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Multivariate Markov processes for stochastic systems with delays: Application to the stochasti
Gompertz model with delay

T. D. Frank
Institute for Theoretical Physics, University of Mu¨nster, Wilhelm-Klemm-Strasse 9, 48149 Mu¨nster, Germany
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Using the method of steps, we describe stochastic processes with delays in terms of Markov diffusion
processes. Thus, multivariate Langevin equations and Fokker-Planck equations are derived for stochastic delay
differential equations. Natural, periodic, and reflective boundary conditions are discussed. Both Ito and Stra-
tonovich calculus are used. In particular, our Fokker-Planck approach recovers the generalized delay Fokker-
Planck equation proposed by Guillouzicet al. The results obtained are applied to a model for population
growth: the Gompertz model with delay and multiplicative white noise.
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I. INTRODUCTION

The study of open complex systems has become an
portant aspect of biological physics. In particular, many
searches have focused on low-dimensional description
biological systems. These low-dimensional descriptions
ten involve delays and fluctuation forces. Delays typica
arise from the propagation times of forces and the transm
sion times of information within spatially extended compl
systems. Fluctuation forces often account for unspecific fl
tuations of structural elements~thermal motion! and fluctua-
tions of task-specific energy and information sources@1–3#.
The former kind of fluctuations can be modeled by a h
bath that acts on the system under consideration in term
additive noise. The latter kind of fluctuations can be co
ceived as multiplicative noise arising from fluctuating co
trol parameters@4#. The impacts of noise and delays on no
linear dynamical systems is a classical problem in popula
dynamics@5–8#. The role of delays in the respiratory syste
and the visual system has been studied as well@9–11#. There
has been a general interest in studying the possible imp
of delays on movement control by artificially introducin
delays into visual feedback loops@12–18#. Furthermore, de-
lays of error correction mechanisms have been discusse
the context of polyrhythmic movements@19# and postural
sway@20–22# ~see, however, Refs.@23,24#!. In addition, the
relevance of transmission delays for neural networks and
semble of coupled~neural! oscillators has been investigate
in several works@25–33#. For a brief review of biological
systems with delays the reader is referred to Ref.@34#.

In order to describe complex systems featuring both
lays and randomness, we may use generalized master e
tions @35–37# and stochastic delay differential equatio
~SDDEs!, see, e.g., Refs.@11,15,22,26#. In the linear case
SDDEs can be solved analytically@38–41#. In general, SD-
DEs recover Langevin equations in the limit of vanishi
delays. Recently, Guillouzicet al. derived generalized
Fokker-Planck equations for SDDEs@40,42#. This correspon-
dence has led to the hope that it might be possible to de
exact solutions for nonlinear stochastic systems with de
by means of Fokker-Planck equations. Since the theory
Fokker-Planck equations for stochastic systems without
lays is well-established@43–48#, a generalization to system
with delays could provide us with a powerful tool to descri
1063-651X/2002/66~1!/011914~8!/$20.00 66 0119
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the interplay between randomness and delays in open c
plex systems such as biological systems. Despite the ben
of the work by Guillouizicet al., their approach is still in-
complete. Their generalized Fokker-Planck equation does
provide a closed description of the problem at hand but
volves a joint probability density whose evolution equati
is not known. Furthermore, the work by Guillouizicet al.
involves reflective boundary condition. Although most pro
ably their approach can be generalized to other bound
conditions, this has not yet been done.

In the present study a closed description of stochastic p
cesses with delays in terms of multivariate Markov diffusi
processes will be derived. These processes will be expre
by means of multivariate Langevin and Fokker-Planck eq
tions ~Sec. II A!. Boundary conditions will be discussed an
the ‘‘delay Fokker-Planck equation’’ proposed by Guillouiz
et al. will be derived for several boundary conditions usin
both Ito and Stratonovich calculus~Sec. II B!. The power of
the Fokker-Planck equation approach by Guillouizicet al.
will be illustrated by reducing a delay Fokker-Planck equ
tion with state-dependent diffusion term to one with sta
independent diffusion term in the context of the Gompe
model for population growth with delay~Sec. II C!.

