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Scaling breakdown: A signature of aging
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We prove that the Le´vy walk is characterized by bilinear scaling. This effect mirrors the existence of a form
of aging that does not require the adoption of nonstationary conditions.
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In the last few years Le´vy flights and walks have becom
a popular field of investigation for physicists@1,2#. They are
as widely applied in nonlinear, fractal, chaotic, and turbul
systems as Brownian motion is in simpler systems. Th
theoretical foundation rests on one hand on the general
central limit theorem~GCLT! @3#, and on the other hand, o
the renormalization group~RG! @4# . The RG serves the pur
pose of explaining the physical origin for fluctuations wi
diverging second moment, and the GCLT proves that
diffusion process generated by these fluctuations is cha
terized by probability distribution functions~PDF! that are as
stable as the Gaussian distributions generated by fluctua
with finite second moment. The GCLT refers to the ca
where the fluctuations are uncorrelated and the rand
walker, at regular intervals of time, makes jumps of ar
trarily large intensity. If the distribution of these jump
lengths is already stable, the resulting diffusion proces
christened Le´vy flight @1,2#. This physical condition is
judged to be unrealistic, and for this reason in the last
years Lévy diffusion has been studied under the form
Lévy walk @5–7#, where a certain time is needed to comple
each jump depending on its length, in this paper being p
portional to it. Later research@2,8,9# has established that th
Lévy walks are processes with memory. Here we plan
prove a further interesting property: Le´vy walk is character-
ized by aging, reflected by the emergence of bilinear scal
and aging is, quite surprisingly, compatible with the adopt
of stationary conditions.

Let us consider a sequence$t i ,si%, with i 50,1, . . . ,̀ .
The numberst i are random numbers with the distributio
density

c~t!5
~m21!Tm21

~T1t!m
. ~1!

Note that we shall setm.2 so as to ensure the mean tim
^t& to exist and be finite: it is easy to prove that^t&
5T/(m22). The numberssi have the values 1 and21,
determined by the coin tossing rule. Let us imagine two
chetypal individuals, Jerry and Bob, in action to realize w
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this time series a diffusion process without age and with a
respectively. Both Bob and Jerry create first an infinite t
jectory for the diffusion variabley( l ), generated by the se
quence$t i ,si%, according to a criterion of their own choice
Note that for any sequence$t i ,si% there exists only one tra
jectoryy( l ). Then they consider the values that the trajecto
y(t) gets at timesL andL1t so as to create, for eachL, a
trajectory defined byx50 at t50 and x(t)5y(T1t)
2y(T) at t.0, and thus an infinite number of trajectorie
from the original single trajectory.

Let us illustrate first the criterion adopted by Jerry to co
struct the trajectoryy( l ). The timel of Jerry is discrete, and
it corresponds to the number of random drawings done to
the positiony( l ). Formally

y~ l !5W(
i 50

l

t isi , ~2!

with the parameterW.0 serving the purpose of arbitraril
scaling jump intensities. Then, Jerry builds up the trajecto
x(t), each of them characterized by the labelL, and deter-
mines the PDF at a generic timet. After a fast transient,
according to the GCLT@3#, the Fourier transform of this
PDF, p̂L(k,t), becomes

p̂L~k,t !5exp~2ukum21bt!, ~3!

where

b[Wm21Tm22cosFp2 ~m21!GG~32m!, ~4!

with G(•) denoting the well known Gamma function. Let u
imagine that Jerry keeps secret the values ofW andT. In this
case, it is not possible to establish at which timet Jerry
began his experiment, observing the PDF shape. In fact,
observation might lead us to determineb, and this quantity
depends on three unknowns,W, T, and t. Furthermore, if
Jerry adopted forc(t) a stable form, Le´vy flight, even the
fast transition process would be annihilated.
©2002 The American Physical Society01-1
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Let us see how Bob builds up his single generating
jectory. For a generic timel, let us consider the timel N fitting
the property thatl N[t01t11tN21, l , while l N1tN> l . In
this condition, Bob’s generating trajectory is given by

y~ l !5W@t0s01t1s11•••1tN21sN211~ l 2 l N!sN#,
~5!

with W playing here the role of velocity intensity. Let us ca
i th eventthe random selection of the pair$t i ,si%. The walker
starts moving immediately after the occurrence of the fi
event and spends the whole timet0 in a condition of uniform
motion, laminar phase@5#, before the occurrence of the se
ond event, at which time the motion direction can also
inverted, and so on. In this case, the adoption of infinit
many trajectoriesx(t) corresponds to creating a stationa
condition, with the walkers staying in the first laminar pha
with a time distribution corresponding to equilibrium@10#.
Before illustrating the crucial result of this paper, based
the stationary condition, let us discuss briefly the nonstati
ary case@11# when Bob has really at his disposal infinite
many sequences$t i ,si%, and consequently many trajectorie
y( l ). This would be equivalent to an out-of-equilibrium co
dition, which would relax to the equilibrium condition with
relaxation prescription}1/l m21 @12#. How many events will
have been realized by Bob for any of his walker up to timel?
For l @^t&, the number of events,N, is expected to beN
5 l /^t&. Actually, we can set all this on a rigorous bas
using a theorem by Feller@13#. At any instant of timel the
number of random walkers for which( i 51

N21t i< l and
( i 51

N t i. l , is not fixed, and its mean value,^N&, is given by

^N&5
l

^t& F11
Tm22

~32m!

