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Dynamics and configurational fluctuations of single DNA molecules in linear mixed flows
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We examine the dynamics of DNA molecules in mixed flows where the ratio of vorticity to strain rate may
be slightly above or below unity via Brownian dynamics simulation. We find that the chain dynamics in these
flows are dramatically different than those found for simple shear flow. When the strain rate exceeds vorticity,
the dynamics are found to be driven by the extra amount of straining. For vorticity-dominated flows, a
periodicity in chain extension is observed with considerable chain deformation.
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Over the past few decades many fascinating nonfine-grained nonlinear model that we use is the Kramers’
Newtonian properties of polymer solutions in flow have beerbead-rod chain where each rod corresponds to one Kuhn
extensively investigated both experimentally and theoretilength of ax-DNA molecule. A 150 bead Kramers’ chain
cally [1-3]. Much effort has been made to understand thenatching the same number of Kuhn lengths ok @NA
dynamics of polymers in rather simple and ideal flow fieldsmolecule has previously been shown to capture the experi-
due to the complexity that arises from the coupling of themental observations of-DNA molecules in shear floy3].
flow and the polymer dynamicgt—10. Two of the most A more coarse-grained nonlinear model is the wormlike
often and widely examined ‘ideal’ flow types are purely ex- bead-spring model where a number of Kuhn lengths are re-
tensional flow and simple shear flow. Simple shear flow is @laced by a spring for simplicity and individual springs sat-
limiting case of planar flows where the magnitude of theisfy the wormlike chain laW18]. Three classical linear mod-
vorticity exactly equals that of the strain rate. Due to vortic-€ls that we use for theoretical analysis in elliptic flows are
ity, a polymer molecule cannot maintain a stable steady conthe single-mode Hookean dumb-bell model, the multi-mode

figuration even at high flow strength and undergoes tumblingRouse model and the multi-mode Zimm model. The former
dynamics in shear floyl1-14. Purely extensional flow, on two models are freely draining whereas the latter includes
ating large chain deformation. While there exists a large vol-
ume of work investigating the dynamics in these flows, rela- =z 2kgT
= dt+ [ dwy. 1)
deviate from these two limiting flows, such as linear mixed
flows [9]. Moreover, in real industrial applications and pro- In Eq. (1), r” is the position vector of bead, ¢ is the drag
plex flow field, are omnipresent and thus a clear understanoc-o_eff'c'ent and the Brogvman_ foer‘Wl.i ’('js a_ssur_ned tg beha
ing of the polymer dynamics in more general flows is Wiener proces421] where its amplitude is given by the
single polymer molecules in flows that deviate slightly from °City gradient tensor is given by
simple shear flow and to use the findings to broaden our
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the other hand, is vorticity free and thus is effective in cre-preaveraged hydrodynamic interactida$,20,

tively little is known about the dynamics in flows that dri=

cesses, mixed flows, as a local approximation to a more com-

needed. Our goal of this work is to examine the dynamics 0fluctuation—dissipation theorefi22]. The dimensionless ve-

understanding of the response of polymers in linear mixed > 0 10
flows. Note that de Gennd45], among others, has desig- ' —pela 0 0f. 2)
nated simple shear flow as a critical flow for polymer con- IX; 00 0

figuration dynamics—representing the limiting amount of
vorticity necessary to forestall a “coil-to-stretch” .
transition—and thus examining dynamics near this criticalln Eq. (2), @ is the flow type parameter arRle=(y12)/D is
point is also interesting from a fundamental point of view. a dimensionless strain raf@3]. Note thata is unity for

In this work, we have used-DNA molecules as our purely extensional flow, O for shear flow an€l for pure
model polymer whose dynamics in the aforementioned limfotational flow. The parameter range of our interest is
iting flow types, i.e., purely extensional and shear flow have—0.01<a<0.02 which is slightly above ™) and below
recently been thoroughly investigated11,13,16,17. (a~) shear flow. A more appropriate dimensionless flow
Throughout this paper, we will make a direct and detailedstrength parameter that we use in our analysis is the Weis-
comparison to the previous findings as well as to recensenberg number defined W= Pe- r wherer is the dimen-
complementary experiments. sionless longest relaxation time of the moledd]. Lastly,