II. MULTIVARIATE MARKOV PROCESSES FOR
STOCHASTIC SYSTEMS WITH DELAYS

A. Multivariate Langevin and Fokker-Planck equations

Figure 1 illustrates the basic steps in describing stocha
processes with delays in terms of multivariate Markov p
cesses. Accordingly, the evolution of a stochastic proc
with delayt is decomposed into slices or intervals of leng
t. The word ‘‘slice’’ reminds us that a process with dela
depends on a functionf that describes its initial conditions
More precisely, for a complete description of the process
need to attach to each interval of lengtht the space of ad-
missible functionsf. Therefore, we may speak of a slic
rather than an interval. In Fig. 1 the variablej(t) and the
function P(x,t), respectively, denote the random variab
and the probability density of the process of interest at ti
t. The stochastic evolution equation forj is then solved step
by step for consecutive slices. This method is cal
‘‘method of steps’’ and has been applied, for example,
©2002 The American Physical Society14-1
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construct explicit solutions for linear SDDEs@39# and the
‘‘light tower model’’ of interacting neurons@32# and to dem-
onstrate that within each slice a stochastic process with d
can be considered as a Markov~Feller! process@49#. Follow-
ing these previous studies, we will derive multivariate M
kov processes for stochastic systems with delays~cf. Fig. 1!.
Subsequently, for each slice we will express the stocha
processes with delays in terms of the corresponding m
variate Markov processes. Let us now proceed as outlin

First, we discuss a stochastic process with delay and
ditive noise. Letj(t) denote a dimensionless random va
able which is described by the one-dimensional SDDE

d

dt
j~ t !5h„j~ t !,j~ t2t!…1AQG~ t !, t>0,

j~ t !5f~ t !, tP@2t,0#, ~1!

where h(x,y) is a drift function, t.0 is the delay,f(t)
describes the initial conditions ofj(t), andAQG represents a
fluctuation force composed of the fluctuation strengthQ.0
and the d-correlated Langevin forceG @45# with
^G(t)G(t8)&5d(t2t8). In what follows,d(z) denotes thed
function and the bracketŝA& applied to a random variableA
correspond to the ensemble average ofA. Introducing fort
P@2t,(N11)t# and n521,0,1, . . . ,N new random vari-
ablesjn defined by

jn~ t8!:5j~ t !`t85t2nt, tP@nt,~n11!t#, ~2!

we obtainj21(t8)ªf(t82t) and

FIG. 1. Description of a stochastic process with delay in ter
of a multivariate Markov process.
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d

dt8
jn~ t8!5h„jn~ t8!,jn21~ t8!…1AQG~ t81nt!,

n50, . . . ,N ~3!

for t8P@0,t#. For the sake of convenience, we define t
Langevin forcesGn by Gn(t8)ªG(t) and rewrite Eq.~3! as

d

dt8
jn~ t8!5h„jn~ t8!,jn21~ t8!…1AQGn~ t8!. ~4!

Note that by this definition the Langevin forcesGn satisfy
^G i(t)Gk(t8)&5d ikd(t2t8), where d ik is the Kronecker
symbol. The Langevin equations~4! defined ont8P@0,t#
describe a particular kind of multivariate Markov process
namely, multivariate Markov diffusion processes@4#. Having
derived Eq.~4! from Eq. ~1!, we show now that we can
conclude in the opposite way as well. That is, we derive n
the stochastic process with delay~1! from the Markov pro-
cesses~4!. To this end, we need to discuss initial conditio
and, therefore, define fort8P@0,t# and n50,1, . . . ,N the
joint probability densitiesWn(x,y,t8) by Wn(x,y,t8)ª^d„x
2jn(t8)…d„y2jn21(t8)…&. Then, we require that at eac
computational leveln the initial joint probability density
Wn(x,y,0) agrees with the final joint probability densit
Wn21(x,y,t) of the previous computational leveln21.
More precisely, we define

W0~x,y,0!ªd„x2f~0!…d„y2f~2t!…,

Wn~x,y,0!ªWn21~x,y,t!, n51, . . . ,N. ~5!

