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Scaling breakdown: A signature of aging
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We prove that the hey walk is characterized by bilinear scaling. This effect mirrors the existence of a form
of aging that does not require the adoption of nonstationary conditions.
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In the last few years Ly flights and walks have become this time series a diffusion process without age and with age,
a popular field of investigation for physicidt$,2]. They are  respectively. Both Bob and Jerry create first an infinite tra-
as widely applied in nonlinear, fractal, chaotic, and turbulenfectory for the diffusion variablg/(l), generated by the se-
systems as Brownian motion is in simpler systems. Theiquence{r;,s;}, according to a criterion of their own choice.
theoretical foundation rests on one hand on the generalizelote that for any sequende; ,s;} there exists only one tra-
central limit theorem(GCLT) [3], and on the other hand, on jectoryy(l). Then they consider the values that the trajectory
the renormalization groufRG) [4] . The RG serves the pur- y(t) gets at timed andL +t so as to create, for eadh a
pose of explaining the physical origin for fluctuations with trajectory defined byx=0 at t=0 and x(t)=y(T+t)
diverging second moment, and the GCLT proves that the-y(T) att>0, and thus an infinite number of trajectories
diffusion process generated by these fluctuations is charagrom the original single trajectory.
terized by probability distribution function®DP that are as Let us illustrate first the criterion adopted by Jerry to con-
stable as the Gaussian distributions generated by fluctuatiorgruct the trajectory(l). The timel of Jerry is discrete, and
with finite second moment. The GCLT refers to the caseit corresponds to the number of random drawings done to get
where the fluctuations are uncorrelated and the randonthe positiony(l). Formally
walker, at regular intervals of time, makes jumps of arbi-
trarily large intensity. If the distribution of these jumps !
lengths is already stable, the resulting diffusion process is y(|)=WE TiSi, (2
christened Ley flight [1,2]. This physical condition is =0

judged to be unrealistic, and for this reason in the last 17 . . N
years Ley diffusion has been studied under the form of with the parameteW>0 serving the purpose of arbitrarily

Lévy walk [5—7], where a certain time is needed to Completescaling jump intensities. Then, Jerry builds up the trajectories

each jump depending on its length, in this paper being pro)-((.t)’ each of them characte_rlzgd by the laheland deter'
portional to it. Later researd?2,8,9 has established that the mines the PDF at a generic timeAiter a fast ransient,
Levy walks are processes with memory. Here we plan toaccorfhng to the GCLT[3], the Fourier transform of this
prove a further interesting property’ wewalk is character- PDF, pi(k,t), becomes
ized by aging, reflected by the emergence of bilinear scaling, R
and aging is, quite surprisingly, compatible with the adoption pL(k,t)=exp —|k|*~bt), (3
of stationary conditions.

Let us consider a sequenée; ,s;}, with i=0,1,....  where
The numbersr; are random numbers with the distribution

density bEW“lT“ZCOS{;(,u—l) r3—uw), (4)
(u=TH? . . .
()= o (1)  with I'(-) denoting the well known Gamma function. Let us
(T+7) imagine that Jerry keeps secret the value®/andT. In this

case, it is not possible to establish at which tinderry
Note that we shall se>2 so as to ensure the mean time began his experiment, observing the PDF shape. In fact, this
(7) to exist and be finite: it is easy to prove thét) observation might lead us to determibgand this quantity
=T/(n—2). The numberss; have the values 1 anet1, depends on three unknowng/, T, andt. Furthermore, if
determined by the coin tossing rule. Let us imagine two arJerry adopted for(7) a stable form, Ley flight, even the
chetypal individuals, Jerry and Bob, in action to realize withfast transition process would be annihilated.
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Let us see how Bob builds up his single generating trait is remarkable that this correlation function has the same
jectory. For a generic timk let us consider the timlg, fitting asymptotic properties as the correction term to the condition
the property thaty= 7o+ 7+ 7y_1<|, while [+ 7y=1. In  of constant rate of entropy increase established by(&q.

this condition, Bob’s generating trajectory is given by We expecip(x,t) to become a Ley stable distribution for
t—oo, according to the GCLT prediction of E¢B), as fully
y(H)=W[ 79S¢+ 71S1+ - - + 7ny_1Sn— 1+ (I =Tn)sn], confirmed by numerical simulatiofsee, for instance, Ref.

