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Multivariate Markov processes for stochastic systems with delays: Application to the stochastic
Gompertz model with delay
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Using the method of steps, we describe stochastic processes with delays in terms of Markov diffusion
processes. Thus, multivariate Langevin equations and Fokker-Planck equations are derived for stochastic delay
differential equations. Natural, periodic, and reflective boundary conditions are discussed. Both Ito and Stra-
tonovich calculus are used. In particular, our Fokker-Planck approach recovers the generalized delay Fokker-
Planck equation proposed by Guillouzit al. The results obtained are applied to a model for population
growth: the Gompertz model with delay and multiplicative white noise.
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[. INTRODUCTION the interplay between randomness and delays in open com-
plex systems such as biological systems. Despite the benefits
The study of open complex systems has become an imef the work by Guillouizicet al, their approach is still in-
portant aspect of biological physics. In particular, many re<complete. Their generalized Fokker-Planck equation does not
searches have focused on low-dimensional descriptions gfrovide a closed description of the problem at hand but in-
biological systems. These low-dimensional descriptions ofvolves a joint probability density whose evolution equation
ten involve delays and fluctuation forces. Delays typicallyis not known. Furthermore, the work by Guillouizét al.
arise from the propagation times of forces and the transmisnvolves reflective boundary condition. Although most prob-
sion times of information within spatially extended complex ably their approach can be generalized to other boundary
systems. Fluctuation forces often account for unspecific fluceonditions, this has not yet been done.
tuations of structural elementhermal motion and fluctua- In the present study a closed description of stochastic pro-
tions of task-specific energy and information sourfes3].  cesses with delays in terms of multivariate Markov diffusion
The former kind of fluctuations can be modeled by a heaprocesses will be derived. These processes will be expressed
bath that acts on the system under consideration in terms &fy means of multivariate Langevin and Fokker-Planck equa-
additive noise. The latter kind of fluctuations can be con-tions(Sec. Il A). Boundary conditions will be discussed and
ceived as multiplicative noise arising from fluctuating con-the “delay Fokker-Planck equation” proposed by Guillouizic
trol parameter$4]. The impacts of noise and delays on non-et al. will be derived for several boundary conditions using
linear dynamical systems is a classical problem in populatiopoth Ito and Stratonovich calculSec. 1l B). The power of
dynamicg5—8J. The role of delays in the respiratory system the Fokker-Planck equation approach by Guillouigical.
and the visual system has been studied asWellL1]. There  will be illustrated by reducing a delay Fokker-Planck equa-
has been a general interest in studying the possible impact®n with state-dependent diffusion term to one with state-
of delays on movement control by artificially introducing independent diffusion term in the context of the Gompertz
delays into visual feedback loop$2—-1§. Furthermore, de- model for population growth with delagBec. Il Q.
lays of error correction mechanisms have been discussed in
the context of polyrhythmic movemen{49] and postural
sway[20-22 (see, however, Ref$23,24]). In addition, the Il. MULTIVARIATE MARKOV PROCESSES FOR
relevance of transmission delays for neural networks and en- STOCHASTIC SYSTEMS WITH DELAYS
semble of coupledneura) oscillators has been investigated
in several workg25—33. For a brief review of biological
systems with delays the reader is referred to R Figure 1 illustrates the basic steps in describing stochastic
In order to describe complex systems featuring both deprocesses with delays in terms of multivariate Markov pro-
lays and randomness, we may use generalized master equgsses. Accordingly, the evolution of a stochastic process
tions [35—-37 and stochastic delay differential equationsWwith delay 7 is decomposed into slices or intervals of length
(SDDE}, see, e.g., Refd.11,15,22,2¢ In the linear case, 7. The word “slice” reminds us that a process with delay
SDDEs can be solved analyticall@8—41. In general, SD- depends on a functioe that describes its initial conditions.
DEs recover Langevin equations in the limit of vanishingMore precisely, for a complete description of the process we
delays. Recently, Guillouzicet al. derived generalized need to attach to each interval of lengttthe space of ad-
Fokker-Planck equations for SDDE40,42. This correspon- missible functions¢. Therefore, we may speak of a slice
dence has led to the hope that it might be possible to deriveather than an interval. In Fig. 1 the variatjét) and the
exact solutions for nonlinear stochastic systems with delayfunction P(x,t), respectively, denote the random variable
by means of Fokker-Planck equations. Since the theory ofind the probability density of the process of interest at time
Fokker-Planck equations for stochastic systems without det: The stochastic evolution equation f6is then solved step
lays is well-establishef43—48, a generalization to systems by step for consecutive slices. This method is called
with delays could provide us with a powerful tool to describe“method of steps” and has been applied, for example, to