The multivariate Markov process given by Eqs.~4! and~5! is
equivalent to the SDDE~1! for tP@2t,(N11)t# which can
be illustrated by solving iteratively Eqs.~4! and~5! for each
level n upton5N. For example, forn50 from Eqs.~4! and
~5! it follows that

d

dt8
j0~ t8!5h„j0~ t8!,f~ t82t!…1AQG0~ t8!,

j0~0!5f~0!, ~6!

which agrees with Eq.~1! for t85t. Solving the zeroth com-
putational level~6!, we obtainW0(x,y,t8) and, in particular,
W0(x,y,t). Consequently, forn51 from Eqs.~4! and~5! we
obtain

d

dt8
j1~ t8!5h„j1~ t8!,j0~ t8!…1AQG1~ t8! ~7!

with j0(t8) given by Eq. ~6! and the initial condi-
tion ^d„x2j1(0)…d„y2j0(0)…&5^d„x2j0(t)…&d„y2f(0)…
5W0(x,y,t) @i.e., j1(0) is distributed likej0(t) andj0(0)
assumes the fixed valuef(0)#. Under these initial conditions
Eq. ~7! agrees with the SDDE~1! for j1(t8)5j(t),t85t
2t,t8P@0,t#, andtP@t,2t#.

s
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We recognize that we cannot solve the two-dimensio
Markov process described by Eq.~4! for n5N at once. We
need to evaluate all preceding levelsn,N in order to obtain
the initial condition for the leveln5N and the evolution of
jN21. In other words, by means of a multivariate Marko
process we can only solve a SDDE step by step~whence the
name ‘‘method of steps’’!.

The next objective is to take multiplicative noise into a
count. To this end, we supplement Eq.~1! with a state-
dependent noise termg(x,y) leading to

d

dt
j~ t !5h„j~ t !,j~ t2t!…1g„j~ t !,j~ t2t!…G~ t !. ~8!

Following Mohammed@50#, the multiplicative noise term
can be interpreted as a stochastic integral~Lebegues-Stieltjes
integral! just as in the case of systems without delay@4,45#.
The reason for this is that~i! j(t) and j(t2t) can be con-
sidered as two random variablesh1(t)ªj(t) and h2(t)
5j(t2t) and ~ii ! the stochastic integral fo
g„h1(t),h2(t)…G(t) is defined irrespective of the vanishin
or nonvanishing of correlations betweenh1 andh2. Conse-
quently, there is both an Ito and a Stratonovich interpreta
of the SDDE~8!. Let w(t) denote the Wiener process give
by w(t)5* tG(z)dz, then Eq.~8! can be regarded as

j~ t1e!5j~ t !1E
t

t1e

h„j~s!,j~s2t!…ds

1 S
I E

t

t1e

g„j~s!,j~s2t!…dw~s!, ~9!

where S
I *••• refers to the Ito and Stratonovich interpretati

@4,45#. Just as for SDDEs with additive noise, we can sh
the equivalence between the SDDE~8! for tP@2t,(N
11)t# and the multivariate Markov diffusion processes f
t8P@0,t# described by

d

dt8
jn~ t8!5h„jn~ t8!,jn21~ t8!…

1g„jn~ t8!,jn21~ t8!…Gn~ t8!, n50, . . . ,N.

~10!

Again, Eq.~10! is solved iteratively by means of the initia
conditions~5!.

Introducing the closed and openQ functionsQcl andQop
defined byQcl(z)51 for zP@0,̀ ) and zero otherwise an
Qop(z)51 for zP(0,̀ ) and zero otherwise, we can expre
j(t) for tP@2t,Nt# in terms ofjn by

j~ t !5 (
n521

N

jn~ t2nt!Qcl~ t2nt!Qop~nt1t2t !. ~11!