1

l m22G . ~6!

Note that each event implies a fixed amount of entropy
crease, due to the random prescriptions adopted to realiz
event. Thus, Eq.~6! shows that the rate of entropy increase
not constant. It is constant either in the exponential c
~ordinary statistical mechanics, withm5`) or in the
asymptotic time limit, namely, in the scaling regime comp
ible with the perspective of thermodynamic equilibrium. O
might be tempted to consider Eq.~6! to reflect a nonstation
ary condition that in the casem,3 would live forever.

It is not so. First of all, the relaxation to equilibrium
faster than the memory effect, 1/l m21 vs 1/l m22. A careful
study of the stationary condition confirms this remark. T
Lévy walk realized by Bob can be described as the solut
of the differential equationdx/dt5j(t), wherej(t) is a sto-
chastic velocity keeping the valueW(2W) for a time t i ,
with or without a change of sign at the end of this sojou
time, as a result of the coin tossing. In the stationary case
correlation function ^j(t1)j(t2)&/^j2& depends ont5ut1
2t2u, and it is denoted byFj(t). Using the renewal theory
@5,14#, Fj(t) is related toc(t) by

Fj~ t !5
1

^t&Et

1`

~ t82t !c~ t8!dt85S T

T1t D
m22

. ~7!
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It is remarkable that this correlation function has the sa
asymptotic properties as the correction term to the condi
of constant rate of entropy increase established by Eq.~6!.

We expectp(x,t) to become a Le´vy stable distribution for
t→`, according to the GCLT prediction of Eq.~3!, as fully
confirmed by numerical simulation~see, for instance, Ref
@15#!. However, this transition process is infinitely slow.
fact, we note that at any timet a finite number of Bob’s
trajectoriesx(t) are still in the same laminar region whe
they were att50. These trajectories are moving by unifor
motion with velocityW and2W, thus establishing peaks o
decreasing intensity and an abrupt truncation of the PDF
its right and left border, respectively. To evaluate this nu
ber, or the probability that a trajectory contributes to t
propagation front,I p(t), we must refer ourselves to the prob
ability distribution cas(t). This is the alternating signs dis
tribution, or distribution of times through which the traje
tory keeps moving in the positive or negative direction,
distribution not coinciding withc(t), due to the random
choice of sign. The two distributions are related to one
other through their Laplace transforms,ĉas(s) andĉ(s), re-
spectively, by means of@11#

ĉas~s!5
ĉ~s!

22ĉ~s!
. ~8!

Using the renewal theory@5# we prove that

I p~ t !5
1

^t&as
E

t

1`

~ t82t !cas~ t8!dt8. ~9!

These trajectories keep moving by ballistic motion and th
contribute to the propagation fronts signaled in the numer
treatment by two ballistic peaks. It becomes thus evident
a very plausible form for the PDF is given by

p~x,t !5K~ t !pL~x,t !u~Wt2uxu!1 1
2 d~ uxu2Wt!I p~ t !,

~10!

whereu(•) denotes the Heaviside step function.pL(x,t) is a
distribution that for t→` becomes identical to the ant
Fourier transform of Eq.~3!, andK(t) is a time-dependen
factor ensuring the normalization of the distributionp(x,t),
thereby taking the form

K~ t !5
12I p~ t !

122E
Wt

1`

pL~x,t !dx

. ~11!

Using the method of Laplace transform, it is straigthforwa
to prove that lim

t→`
K(t)51 and that

lim
t→`

@ I p~ t !2Fj~ t !#50. ~12!

On the basis of these arguments we reach the conclusion
in the asymptotic time limit Eq.~10! becomes identical to
1-2
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p~x,t !5pL~x,t !u~Wt2uxu!1 1
2 d~ uxu2Wt!Fj~ t !.

~13!

This equation coincides with an earlier, less rigorous, pre
tion @14#, and allows us to prove that it is possible to det
mine the age of Le´vy walk. We can determine the age of th
diffusion experiment created by Bob, even if Bob adopts
stationary condition@5,11# and keeps secret the values ofW
and T. To do so, we measure the distance of one balli
peak from the other, the diffusion coefficientb of pL(x,t) of
Eq. ~4! and the intensity of the two ballistic peaks. All the
three quantities can be expressed in terms of the unkn
quantitiest, W, andT. The distance between the two peaks
2Wt, the diffusion coefficient is given by b
5W(TW)m22sin@p(m22)/2#G(32m) @15#, and the peak in-
tensity byFj(t).