A. Multivariate Langevin and Fokker-Planck equations
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stochastic process with delay

d
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| for t' €[0,7]. For the sake of convenience, we define the
&) multivariate Langevin forced™, by I',(t"):=I'(t) and rewrite Eq(3) as
Markov process
P(Xqerns Xpp,t7 d , , , ,
e Y )= hE) G )R @
| | t’ | | t’
o\'t 0\T Note that by this definition the Langevin forc&s satisfy

(T (T (t"))= 8 8(t—t"), where &y is the Kronecker
symbol. The Langevin equationg) defined ont’ €[0,7]
E(M) Pkt describe a particular kind of multivariate Markov processes,
| [ | L namely, multivariate Markov diffusion procesdds. Having

! L ! ! - derived Eg.(4) from Eq. (1), we show now that we can

oo NT TN conclude in the opposite way as well. That is, we derive now
stochastic process with delay the stochastic process with deléy) from the Markov pro-
in terms of cesses4). To this end, we need to discuss initial conditions
multivariate Markov process and, therefore, define far €[0,7] andn=0,1,... N the
FIG. 1. Description of a stochastic process with delay in termd©Nt p,robablllty dens’ltleSNn(x,y,t’) by Wiy (x,y,t") =(4(x
of a multivariate Markov process. —&(t'))8(y—§,-1(t"))). Then, we require that at each

computational leveln the initial joint probability density

- . . W,(x,y,0) agrees with the final joint probability density
construct explicit solutions for linear SDDHES89] and the W, L(X.y,7) of the previous computational levei—1.

“light tower model” of interacting neuron§32] and to dem- . '
onstrate that within each slice a stochastic process with dela'\);lore precisely, we define
can be considered as a Mark@+eller procesg49]. Follow- WXV 0) = S(x— (0N SV — db( —

ing these previous studies, we will derive multivariate Mar- 0(X,¥,0):=8x= $(0))oly = ¢( = 7)),
kov processes for stochastic systems with delafisFig. 1).
Subsequently, for each slice we will express the stochastic

processes with delays in terms of the corresponding multitne multivariate Markov process given by E¢#). and(5) is
variate Markov processes. Let us now proceed as Ou“ined'equivalent to the SDDEL) for te[ — 7,(N+ 1)7] which can

_First, we discuss a stochastic process with delay and agse jjjystrated by solving iteratively Eqé4) and (5) for each
ditive noise. Let£(t) denote a dimensionless random vari- |oyel n upton=N. For example, fon=0 from Egs.(4) and
able which is described by the one-dimensional SDDE (5) it follows that '

W,(x,y,0):=W,_1(X,y,7), n=1,... N. (5)

d
—&(t)=h(&(t),&(t— I'(t), t=0, d
TR ™)+ QI Efo(t’)=h(§o(t’),¢(t'—T))+ VQIo(t),

§t)=o(t), te[—70], D £0(0)=¢(0), (6)

where h(X,y) is a drift function, 7>0 is the delay,¢(t) which agrees with EC(].) fort'=t. SOlVing the zeroth com-

describes the initial conditions @{t), and\/QI represents a putational level6), we obtainWo(x,y,t") and, in particular,
fluctuation force composed of the fluctuation stren@th 0 Wo(x.y, 7). Consequently, fon=1 from Egs.(4) and(5) we
and the &-correlated Langevin forcel' [45] with obtain