Likewise, the probability densityP(x,t)5^d(x2j(t))& can
be obtained from the joint probability densitiesWn according
to
01191
l

n

P~x,t !5 (
n521

N

Qcl~ t2nt!Qop„~n11!t2t…

3E Wn~x,y,t2nt!dy. ~12!

So far, we have tacitly regarded Eqs.~4! and ~8! as two-
dimensional Markov processes involving the random va
ablesjn andjn21. Alternatively, we can view the Langevin
equations forn50, . . . ,N as a (N11)-dimensional Markov
process. Then, we need to solve this multivariate Mark
process forN50 to obtain the initial condition for the Mar
kov process withN51. This Markov process, in turn, give
us the initial condition for the process withN52, and so on.
That is, we deal with a hierarchy of Markov processes
fined on a phase space that is increased by one dimen
with each computational step. On the basis of this interp
tation, we can obtain the Fokker-Planck equation that co
sponds to the set of Langevin equations~10!. For
PN11(x0 , . . . ,xN ,t8)5^d„x02j0(t8)…•••d(xN2jN(t8)…&
and t8P@0,t# the evolution equation reads@45#

]

]t8
PN11~ .,t8!52 (

n50

N
]

]xn
H h~xn ,xn21!

1
n

2
g~xn ,xn21!

]g~xn ,xn21!

]xn
J PN11~ .,t8!

1
1

2 (
n50

N
]2

]xn
2 @g~xn ,xn21!#2PN11~ .,t8!,

N50,1,2, . . . ~13!

with n50 andn51 for Ito and Stratonovich calculus, re
spectively. Note that we have introduced above the funct
x21(t8)ªj21(t8)5f(t82t). Solving iteratively the multi-
variate Langevin equation~10!, we can verify that the initial
condition for the (N11)-dimensional Fokker-Planck equa
tion ~13! is determined by the final joint distribution of th
N-dimensional Fokker-Planck equation fo
PN(x0 , . . . ,xN21 ,t8). In detail, we get

PN11~x0 , . . . ,xN,0!5d„x02f~0!…PN~x1 , . . . ,xN ,t!

5d„x02x21~t!…PN~x1 , . . . ,xN ,t!.

~14!

Equation~14! describes the connection between two slic
~cf. Fig. 1!. It tells us how to extend theN-dimensional Mar-
kov process described byPN(x0 , . . . ,xN21 ,t8) to a (N
11)-dimensional one given byPN11(x0 , . . . ,xN ,t8) such
that the Markov process in the (N11)-dimensional phase
space represents a continuation of the Markov process in
N-dimensional phase space. It is clear from Eq.~14! that we
need to solve the Fokker-Planck equation~13! iteratively in
order to derive the initial conditionPN11(.,0). The continu-
ation condition~14! for the multivariate Fokker-Planck equa
4-3
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tion ~13! can be seen as the counterpart to the continua
condition ~5! for the multivariate Langevin equation~10!.

Finally, we can read off from Eq.~13! that the Ito and
Stratonovich calculus yield the same results for multiplic
tive noise sources involving exclusively delayed variabl
that is, for g(x,y)5g(y). In fact, by computing explicitly
the integralsS

I * t
t1eg„j(s2t)…dw(s) for g(y)5y, Moham-

med showed that in this case the Ito and Stratonovich i
grals are equivalent@50#.

B. Boundary conditions and generalized delay
Fokker-Planck equations

So far, we have avoided a discussion of the setV on
which the random variablej given by Eq.~8! is defined. We
consider now three cases.

~i! We assumejPV5R and require natural boundar
conditions, that is,P(x→6`,t)50.

~ii ! We assumeV5@a,b# with a,b and consider peri-
01191
n

-
,

e-

odic boundary conditions, which impliesP(x,t)5P(x1b
2a,t) as well ash(x,y)5h(x8,y8) and h(x,y)5h(x8,y8)
with x85x1b2a andy85y1b2a.

~iii ! We putV5@a,b# with a,b again and require reflec
tive boundary conditions, that is, the stochastic proces
confined to the intervalV.