What about the scaling of Bob’s diffusion in the tim
asymptotic limit? The current techniques of analysis,
which the detrended fluctuation analysis is a popular
ample~see Ref.@16# for an update!, are inadequate to answe
this question. In fact, these techniques aim at evaluating s
ing through the second moment of PDF: a correct proced
in the Gaussian case that becomes questionable in the
Gaussian case here under study. Here we prove the e
gence of the Le´vy scaling as a form of dominating scaling b
using the technique of diffusion entropy~DE! @17,18#. Ac-
cording to Barkai@19# and an earlier work@20#, in the time
asymptotic limit Bob’s diffusion should yield

p~x,t !5
1

td
FS x

tdD , ~14!

with d51/(m21) ~Lévy scaling!. The DE is nothing but the
Shannon entropy of this PDF, defined by

S~ t !52E
2`

1`

dxp~x,t !ln p~x,t !. ~15!

By plugging Eq.~14! into Eq. ~15! we get immediately

S~ t !5A1d ln t. ~16!

Thus, the representation of the numerical results in a lo
rithmic time scale is a very simple way to detect scaling.
Fig. 1 we see that, in full accordance with the arguments
Refs. @20,19#, in the long-time limit Bob’s diffusion fits the
Lévy scaling condition.

As pointed out by Barkai@19#, the work of other authors
@21,22#, who discovered the biscaling nature of the Le´vy
walk, seems to cast doubt on this conclusion, which has b
judged by him to be an attractive foundation of the fractio
derivative method. To address this issue, In accordance
the methods used to deal with multifractality@23,24#, we
study theoretically and numerically the fractional mome
^uxuq&, which is expected to yield

^uxuq&5E
2`

1`

p~x,t !uxuqdx'tjq. ~17!
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The power indexjq plays a critical role. If the condition of
Eq. ~14! applied, with the functionF(•) having all moments
finite, jq as a function ofq would be a straight line. Accord
ing to the theory of Refs.@23,24#, this would be an indication
of monofractality. In the case under discussion, all PDF m
ments are finite, thereby making the monofractal condit
possible. Using Eq.~13! it is straigthforward to predict that

jq5dq ~18!

for q,m21, and

jq5q2m12 ~19!

for q.m21. This is so because forq,m21 the Lévy dis-
tribution, even with no truncation, would produce a fini
fractional moment. The prediction forq.m21 is dictated
by the peak intensity of Eq.~13!. With the same kind of

FIG. 2. Multifractal indexjq as a function ofq. Dots, numerical
evaluation ofjq for Bob’s experiment using the same data as tho
of Fig. 1. Dashed line,jq5dq, with d52/3 predicted by the Le´vy
scaling; dotted line,jq5q2b, with b[m2250.5.

FIG. 1. Diffusion entropy as a function of timet. Dots, numeri-
cal evaluation ofS(t) for Bob’s experiment withm52.5, T'1.0.
Bob’s walkers are derived from a single trajectory of total leng
25 918 673 time units~see the text for details!. The solid line is a
best fit to the numerical results, in the asymptotic regime, by me
of the theoretical predictionS(t)52/3 ln(t)1const, with d52/3
stemming from the Le´vy scaling.
1-3
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calculation it is possible to derive the same result form.3
when the central part of the PDF would be a trunca
Gaussian distribution.

These theoretical predictions are very satisfactorily s
ported by the numerical results, as proved by Fig. 2. T
satisfactory agreement between theoretical prediction
numerical experiment yields support to Eq.~13!, and to the
aging perspective stemming from this key formula as well
we compare the theoretical predictions of Eqs.~18! and~19!
to the calculation done by the authors of Ref.@2# in the case
of Lévy flight ~Jerry’s random walkers!, we find agreemen
for q,m21 and disagreement forq.m21, where we find
a finite value while they find1`: aging postpones to a
infinitely large time the exact equivalence of Le´vy walk with
Lévy flight. Note that the key formula of Eq.~13! allows us
to generalize the prediction of the work of Refs.@21,22#,
which would be confined to integer values ofq.
a

ys

or
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In the literature of aging, some authors,~see, for instance
Ref. @25#!, make the theoretical proposal of assessing ag
through the adoption of two-time correlation functions, agi
implying a dependence on both times, rather than only
their difference. The adoption of this view here would pr
vent us from distinguishing the dichotomous case, yield
Lévy statistics, from the case wherej(t) is a Gaussian noise
with the same correlation function. In this case, it is trivial
prove that scaling is linear, rather than bilinear. The corre
tion function to use properly isFj(t), reflecting the station-
ary condition of Bob’s experiment. In conclusion, we sho
that the intermittent nature of the process under study yie
aging, and our theory makes it possible to determine age
spite of the stationary condition.
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