(I'(WC(t"))=45(t—t"). In what follows, 5(z) denotes thes d

function and the bracke{®#\) applied to a random variabke el " , / /
correspond to the ense(mtzle averagedointroducing fort dt’ () =h(E ). &)+ \/arl(t ) 0
e[—7,(N+1)r] andn=-1,0,1,...,N new random vari-

ables¢,, defined by with &y(t') given by Eq. (6) and the initial condi-
tion ( 3(x— £1(0)) 8(y — £o(0))) =( 8(x— £o(7))) 3(y— $(0))
=Wy(x,y,7) [i.e., &1(0) is distributed likeéy(7) and £y(0)
assumes the fixed valug0)]. Under these initial conditions
Eq. (7) agrees with the SDDE1) for &(t")=¢&(t),t' =t
we obtainé_,(t'):=¢(t'—7) and -7t e[0,7], andt e[ 7,27].

E () =E&1)A\t'=t—n7, te[nr,(n+1)7], (2

011914-2



MULTIVARIATE MARKOV PROCESSES F@R . .. PHYSICAL REVIEW E 66, 011914 (2002

We recognize that we cannot solve the two-dimensional N
Markov process described by E@l) for n=N at once. We P(x,t)= E Oy(t—n7)Oy((N+1)7—1)
need to evaluate all preceding levels.N in order to obtain n=-1
the initial condition for the leveh=N and the evolution of
&n-_1- In other words, by means of a multivariate Markov Xj W, (X,y,t—n7)dy. (12
process we can only solve a SDDE step by stelpence the
name “method of steps’

The next objective is to take multiplicative noise into ac-
count. To this end, we supplement Ed) with a state-
dependent noise tergyx,y) leading to

So far, we have tacitly regarded Edd) and(8) as two-
dimensional Markov processes involving the random vari-
ables¢, and ¢,,_ ;. Alternatively, we can view the Langevin
equations fom=0,... N as a N+ 1)-dimensional Markov
d process. Then, we need to solve this multivariate Markov

ag(t): h(&(t),£(t— 7)) +g(&(t),&(t— )T ().  (8) process forN—_O to obtaln.the initial condltlon_for the Mar-
kov process witiN= 1. This Markov process, in turn, gives
, o . us the initial condition for the process with=2, and so on.
Following Mohammed[50], the multiplicative noise term Tpat is, we deal with a hierarchy of Markov processes de-
can be interpreted as a stochastic integrabegues-Stielties  fineq on a phase space that is increased by one dimension
integra) just as in the case of systems without defl@yd5]. \yith each computational step. On the basis of this interpre-
The reason for this is that) £(t) and é(t—7) can be con-  ati0n, we can obtain the Fokker-Planck equation that corre-
sidered as two random variableg,(t):=£(t) and 75(t)  sponds to the set of Langevin equatiori¢0). For
=¢(t—7) and (i) the stochastic integral for PN*L(xg, ... Xng ot ) =(8(ko— Eo(t') - - S(xn— En(t’)))
g(n1(t), 72(t))I(t) is defined irrespective of the vanishing gnqt’ [0,7] the evolution equation readés)
or nonvanishing of correlations between and 7,. Conse-
quently, there is both an Ito and a Stratonovich interpretation N
of the SDDE(8). Let w(t) denote the Wiener process given _— pN+1( 1)— 371 h(X,,Xn—1)
n=0 n

by w(t)=['T'(z)dz, then Eq.(8) can be regarded as at’
t+e v dg(Xn ,Xn-1) ,
£t =6+ [ nies) s m)ds +§9<Xn’xnl)a—xn} PEH)
t
t+e 1 . (92 2pN+1 '
+gJ g(&(s),&(s— 7))dw(s), 9) t3 Z —L9(Xn Xq- ) PR,
t n=0 (9Xn
Where'sf- - - refers to the Ito and Stratonovich interpretation N=0,1,2... (13