In view of the definition~2!, we can conclude that ifj
satisfies a particular boundary condition then the variablesjn

satisfy that boundary condition as well. Vice versa, if alljn

satisfy one of the boundary conditions~i!–~iii ! then the mul-
tivariate Langevin equation~8! and Eq.~5! describe a sto-
chastic process with delay that satisfies that particular bou
ary condition.

In order to incorporate boundary conditions into the d
scription of the SDDE~1! via the multivariate Fokker-Planck
equation ~13! we express the joint probability densit
PN11(x0 , . . . ,xN ,t8) by virtue of Eq. ~2! in terms of the
random variablej as
PN11~x0 ,x1 , . . . ,xN ,t8!5^d„x02j0~ t8!…d„x12j1~ t8!…•••d„xN2jN~ t8!…&5^d„x02j~ t8!…d„x12j~ t81t!…•••d„xN

2j~ t81Nt!…&5^d„x02j~ t2Nt!…d~x12j„t2~N21!t…!•••d„xN2j~ t !…&

5PN11~x0 ,t8;x1 ,t81t; . . . ;xN ,t81Nt!5PN11
„x0 ,t2Nt;x1 ,t2~N21!t; . . . ;xN ,t… ~15!

for t8P@0,t# and tP@Nt,(N11)t#. Accordingly, for t8P@0,t# Eq. ~13! reads

]

]t8
PN11~x0 ,t8; . . . ;xN ,t81Nt!5S 2 (

n50

N
]

]xn
H h~xn ,xn21!1

n

2
g~xn ,xn21!

]g~xn ,xn21!

]xn
J

1
1

2 (
n50

N
]2

]xn
2 @g~xn ,xn21!#2D PN11~x0 ,t8; . . . ;xN ,t81Nt! ~16!

and for tP@Nt,(N11)t# we obtain

]

]t
PN11~x0 ,t2Nt; . . . ;xN ,t !5S 2 (

n50

N
]

]xn
H h~xn ,xn21!1

n

2
g~xn ,xn21!

]g~xn ,xn21!

]xn
J

1
1

2 (
n50

N
]2

]xn
2 @g~xn ,xn21!#2D PN11~x0 ,t2Nt; . . . ;xN ,t !. ~17!

Introducing the probability current

Sn@PN11#ªS h~xn ,xn21!1
n

2
g~xn ,xn21!

]g~xn ,xn21!

]xn
2

1

2 (
n50

N
]

]xn
@g~xn ,xn21!#2D PN11, ~18!

Eq. ~17! can be written as

]

]t
PN11~x0 ,t2Nt; . . . ;xN ,t !52 (

n50

N
]

]xn
Sn@PN11#. ~19!

Natural boundary conditions imply;n:xnPV5R,PN11
„x0 ,t2Nt; . . . ;xn→6`,t2(N2n)t; . . . ;xN ,t…50,Snu]V50,

whereSnu]V means that we take the probability current at a boundary value ofV ~here: in the limit ofxn→6` for arbitrary
n). Periodic boundary conditions lead to;n:xnPV5@a,b#,PN11(x0 ,t2Nt; . . . ;xn ,t2(N2n)t; . . . ;xN ,t)5PN11

„x0 ,t
2Nt; . . . ;xn1b2a,t2(N2n)t; . . . ;xN ,t…,Snu]V(1)2Snu]V(2)50, that is, the componentSn of the probability current is
4-4
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constant at the boundary ofV. Likewise, for reflective boundary conditions we obtain;n:xnPV5@a,b#,Snu]V50 ~the
probability currentSn must vanish at the boundary ofV; otherwise, fortP@nt,(n11)t# the random variablej could leave
the regionV @51#!.