In our Brownian dynamics simulation we solve the sto-the connector forc€&,”° is needed to maintain the inextensi-
chastic differential equation in Eq1) for individual chain  bility of the Kramers’ chain, and, in the other appropriate
trajectories using two different molecular models. The mostontext represents the entropic force of the bead-spring mod-
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008 00 600 e 3000 000 12000 FIG. 2. A schematic ot flows. The polymer chain is aligned
along the principal axis and the angle between the extension and
102 | o ooO (C) compression axes is denoted @sAs indicated by the dashed ar-
rows, Brownian motion can displace the molecule toward the com-
10* - K pressional axis causing the collapse of extension.
10" | o . R
SRR ] The power spectrurfPSD) of the chain extension in Fig.
10 1(c) shows the growth in power and the development of a
% midrange frequency “collapsing” or “flipping” regime as
& 1024 a*—0. This regime has already been reported in simple
103 - shear flow[31,13. These large fluctuations have also been
witnessed in recent experimen{82]. For the elliptic
10+ 1 vorticity-dominated flow &= —0.006 or 49.7%) as shown
I A eresingy s perodciy i molecus exen
0 50.2%E(0=0.004), Wi=79 . s
10 over a long period of time we have calculated the steady

average molecular extension. As shown in Figa)3the
steady molecular extension of a Kramers’ chain undergoes a
coil-stretch transition in flows that have positiwevalues, or
FIG. 1. A plot of sample trajectories of a single Kramers’ chain equivalently flows that have more straining than vorticity,
in two diffrent flow types(a) «=0.004 and(b) «=0.001 atWi however, the transition is not as sharp as the purely exten-
=79. By molecular extension we mean the maximum projectedsional flow (@=1, or 100%E) case.
extension in the flow-gradieril-2) plane and we normalize it by its For the elliptic vorticity-dominated flow, the chain has
contour length(c) The power spectruniPSD of the chain exten-  deformed considerably compared to its equilibrium size con-
sion shown in(a) and(b) versus the dimensionless frequeney » trary to previous predictions by deGenngks]. For the
is the frequency scaled with the longest relaxation timef the purely rotational flow(0%), aspredicted, the chain remains
polymer. in its unperturbed coiled state. The positive eigenvalues of
the velocity tensofEg. (2)] correspond to the amount of

els. The details of the simulation technique as well as dimen-

10! 10° 10! 102 10°

(0]

sional scalings are discussed in more detail elsewhere e o 2 Sl I—

[13,25=27. | bo 8 (b) 2 M
In Figs. 1a) and Xb), we show the fractional molecular 0.8 1 AR A S0sEEED

extension of a 150 bead Kramers’ chain versus time at steady % S0.29%E Exp

state for Wi=79 for two different flow types, i.e.« 061 G4 10y

=0.004 and 0.00Xcorresponding to 50.2% and 50.05% 5 08 e

respectively. %E is related toa as ¥E=50(a+ 1) [28]. D) idl g 06 oA

One can clearly see the growth of fluctuations in molecular % i f il

extension asy* approaches the shear limit of zero. Note in 0zl 5 —o— 0%E

this context, that concentration fluctuations near phase tran- 0-2 ) o

sitions have been studied in some defad,30. The physics ? 0 sy 7

of these similar fluctuations near a coil-to-stretch transition is L o 2 4 6 5 1 1

clear. Brownian fluctuations drive the chain increasingly be-
tween the compressional and extensional eigenvectors of the
mixed flow. The more frequent collapse of chain extensionin  FiG. 3. (a) A plot of the steady average fractional extension of
flows is due to the fact the chain is more prone to “collaps-150 bead Kramer’s chains versWé at different %€ values.(b) A

ing” or “flipping” between the two principal axes because plot of the steady average fractional extension of 150 bead Kram-
the angle between the extension and compression axes gei% chains versug/i®''=Wi/a at positivea™ values compared to
smaller asa™ approaches zersee Fig.(2)]. the experimental data by Babcoekal. [32].

wi
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10°¢ FIG. 5. The ensemble averaged molecular extension of the
104} Kramers’ chain in the start up ofa=0.02(51%), «

=0.004(50.2%), and «=0.001(50.05%) flows versus strain
1051 5 Simulation (WLC 15modes) (Pe-t) at Wi¢''=10. (b) The ensemble averaged molecular exten-
106] o o e tanbbell ] sion of the Kramers’ chain in the start up of elliptic floje=
O  Experiment —0.01(49.5%) ] versus strain atVi=76.
107 - : :
101 10° 10! 102 10°