[4,45]. Just as for SDDEs with additive noise, we can show

the equivalence between the SDDB) for te[—7,(N  with »=0 andv=1 for Ito and Stratonovich calculus, re-

+1)7] and the multivariate Markov diffusion processes for spectively. Note that we have introduced above the function

t" e[0,7] described by X_q(t")=&_1(t")=¢(t' — 7). Solving iteratively the multi-
variate Langevin equatiofi0), we can verify that the initial

d ) , ) condition for the N+ 1)-dimensional Fokker-Planck equa-
Efn(t )=h(&x(t"),&r-1(t")) tion (13) is determined by the final joint distribution of the
N-dimensional Fokker-Planck equation for
N ’ H
+g(gn(t,)vgn—l(t,))rn(tl)! n=0,...N. P (Xo, s XN—1st ) In detall, we get

(10) PN*1(xy, ... Xn,0) = 8(Xo— A(0)PN(Xy, . .. Xn+7)

Again, Eq.(10) is solved iteratively by means of the initial =6(Xg—X_1(T))PN(X1, ... XN, 7).
conditions(5). (14)
Introducing the closed and opéh functions® and®
defined by® 4(z)=1 for ze[0,2) and zero otherwise and
0O,2)=1 for ze (0,») and zero otherwise, we can express

&(t) for te[—7,N7] in terms ofé, by

Equation(14) describes the connection between two slices
(cf. Fig. 1. It tells us how to extend thN-dimensional Mar-
kov process described bPN(xq, ... Xy_1,t') to a (N

N +1)-dimensional one given bPN"1(x,, ... xy,t’) such
&(t) = 2 £n(t—NT)O4(t—N7) Oy (N7+7—1). (11) that the Markov process in theN 1)-dimensional phase

n=—1 space represents a continuation of the Markov process in the

N-dimensional phase space. It is clear from Eg) that we
Likewise, the probability densitP(x,t) =(5(x—£(t))) can  need to solve the Fokker-Planck equati@g) iteratively in
be obtained from the joint probability densitid, according ~ order to derive the initial conditioPN"1(.,0). The continu-
to ation condition(14) for the multivariate Fokker-Planck equa-
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tion (13) can be seen as the counterpart to the continuationdic boundary conditions, which implieB(x,t)=P(x+b
condition (5) for the multivariate Langevin equatidd0). —a,t) as well ash(x,y)=h(x",y’) andh(x,y)=h(x",y’)
Finally, we can read off from Eq(13) that the Ito and with x'=x+b—a andy’=y+b—a.
Stratonovich calculus yield the same results for multiplica-  jii) We putQ =[a,b] with a<b again and require reflec-
tive noise sources involving exclusively delayed variablesye poundary conditions, that is, the stochastic process is
that is, forg(x,y)=g(y). In fact, by computing explicitly  -gnfined to the intervaf).
the integrals'sf{”g(g(s_— 7))dw(s) for g(y)=y, Moham- In view of the definition(2), we can conclude that i
med showed 'that in this case the Ito and Stratonovich intezatisfies a particular boundary condition then the variagles
grals are equivaleri50]. satisfy that boundary condition as well. Vice versa, if &l
satisfy one of the boundary conditiofi$—(iii ) then the mul-
tivariate Langevin equatiof8) and Eq.(5) describe a sto-
chastic process with delay that satisfies that particular bound-
So far, we have avoided a discussion of the Qebn  ary condition.