(5  [15]). However, this transition process is infinitely slow. In
fact, we note that at any timea finite nhumber of Bob’s

with W playing here the role of velocity intensity. Let us call trajectoriesx(t) are still in the same laminar region where
ith eventthe random selection of the pdir; ,s;}. The walker  they were at=0. These trajectories are moving by uniform
starts moving immediately after the occurrence of the firsinotion with velocityW and —W, thus establishing peaks of
event and spends the whole timgin a condition of uniform  decreasing intensity and an abrupt truncation of the PDF, at
motion, laminar phasd5], before the occurrence of the sec- its right and left border, respectively. To evaluate this num-
ond event, at which time the motion direction can also beper, or the probability that a trajectory contributes to the
inverted, and so on. In this case, the adoption of inﬁnitelypropagation frontlp(t), we must refer ourselves to the prob_
many trajectoriex(t) corresponds to creating a stationary apility distribution i,4(7). This is the alternating signs dis-
condition, with the walkers staying in the first laminar phaseripution, or distribution of times through which the trajec-
with a time distribution corresponding to equilibriuit0].  tory keeps moving in the positive or negative direction, a
Before illustrating the crucial result of this paper, based oryjstribution not coinciding withy(7), due to the random
the Stationary Condition, let us discuss brleﬂy the nonStationchoice of Sign_ The two distributions are related to one an-
ary cas€g11] when Bob has really at his disposal infinitely other through their Laplace transfornis,(s) and i(s), re-
many sequencelsr ,s;}, and consequently many trajectories spectively, by means dfL1] S '
y(l). This would be equivalent to an out-of-equilibrium con- '
dition, which would relax to the equilibrium condition with a -
relaxation prescriptiorc1/1#~* [12]. How many events will Pas(S) = l/’(AS) . (8)
have been realized by Bob for any of his walker up to tife 2—(s)
For I>(r), the number of eventd), is expected to beN
=1/{7). Actually, we can set all this on a rigorous basis Using the renewal theorjs] we prove that

using a theorem by Felldd 3]. At any instant of timd the
N—1

number of random walkers for whict®;Z; 7=<I and 1 (= e
=N, 7>1, is not fixed, and its mean valug@\), is given by Ip(t)= (sl (1" =) hpg(t)dt’. 9
| LS| These trajectories keep moving by ballistic motion and thus
(N)= m 1+ (3—p) |»2| 6) contribute to the propagation fronts signaled in the numerical

treatment by two ballistic peaks. It becomes thus evident that

Note that each event implies a fixed amount of entropy in& Very plausible form for the PDF is given by

crease, due to the random prescriptions adopted to realize an
event. Thus, Eq6) shows that the rate of entropy increase is
not constant. It is constant either in the exponential case
(ordinary statistical mechanics, withu=2) or in the
asymptotic time limit, namely, in the scaling regime compat-
ible with the perspective of thermodynamic equilibrium. One
might be tempted to consider E@) to reflect a nonstation-
ary condition that in the case<3 would live forever.

It is not so. First of all, the relaxation to equilibrium is
faster than the memory effect,14/'* vs 14#~2. A careful

P(X,1) = K(1)pL(X,1) B(Wt— [x]) + 2 (||~ WD p(t)a(lo

whered(-) denotes the Heaviside step functign(x,t) is a
distribution that fort—o becomes identical to the anti-
Fourier transform of Eq(3), andK(t) is a time-dependent
factor ensuring the normalization of the distributip(x,t),
thereby taking the form

study of the stationary condition confirms this remark. The K(t)= 1150 _ (11)
Levy walk realized by Bob can be described as the solution 1_2f*°° (x,0)dx
of the differential equation x/dt= &(t), whereé(t) is a sto- Wt PL(X,

chastic velocity keeping the valu&/(—W) for a time 7;,
with or without a change of sign at the end of this sojournysing the method of Laplace transform, it is straigthforward
time, as a result of the coin tossing. In the stationary case thg prove that lim K(t)=1 and that

correlation function(&(t;)£(t,))/(£%) depends ont=|t, i
—1t,|, and it is denoted byb.(t). Using the renewal theory

[5,14], B (t) is related toy(7) by Im[1p(t) =P (1)]=0. (12

I
t—

-2
T )M @ On the basis of these arguments we reach the conclusion that
T+t in the asymptotic time limit Eq(10) becomes identical to

1 e ! ’ !
<D§(t)=mft (t'=t)y(t")dt’' =
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P(X,1) = pL(X,1) B(WE— [x]) + 2 (|| ~WD D ().
13

This equation coincides with an earlier, less rigorous, predic-
tion [14], and allows us to prove that it is possible to deter-
mine the age of Ley walk. We can determine the age of the
diffusion experiment created by Bob, even if Bob adopts the
stationary conditiort5,11] and keeps secret the values\Wf

and T. To do so, we measure the distance of one ballistic
peak from the other, the diffusion coefficiemof p, (x,t) of

Eq. (4) and the intensity of the two ballistic peaks. All these
three quantities can be expressed in terms of the unknown
guantitiest, W, andT. The distance between the two peaks is
2Wt, the diffusion coefficient is given by b
=W(TW)* 2sin[m(u—2)/2]T" (3— 1) [15], and the peak in-
tensity by® .(t).

