getr=1.45+0.10, which is in agreement with the

Hierarchical model for CW ir2D. As shown in Fig. 2, gynonent found in Fig. 5. If we adopt the simplest assump-
loops are the constitutive units of the spatial configurationg;y, ,=2 in the expression fob(7,v) above, i.e., if the

of CW studied in this Rapid Communication. Let us divide ,,her of joops duplicates at each iteration, and if we use
the total number of loops within the cell in a hierarchy of 5 _1 9+ 01 we obtainy=0.69+ 0.01, which is essentially
iterationsi=1,2,3 . .. insuch a way that at iteratiorthere  yhe oy nerimental value introduced in the fourth paragraph for

aren; loops with a unitary characteristic perimetgr. The 4 ratio hy/27R,. From now on we will assume that
total perimeter of all loops is the lengthof wire introduced hi.1/h,.=n=7.=0.68, Vi. Using Eq.(2a), with 7=17
I | Cc . 1 . . 1 (o)

into the CaVity, ie., and Eq(Zb) in ECI (1) we get
|
L=2 niy, (1) L Ll (7en'—1] @
. [per—1]

wherel is the maximum number of iterations. If we suppose
that there are cascadesfandn; controlled, respectively, whereL.=27Ry7., 7,=0.68+0.01, andv=2.

by two constantsy and v such thath;,;/h;=%»<1 and If we solve Eq.(4) for | and apply the result in the ex-
ni.1/nj=v>1, then we have pression for the total number of loops)=3v,=(v'
—1)/(v—1), we obtaim,=(26.5+1)%>—1 after the sub-
hi=7"th,, (2a)  stitutionsL=pwR3/{ and Ry/¢{=100. The last expression
for n;(p) is plotted as a solid line in Fig. 4 and shows good
n=v"1 i=12...], (2b) agreement with the experimental data. Again from @gwe

obtain L/L,=2.71.3—-1] or L/IR,=11[1.3—1], and the
whereh, is the perimeter of the largest loop. From the lastMaximum length of wire which can be introduced into the
two equations, we can eliminateto obtain the distribution  CaVity; Lmax, depends on the estimate of the maximum num-

function of the perimeter of loopsi(h) = (h/h,)~°, where ber of iterations,l .. An upper bound fod ., is easily
D=D(7,7)=Invln 7 tis the fractal dimensiofil0] of the obtained if we consider a 2D iterative regular folding process

CW in the TP limit(see Fig. 3. If we assume that the arsa for a wire of lengthL and width{ submitted to a shortening
enclosed by a loop of perimetérscales as~hd, we find  ratio of 3 in the Iengthxiz(%)'L_ and a widening in the
that  n(s)~n(h)(dh/ds)~h-Pstd-1_g-(B/d+@d)-1  transverse direction given by=2'7. This packing process
that is, finishes(i.e., a rigid structure is attaingdvheni—I, and
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x;=vy;, that is, forlo=In(L/{)/In 4. If this upper bound for sc_>|id. If p.<.0.14i 0.01, we can introduce v_vire in t'he cavity

| max IS introduced in the last equation faw/R,, we obtain ~ Without difficulty, but as long as the solid fractiqm ap-

L /Ro=11[ 1.3"tmaxdn 4_ 1] Numerical solution of this proaches the critical limit 0.240.01, the injection of wire in
egﬁgtion for .the parameter's used in our experimeght—the cavity becomes rapidly difficult and the process of injec-

—0.1 cMRo=10 CM—givesL ya neor=420 cm, which is tion is impractical for p>pn,=0.14+0.01; that is, the

in good agreement with the average experimental Valugrumpled structure becomes rigid.

(Limaxexp=438 cm. Moreover, we getma,<IN(Lmax theorf The authors acknowledge discussions with G. L. Vascon-

{)/In4=6.0, which means that the theoretic upper bounccelos and L. C. de Me. This work was supported in part by

used forl ,,, is Overestimated by about 13% relative to the Conselho Nacional de Desenvolvimento Ciéoti e Tecno-

average experimental valufl,may exp=5.2. logico, Financiadora de Estudos e Projetos, Fundo Setorial
The CW studied in this paper is a disordered 2D cellulardo Petréeo, and Programa de ‘Nigos de Excélecia (Bra-

structure composed of two different phases, namely air andilian Agencies.
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