B. Boundary conditions and generalized delay
Fokker-Planck equations

which the random variablé given by Eq.(8) is defined. We In order to incorporate boundary conditions into the de-

consider now three cases. scription of the SDDE1) via the multivariate Fokker-Planck
(i) We assumete Q=R and require natural boundary equation (13) we express the joint probability density

conditions, that isP(x— *,t)=0. PN*1(xo, ... XN,t') by virtue of Eq.(2) in terms of the

(i) We assume)=[a,b] with a<b and consider peri- random variablé as

|
PN*L(Xg,X1, « o« Xn U/ ) =((Xo— &o(1') (X — €1(1)))- - - S(xn— En(t))) = (S (Xo— E(t")) S(Xy— E(t' + 7)) - - S(Xy
—&(t"+N7)))=(8(Xo— &(t—N7))8(x;— £E(t—(N—1)7))- - - S(x\— &(1)))
=PN*L(xo,t";x,t + 7 . Xyt FNT) =PN (X, t= N7 X, t—=(N=1)7; ... Xy t) (15

fort’ €[0,7] andte[N~,(N+1)7]. Accordingly, fort’ €[0,7] Eq. (13) reads

d N v A9(Xpn s Xn—1)
_ pN+1 ’. . ’ —_| — o - n:~n—1
pY PN*1(xo,t": ... Xy t' +N7) ( nz,o aXn(h(xn,xnl)Jr zg(X”’X”’l)—axn ]
1N g2
P —2[g<xn,xnl>12) PN“1(xg,t' - iyt 4 N) (16)
n=0 JXx,
and forte[N7,(N+1)7] we obtain
d N v d9(Xn ,Xn—1)
Z pN+1 N+ . | _ 7 v n Xn-1
P P (Xg,t=N7; ... ;XN 1) P axn{h(xn’xnl)+ 2g(xn,xn,l)—axn ]
N 2
+3 nZO ﬁ[g(xn,xnl)]z) PN*L(xg, t—=N7; ... Xy, t). (17)
- n

Introducing the probability current

v d9(Xn,Xn—1) 1 N
SiP" ] ==( h(Xn Xn-1)+ 5800 Xn 1) 2= 5 30— [90x0,Xq-1)]? | PN, (18)
n = n
Eqg. (17) can be written as
J N
_ pN+1 _ . . I . N+1
S PV o =Nt ngo aan”[P ]. (19)

Natural boundary conditions implWwn:x,e Q=R,PN"1(xq,t—N7; ... ;x,— o, t—(N=n)7; ... Xy, 1)=0,S,],0=0,
whereS,|,, means that we take the probability current at a boundary valig @fere: in the limit ofx,— * for arbitrary
n). Periodic boundary conditions lead ¥n:x,e Q=[a,b],PN*1(xq,t—N7; ... X, ,t—=(N=n)7; ... Xy, 1) =PN"1(xo,t
=N7; .. oxptb—at—(N—n)7; ... XN, 1), Shlsa1)— Snlan2)=0, that is, the componer8, of the probability current is
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constant at the boundary @&3. Likewise, for reflective boundary conditions we obtaim:x,e Q=[a,b],S,|,o=0 (the
probability currentS,, must vanish at the boundary 6¥; otherwise, fort e[ n7,(n+1)7] the random variabl€ could leave
the region() [51]).

Having defined several boundary conditions we can derive from @@5-(19) a generalized Fokker-Planck equation for
P(x,t)=(5(x—&(t))) andte[N7,(N+1)7]. To this end, we puxy=x and integrate Eq(19) with respect tag, . .. Xy_1
which yields forN=1 the evolution equation

N—-1 N—-1 . N—-1

g g
_ - _ N+1 L
Pl afoNSN[P ],-:Ho dx; Zo

g( ,y)

d
= [h(x,y)Jr 58(x,y) ]PN“(y,t—T;x,t)dy

dx

14
+§,—J [g(x.)PPY " (vt — mx,1)dy
dx“JQ

N—-1
3 [ Sdoe| T, o 9

=0

with PY 1y, t— 7;x,1) == PN (X0, t=N7; .. . ;Xn_2,t— 27y, t— 7;X,1)dXg- - -dXy_,. ForN=0 andte[0,7] we have