Having defined several boundary conditions we can derive from Eqs.~17!–~19! a generalized Fokker-Planck equation f
P(x,t)5^d„x2j(t)…& and tP@Nt,(N11)t#. To this end, we putxN5x and integrate Eq.~19! with respect tox0 , . . . ,xN21
which yields forN>1 the evolution equation

~20!

with P2
N11(y,t2t;x,t)ª*VPN11(x0 ,t2Nt; . . . ;xN22 ,t22t;y,t2t;x,t)dx0•••dxN22. For N50 andtP@0,t# we have

]

]t
P~x,t !52

]

]x H h„x,f~ t2t!…1
n

2
g„x,f~ t2t!…

]g„x,f~ t2t!…

]x J P~x,t !1
1

2

]2

]x2
@g„x,f~ t2t!…#2P~x,t !. ~21!

On account of the boundary conditions discussed earlier the surface terms in Eq.~20! vanish—as indicated. The two-poin
probability densitiesP2

N11(y,t2t;x,t) represent the projections of the general two-point probability densityP(y,t2t;x,t)
5^d„x2j(t)…d„y2j(t2t)…& onto the slicestP@Nt,(N11)t#. Furthermore, the identityWN(x,y,t2Nt)5P2

N11(y,t
2t;x,t) holds. From Eq. ~5! it then follows that P2

N11(y,t2t;x,t)u t5Nt5WN(x,y,0)5WN21(x,y,t)5P2
N(y,t

2t;x,t)u t5Nt . Put differently, at the interfacet5Nt between two slices we findP2
N11(y,t2t;x,t)5P2

N(y,t2t;x,t)
5P(y,t2t;x,t). Consequently, we can replaceP2

N11 by P(y,t2t;x,t). Then, fort>t Eq. ~20! becomes

]

]t
P~x,t !52

]

]xEV
H h~x,y!1

n

2
g~x,y!

]g~x,y!

]x J P~y,t2t;x,t !dy1
1

2

]2

]x2EV
@g~x,y!#2P~y,t2t;x,t !dy. ~22!
t
a
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The generalized delay Fokker-Planck equation~22! was pre-
viously derived by Guillouzicet al. for g(x,y)5g(x) and
reflective boundary conditions@40#. Our analysis reveals tha
Eq. ~22! can be viewed as a projection of the closed hier
chy of Fokker-Planck equations~17! with N50,1,2, . . .
onto the one-variable probability densityP(x,t). As a result
of this projection, we deal with an evolution equation f
P(x,t) that is not closed because it involves another mem
of the hierarchy:P(y,t2t;x,t).

C. Gompertz model with multiplicative noise and delay

As stated in the Introduction, the impacts of delay a
noise on dynamical systems have frequently been studie
the context of population dynamics. Delays are typically
lated to the maturation~or generation! times of species@7,8#.
Noise is a phenomenon that inevitably occurs in populat
dynamics because populations evolve in close contact
their environments and environmental parameters fluctu
01191
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d
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-

n
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It is, in particular, multiplicative noise that can affect pop
lation growth. Multiplicative noise may reflect fluctuation
of growth rate parameters@52# or evolutionary disasters pro
portional to population sizes@53#. The Gompertz model for
population growth@6,7,53# is one of the few models that ca
be treated analytically when taking impacts of delays a
multiplicative noise into account@6,41#. Therefore, it may
serve as a benchmark model. The objective now is twofo
to elucidate the nature of the multiplicative noise~Ito vs
Stratonovich! and to discuss the Gompertz model within t
framework of the delay Fokker-Planck equation~22!.

Let N(t)>0 denote the population size at timet. The
deterministic Gompertz model readsdN/dt5kNG(N) with
G(N)52 ln(N/c) andc.0. The factork corresponds to the
growth rate in the linear caseG51, whereasG denotes a
saturation function leading to a stable fixed point atN5c.
The saturation function describes the decrease of the e
tive growth rate due to finite resources and the increase
the population size@i.e., dN/dt5keffN and keff5kG(N)#.
4-5
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However, in general, the saturation functionG depends on
the history of the population@6,7,54#, which can be modeled
by introducing a delayt>0 like G(t)5G„N(t2t)…. As a
result, the Gompertz model with delay and size-depend
~multiplicative! white noise reads@41#

d

dt
N~ t !52kN~ t !lnS N~ t2t!

c D1AQN~ t !G~ t !, t>0.