® In Eqg. (3), R; denotes the end-to-end vector in the flow di-
_ _ rection, Ry is the radius of gyration" is the Hookean re-
FIG. 4. (a) A plot of sample trajectory of a single Kramers’ |5xation time, and) denotes the frequency made dimension-
chain a=—0.006 atWi=74 (b) The dimensionless power spec- |ags with 7, We have confirmed from simulation data that
trum (PSD of the extension fluctuationsy= —0.006, 49.7%Eat o qmb-bell model correctly captures the longest mode of
Wi=74 for the Kramers' chain, the wormlike chain and the the Kramers’ chain in elliptic flows. The critical dimension-

Hookean dumbbell model plotted against the experimental data bi’, . . .

. . ess frequency at which the chain end-to-end vector in the
Babcocket al.[32]. The frequency is scaled with the longest relax- flow direction oscillates can be calculated from E8)
ation time of the polymer irtb) as in Fig. 1c). ?

straining or stretch along the principal axes and one can res- 2 , . 12
cale the flow strength parametewi, namely, Wi¢'f QSR )= [-1-AWIT+AWiV(a—1)"Wi"— o]
=Wiya. In Fig. Ib) the steady average molecular extension ! 4 '

at variousWi®'" is shown with experimental data by Bab- (4)

cock et al. [32] and all data overlap onto a universal curve
[33]. The fact that the chains undergo a sharp coil-stretch .
transition based ohVi®'f suggests tha?the steaoFI)y dynamicsWe note _that _Eq. ) (4) holds only for W!
of molecules are driven by the effective straining for ﬂows%\/llz[_(l/za)_lz| if o is small. For smaller values o¥i
with positive a values. To characterize the frequency depen!i-€, near purely Brownian systeinso peak exists in the
dence of the fluctuations of chain extension observed in th€SD. Using the parameter=—0.006 andWi=74 in Fig.
elliptic flow [Fig. (4(a),a= —0.006(49.7%)], we show the (4), we obtain Q°"'(R;)=0.909 which is half of the ob-
PSD for the Kramers' chain, the wormlike chain, the served frequency. The factor of two difference is due to the
Hookean dumb-bell model and the experimental data byact that R; can take both positive and negative values
Babcock et al. [32] in a=—0.006(49.7%) flow at Wi whereas molecular extension is always positive. We ap-
=74 in Fig. 4b). A distinct peak is observed in the PSD at a proach the affine limit, i.eQ°"(R,) asymptotes to the orbit
dimensionless frequency)) of 1.8. frequency of a fluid particle, Wiy — a)/27 asWi—o. We

To examine the origin of the peak we have derived thehave extended the PSD derivation to the multimode Rouse
analytic PSD{S({2) ] of molecular extension in the flow di- and the Zimm model and found no quantitative difference in
rection in linear mixed flows using the Hookean dumb-bell()cit [34]. Note that resonant oscillations in elliptic vortices

model, which was shown to capture the underlying physickave been given as the mechanism for elastic instabilities in
of the tumbling dynamics of DNA molecules in shear flow previous work[35].

[13]. The derivation is valid fow=<0 since the linear dumb- Finally, we have examined the transient dynamics of DNA
bell model is only a valid approximation for small deforma- molecules to test if the dynamics were similar in character in
tion, the startup of these flows. In Figh) we show the evolution
16 L 40P AW of molecular extension in flows with positive™ at wieff
S(Q;R1)2<R2>TH_ _ =10 as we suddenly impose the flow. The molecular exten-
9 3[1-40%-4Wi%a]?+ 1602 sion gradually approaches its steady value for all flows but

€©)] slower growth is observed for smallei*. In comparison to
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this finding, an overshoot in molecular extension was ob- In this work, we have demonstrated that the dynamics of
served in the start up of shear flow in both experiment anch-DNA molecules can change dramatically depending on the
simulation[12,14]. This result again confirms the fact the ratio of vorticity and straining in linear mixed flows by ex-
dynamics of polymers in positiver™ flows is primarily  amining individual polymer molecules in flows that deviate

driven by the extra amount of straining. For the elliptic sjightly from shear flow using Brownian dynamics simula-
flows, we see an oscillation in chain extension which decaygon.

exponentially as shown in Fig.(5. The frequency of the
oscillation is found to scale a#&/iy—« and its amplitude
decays as the longest relaxation tim9.(
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