Jg(X, b(t— 1 9°
g()‘+ﬂ)} P+ 5 —Slak d(t=n)PPxD). (2D

J J v

PO = —5[h(x,¢<t—r>)+ 590, (t=7)
On account of the boundary conditions discussed earlier the surface terms (BOEganish—as indicated. The two-point
probability denS|t|esPN“(y,t— 7;X,t) represent the projections of the general two-point probability defXifyt — 7;x,t)
=(8(x—&(t))8(y— £(t—7))) onto the sliceste[N7,(N+1)7]. Furthermore, the identityWy(x,y,t—N7)= PN“(y,t
—7;x,t) holds. From Eg. (5 it then follows that P} (y,t—7;x,t)|i=n,=Wn(X,y,0)=Wy_1(X,y,7) =P} (y,t
—7X,t)|i=n,. Put differently, at the interfacé=N7 between two slices we flncPN“(y,t—r;x,t)zPQ(y,t—r;x,t)
=P(y,t—7;x,t). Consequently, we can replaE’éI+1 by P(y,t— 7;x,t). Then, fort=7 Eq. (20) becomes

g( y)

d _ 1 42 ) _
5—tP(x,t) - —f h(x,y)+ 29(X y) P(y,t—7x,t)dy+ > yfﬂ[g(X.y)] P(y,t—7x,t)dy. (22

The generalized delay Fokker-Planck equati®d® was pre- It is, in particular, multiplicative noise that can affect popu-
viously derived by Guillouzicet al. for g(x,y)=g(x) and lation growth. Multiplicative noise may reflect fluctuations
reflective boundary conditiorjgQ]. Our analysis reveals that of growth rate parametef§2] or evolutionary disasters pro-
Eq. (22) can be viewed as a projection of the closed hierarportional to population sizel63]. The Gompertz model for
chy of Fokker-Planck equation&l?7) with N=0,1,2 ... population growtt{6,7,53 is one of the few models that can
onto the one-variable probability densi®(x,t). As a result be treated analytically when taking impacts of delays and
of this projection, we deal with an evolution equation for multiplicative noise into accouni,41]. Therefore, it may
P(x,t) that is not closed because it involves another membeserve as a benchmark model. The objective now is twofold:
of the hierarchyP(y,t—7;x,t). to elucidate the nature of the multiplicative noifléo vs
Stratonovich and to discuss the Gompertz model within the
framework of the delay Fokker-Planck equati@®).

Let N(t)=0 denote the population size at timeThe

As stated in the Introduction, the impacts of delay anddeterministic Gompertz model read$®\/dt=kNG(N) with
noise on dynamical systems have frequently been studied i@(N)=—In(N/c) andc>0. The factork corresponds to the
the context of population dynamics. Delays are typically re-growth rate in the linear casé=1, whereasG denotes a
lated to the maturatiofor generatioptimes of specief7,8].  saturation function leading to a stable fixed pointN\st c.
Noise is a phenomenon that inevitably occurs in populationThe saturation function describes the decrease of the effec-
dynamics because populations evolve in close contact witlive growth rate due to finite resources and the increase of
their environments and environmental parameters fluctuatéhe population sizdi.e., dN/dt=keN and kqg=kG(N)].

C. Gompertz model with multiplicative noise and delay
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However, in general, the saturation functi@ndepends on indeed be performed. Strictly speaking, we transform the
the history of the populatiof6,7,54, which can be modeled Stratonivich-SDDE (23) into a multivariate Stratonovich-
by introducing a delayr=0 like G(t)=G(N(t—7)). As a  Langevin equation of the fornt23), carry out the corre-
result, the Gompertz model with delay and size-dependerdponding variable transformatioris=In(N,/c), and trans-
(multiplicative) white noise readf41] form the multivariate Langevin equation thus obtained into a
SDDE again. Thus, we obtain
N(t—17)
c