~23!

For the sake of convenience, fortP@2t,0# we may choose
N(t)5d.0. Now, the question arises how to interpret t
multiplicative noise termNG.

First, we interpretNG according to the Stratonovich ca
culus. In this case, we can perform the variable transfor
tion jª ln(N/c). The reason for this is the equivalence b
tween the SDDE ~23! and the multivariate Langevin
equation~23! and the fact that for multivariate Stratonovic
Langvin equations variable transformations of that kind c
-

-
m
on

01191
nt

a-
-

n

indeed be performed. Strictly speaking, we transform
Stratonivich-SDDE~23! into a multivariate Stratonovich
Langevin equation of the form~23!, carry out the corre-
sponding variable transformationsjn5 ln(Nn /c), and trans-
form the multivariate Langevin equation thus obtained int
SDDE again. Thus, we obtain

d

dt
j~ t !52kj~ t2t!1AQG~ t !, t>0 ~24!

with jPV5R andj(t)5 ln(d/c) for tP@2t,0#. The station-
ary solutionPst(x) of Eq. ~24! can be derived@39,40#. Then,
using the inverse transformationN5c expj, the stationary
probability densityPst(N) of the Gompertz model~23! can
be computed@41#. Let us discuss the Gompertz model~23!
within the framework of the delay Fokker-Planck equati
~22!. Then, we haveh(x,y)52kx ln(y/c), and g(x,y)
5AQx leading to@55#
]

]t
P~x,t !5

]

]x FkxE
0

` H lnS y

cD J P~y,t2t;x,t !dy2
Q

2
xP~x,t !G1

Q

2

]2

]x2
x2P~x,t !5k

]

]x
xE

0

` H lnS y

cD J P~y,t2t;x,t !dy

1
Q

2

]

]x
x

]

]x
xP~x,t !. ~25!
By means of the transformations x85 ln(x/c),y8
5ln(y/c),R(x8,t)dx85P(x,t)dx, and R(y8,t2t;x8,t)dy8dx8
5P(y,t2t;x,t)dydx the relationsxP(x,t)5R(x8,t) and
xyP(y,t2t;x,t)5R(y8,t2t;x8,t) can be found. Further
more, the operator relationx]/]x5]/]x8 holds. Substituting
these results into Eq.~25! gives us

]

]t
R~x8,t !5k

]

]x8
E

0

`

y8R~y8,t2t;x8,t !dy8

1
Q

2

]2

]x82
R~x8,t !. ~26!

Equations~24! and ~26! illustrate that the variable transfor
mation based on the Stratonovich calculus can be perfor
both for the SDDE and the delay Fokker-Planck equati
and, indeed, leads to consistent results@because Eq.~26! is
the delay Fokker-Planck equation of Eq.~24!#.

Second, we interpret Eq.~23! as Ito-SDDE. The corre-
sponding delay Fokker-Planck equation reads

]

]t
P~x,t !5k

]

]x
xE

0

` H lnS y

cD J P~y,t2t;x,t !dy

1
Q

2

]2

]x2
x2P~x,t ! ~27!
ed
s

@use n50 and cf. Eqs.~22! and ~25a!#. By means ofc*
defined by

k ln
1

c
5k ln

1

c*
2

Q

2
, ~28!

Eq. ~27! can be expressed as

]

]t
P~x,t !5

]

]x FkxE
0

`H lnS y

c*
D J P~y,t2t;x,t !dy

2
Q

2
xP~x,t !G1

Q

2

]2

]x2
x2P~x,t !

5k
]

]x
xE

0

`H lnS y

c*
D J P~y,t2t;x,t !dy

1
Q

2

]

]x
x

]

]x
xP~x,t !. ~29!