What about the scaling of Bob’s diffusion in the time
asymptotic limit? The current techniques of analysis, of
which the detrended fluctuation analysis is a popular ex-
ample(see Ref[16] for an updatg are inadequate to answer
this question. In fact, these techniques aim at evaluating sca?—
ing through the second moment of PDF: a correct procedur
in the Gaussian case that becomes questionable in the no
Gaussian case here under study. Here we prove the em
gence of the Ley scaling as a form of dominating scaling by
using the technique of diffusion entrogfpE) [17,18. Ac-
cording to Barkai19] and an earlier work20], in the time
asymptotic limit Bob’s diffusion should yield

X
t_§ 1

with §=1/(u— 1) (Lévy scaling. The DE is nothing but the
Shannon entropy of this PDF, defined by

14

B 1

S(t)=—J:+:dxp(x,t)ln p(x,t). (15
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FIG. 1. Diffusion entropy as a function of tinteDots, humeri-
cal evaluation ofS(t) for Bob’s experiment withu=2.5, T~1.0.
Bob’s walkers are derived from a single trajectory of total length
25918 673 time unitgsee the text for detailsThe solid line is a
best fit to the numerical results, in the asymptotic regime, by means
of the theoretical predictior5(t)=2/3 In{t)+const, with §=2/3
temming from the [ey scaling.

he power index, plays a critical role. If the condition of
g. (14) applied, with the functior=(-) having all moments
inite, &, as a function ofj would be a straight line. Accord-
ing to the theory of Refg23,24], this would be an indication
of monofractality. In the case under discussion, all PDF mo-
ments are finite, thereby making the monofractal condition
possible. Using Eq(13) it is straigthforward to predict that

(18

(19

for g>pu—1. This is so because fay<u—1 the Levy dis-

tribution, even with no truncation, would produce a finite

By plugging Eq.(14) into Eg. (15) we get immediately

fractional moment. The prediction fay>x—1 is dictated

by the peak intensity of Eq(13). With the same kind of

S(t)=A+6Int. (16)
Thus, the representation of the numerical results in a loga-
rithmic time scale is a very simple way to detect scaling. In
Fig. 1 we see that, in full accordance with the arguments of
Refs.[20,19, in the long-time limit Bob’s diffusion fits the
Lévy scaling condition.

As pointed out by Barkdi19], the work of other authors
[21,22, who discovered the biscaling nature of théevie
walk, seems to cast doubt on this conclusion, which has been
judged by him to be an attractive foundation of the fractional
derivative method. To address this issue, In accordance with
the methods used to deal with multifractalig3,24], we
study theoretically and numerically the fractional moment
(|x|%), which is expected to yield

(Ix[%)= Jj:p(x,t)|x|qu~t§q. (17)
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FIG. 2. Multifractal index¢, as a function ofy. Dots, numerical
evaluation of¢, for Bob’s experiment using the same data as those
of Fig. 1. Dashed line§,= &q, with §=2/3 predicted by the hey
scaling; dotted line¢,=q— B, with B=u—2=0.5.
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calculation it is possible to derive the same result or 3 In the literature of aging, some authotsege, for instance,
when the central part of the PDF would be a truncatedRef.[25]), make the theoretical proposal of assessing aging
Gaussian distribution. through the adoption of two-time correlation functions, aging

These theoretical predictions are very satisfactorily supimplying a dependence on both times, rather than only on
ported by the numerical results, as proved by Fig. 2. Theheir difference. The adoption of this view here would pre-
satisfactory agreement between theoretical prediction angent us from distinguishing the dichotomous case, yielding
numerical experiment yields support to EG3), and to the | ayy statistics, from the case wheg¢t) is a Gaussian noise,
aging perspective stemming from this key formula as well. Ifyyith the same correlation function. In this case, it is trivial to
we compare the theoretical predictions of EQS) and(19)  prove that scaling is linear, rather than bilinear. The correla-
to the calculation done by the authors of Rt in the case o function to use properly i@ (t), reflecting the station-
of Levy flight (Jerry's random walkejswe find agreement  ry congition of Bob’s experiment. In conclusion, we show
for g<u—1 and disagreement far> . —1, where we find 3t the intermittent nature of the process under study yields
a finite value while they findt: aging postpones t0 an 4ging, and our theory makes it possible to determine age, in

infinitely large time the exact equivalence ofuyewalk with spite of the stationary condition.
Lévy flight. Note that the key formula of E¢13) allows us

to generalize the prediction of the work of Ref&1,22, Financial support from ARO, through Grant No.
which would be confined to integer values @f DAAD19-02-0037 is gratefully akcnowledged.
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