+VON(H)I'(t), t=0.
d
(23 Jié=—k&(t—n)+Qr(1), t=0 (24)

For the sake of convenience, foe [ — 7,0] we may choose
N(t)=d>0. Now, the question arises how to interpret thewith £ Q=R and{(t) =In(d/c) for t e[ — 7,0]. The station-
multiplicative noise termNI". ary solutionP¢(x) of Eq.(24) can be derived39,40. Then,
First, we interpreNI" according to the Stratonovich cal- using the inverse transformatidi=c expé, the stationary
culus. In this case, we can perform the variable transformaprobability densityPy(N) of the Gompertz mode(23) can
tion &:=In(N/c). The reason for this is the equivalence be-be computed41]. Let us discuss the Gompertz mod2B)
tween the SDDE(23) and the multivariate Langevin Wwithin the framework of the delay Fokker-Planck equation
equation(23) and the fact that for multivariate Stratonovich- (22). Then, we haveh(x,y)=—kxIn(y/c), and g(x,y)
Langvin equations variable transformations of that kind can= JQx leading to[55]

d
aN(t)=—kN(t)|n(

d d o Q Q J (=
EP(x,t)=5 kxf0 [In(%)]P(y,t—r;x,t)dy— ExP(x,t) +§—(3X2x2P(x,t)=k&xfO [In(%)]P(y,t—r;x,t)dy
Qad 4
+§&X5XP(X,U. (25)

By means of the transformationsx’=In(x/c),y’ [use v=0 and cf. Egs.(22) and (253]. By means ofc*
=In(y/c),R(x’",p)dX' =P(x,t)dx, and R(y',t—7;x’,t)dy’dx’ defined by

=P(y,t—7;x,t)dydx the relationsxP(x,t)=R(x’,t) and

xyP(y,t— 7 x,t)=R(y’,t—7;x",t) can be found. Further-

more, the operator relatiom/dx=d/x’ holds. Substituting 1 1 Q

these results into Eq25) gives us Kinz =k Inc—*— 2’ (28)
J a (=
—R(x’,t):k—f y'R(y’ t—7:x",t)dy’ Eq. (27) can be expressed as
ot ax’' Jo
27 po 26 &Pt—akJmly P(y,t—mx.t)d
2 2 (x",1). 5 (x, )_a_x X . n ey (y,t—7x,t)dy
i d(26) il hat the variabl f Q Q4
Equations(24) and (26) illustrate that the variable transfor- — ZXP(X,1) |+ = — x2P(x,1)
mation based on the Stratonovich calculus can be performed 2 2 gx?
both for the SDDE and the delay Fokker-Planck equations
and, indeed, leads to consistent resiittscause Eq(26) is 0 * y )
the delay Fokker-Planck equation of Hg4)]. =koxX o In o P(y,t=7x,t)dy
Second, we interpret Eq23) as Ito-SDDE. The corre-
sponding delay Fokker-Planck equation reads Qo o
+ > &X&XP(X,I). (29

oo

J 4 y _
EP(X’t)_kﬁxf InE P(y,t—mx,t)dy

0 By means of the transformationg’=In(x/c*) and y’

P =In(y/c*) the delay Fokker-Planck equatioi29) can be
+ g_xzp(xlt) (27)  transformed into Eq(26) again. Substituting Eq(28) into
2 gx2 the Gompertz modeR3) yields
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N(t—17)

C*

+§N(t)+ JONT(1). (30)

d
aN(t): —KkN(t)In

From Egs. (29 and (30) it is clear that the Ito-SDDE(30) yields the same delay Fokker-Planck equation as the
Stratonovich-SDDE

d N(t—17)
—N(t)=—kN(t)In +VQN(OT'(t). (3D
dt c*
Moreover, by means of Eq10), we can assign to Eq&30) and(31) the multivariate Ito- and Stratonovich-Langevin equations
d N,_(t)H| Q _
o ()=~ an<t'>ln( C—l + 5 No(1) + QN ()T () (32)
and one-variable stochastic process.