By means of the transformationsx85 ln(x/c* ) and y8
5 ln(y/c* ) the delay Fokker-Planck equation~29! can be
transformed into Eq.~26! again. Substituting Eq.~28! into
the Gompertz model~23! yields
4-6
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d

dt
N~ t !52kN~ t !lnS N~ t2t!

c*
D 1

Q

2
N~ t !1AQN~ t !G~ t !. ~30!

From Eqs. ~29! and ~30! it is clear that the Ito-SDDE~30! yields the same delay Fokker-Planck equation as
Stratonovich-SDDE

d

dt
N~ t !52kN~ t !lnS N~ t2t!

c*
D 1AQN~ t !G~ t !. ~31!

Moreover, by means of Eq.~10!, we can assign to Eqs.~30! and~31! the multivariate Ito- and Stratonovich-Langevin equatio

d

dt8
Nn~ t8!52kNn~ t8!lnS Nn21~ t8!

c*
D 1

Q

2
Nn~ t !1AQNn~ t8!Gn~ t8! ~32!
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d

dt8
Nn~ t8!52kNn~ t8!lnS Nn21~ t8!

c*
D 1AQNn~ t8!Gn~ t8!,

~33!

respectively. Furthermore, we can verify that these t
Langevin equations correspond to the same multivar
Fokker-Planck equation~13!. Consequently, not only are th
two delay Fokker-Planck equations of the Ito- a
Stratonovich-Langevin equations~30! and ~31! identical but
they describe the same stochastic process. Therefore, th
tionary solution of the Ito interpretation of the Gomper
model~23! with the fixed point parameterc can be obtained
from the solution of the Stratonovich interpretation of t
Gompertz model~33! with parameterc* and vice versa. In
addition, comparing Eqs.~30! and ~31!, we obtain the
equivalence

~34!

On account of this equivalence, we may say that the
served shift of the fixed point is caused by the emergenc
the so-called spurious drift@45# given above byQN/2.

III. CONCLUSIONS

Using the method of steps, multivariate Langevin a
Fokker-Planck equations have been derived for stocha
processes with delay. In doing so, non-Markovian stocha
processes have been assigned to multivariate Markov d
sion processes. This procedure is reminiscent of the tr
ment of one-dimensional non-Markovian stochastic eq
tions with colored noise that can be mapped onto tw
dimensional Markov processes with white noise@45#.

The multivariate Markov processes that have been
cussed in the present article provide a closed description
stochastic processes with delays and can be solved iterat
under several boundary conditions. The delay Fokker-Pla
equation proposed by Guillouzicet al. has been identified a
the projection of such a multivariate Markov process ont
01191
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te

sta-

-
of

d
tic
ic
u-
t-
-
-

s-
or
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ck

a

one-variable stochastic process.
Furthermore, the applicability of the Ito and Stratonovi

calculus for stochastic processes with delays has been d
onstrated. As a key result, we have found that for dela
random variables the Ito and Stratonovich calculus yield
same results. Nondelayed variables can be treated just a
random variables of ordinary Langevin equations.

For a model describing population growth, namely, t
Gompertz model with delay and multiplicative white nois
we demonstrated how variable transformations can be
ried out in stochastic delay differential equations and th
corresponding delay Fokker-Planck equations. In this c
text, it has been shown that a multiplicative noise term in
preted according to the Ito calculus can be expressed
multiplicative noise term interpreted according to the St
tonovich calculus. This relation@cf. Eq. ~34!# can easily be
generalized to arbitrary multiplicative noise termsg(x,y) be-
cause of the equivalence of stochastic delay differen
equations and multivariate Markov diffusion process
Then, we obtain

~35!

which recovers for multiplicative noise terms without del
@i.e., for g(x,y)5g(x)# the well-known relation~see, e.g.,
@4# @Sec. 5.4.2# and @40# @Appendix#!

~36!

We showed that in order to evaluate a single time-inter
of a stochastic process with delay in terms of a multivari
Markov process we need to increase the dimension of
Markov process by one. Consequently, the stationary s
tion of a stochastic process with delay corresponds t
N-dimensional Markov process whereN tends to infinity.
Future studies may exploit this observation in order to c
struct stationary solutions of nonlinear stochastic proces
with delay on the basis of solutions ofN-dimensional
Fokker-Planck equations in the limitN→`.
4-7
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