Furthermore, the applicability of the Ito and Stratonovich
— calculus for stochastic processes with delays has been dem-
+ QN (1T (1), onstrated. As a key result, we have found that for delayed
(39) random variables the Ito and Stratonovich calculus yield the
same results. Nondelayed variables can be treated just as the
gJandom variables of ordinary Langevin equations.

For a model describing population growth, namely, the
ompertz model with delay and multiplicative white noise,
we demonstrated how variable transformations can be car-
ried out in stochastic delay differential equations and their
) i orresponding delay Fokker-Planck equations. In this con-
they describe the same stochastic process. Therefore, the sfgg it?las begen shgwn that a multiplicgtive noise term inter-
tionary solut_|on of t_he Ito _mterpretatlon of the Gompertz preted according to the Ito calculus can be expressed by a
model(23) with the fixed point parametercan be obtained mtiplicative noise term interpreted according to the Stra-

from the solution of the Stratonovich interpretation of thetgnovich calculus. This relatiofcf. Eq. (34)] can easily be

Gompertz mode(33) with parametec* and vice versa. In  generalized to arbitrary multiplicative noise terg(x,y) be-

addition, comparing Eqs(30) and (31), we obtain the cause of the equivalence of stochastic delay differential

equivalence equations and multivariate Markov diffusion processes.
Then, we obtain

1
FONO+VONOTO=VON(OT(1), (39 1 d(x.y)

o Stratonovich Eg(x’y)T|x:§(r),_v:§(tfT)+g(§(t)’§(t_T))F(t)

Np—1(t")

C*

d N,(t") KN,(t")I (
4 - .
e o

respectively. Furthermore, we can verify that these tw
Langevin equations correspond to the same multivariat
Fokker-Planck equatiofil3). Consequently, not only are the
two delay Fokker-Planck equations of the Ito- and
Stratonovich-Langevin equatior30) and(31) identical but

. . I
On account of this equivalence, we may say that the ob- b

served shift of the fixed point is caused by the emergence of ~ =g(&(1),&(t—7)I'(1), (35)
the so-called spurious drifg5] given above byQN/2.

Stratonovich
which recovers for multiplicative noise terms without delay
[Il. CONCLUSIONS [i.e., for g(x,y)=9g(x)] the well-known relation(see, e.g.,

4] [Sec. 5.4.2and[40] [Appendi
Using the method of steps, multivariate Langevin and[ 1l ¥ [40] {App X

Fokker-Planck equations have been derived for stochastic 1 dg(x)
processes with delay. In d_oing SO, non-!\/lar_kovian stocha_stic Eg(x)T|x:§+g(§)F= g(or .
processes have been assigned to multivariate Markov diffu- —_
sion processes. This procedure is reminiscent of the treat- _ . o
ment of one-dimensional non-Markovian stochastic equa- e showed that in order to evaluate a single time-interval
tions with colored noise that can be mapped onto two.Of a stochastic process with d8|ay in terms of a multivariate
dimensional Markov processes with white noj4s]. Markov process we need to increase the dimension of that
The multivariate Markov processes that have been disMarkov process by one. Consequently, the stationary solu-
cussed in the present article provide a closed description fc}’tlog of a_Stocl:hl\"’/‘ISt'E process Wlthhdree!ay ((:jorrespopd_s o a
stochastic processes with delays and can be solved iteratively dimensional Markov process whefe tends to infinity.
under several boundary conditions. The delay Fokker-PlanckUtUr€ studies may exploit this observation in order to con-
equation proposed by Guillouzit al. has been identified as struct stationary solutions of nonlinear stochastic processes

. T with delay on the basis of solutions dfl-dimensional
the projection of such a multivariate Markov process onto & okker-Planck equations in the linfit—os

(36)

—_—
Ito Stratonovich
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