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Spatiotemporal patterns in the Hantavirus infection
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We present a model of the infection of Hantavirus in deer moBsgomyscus maniculatudased on
biological observations of the system in the North American Southwest. The results of the analysis shed light
on relevant observations of the biological system, such as the sporadical disappearance of the infection, and the
existence of foci or “refugia” that perform as reservoirs of the virus when environmental conditions are less

than optimal.
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I. INTRODUCTION The model we introduce incorporates the decay by death

of the mice population, the spread of the infection through

Hantaviruses are infectious agents carried by rodenttheir interaction, the increase by birth and effect of the envi-
throughout the whole worlfil—3]. Some of them are able to ronment to stabilize the population, and also their movement
cause severe disease in humans, with a mortality rate &S a process of diffusion. We begin in Sec. Il by first omitting
around 50%, as in the case of the Hantavirus Pulmonarihe last featuréthe movement from one location to another
Syndrome(HPS caused by the Sin Nombre Virus in the motivating the different dynamical mechanisms, and obtain-
North American Southwest, or the Andes Virus in Patagoniaing some basic results including the observed temporal be-
With few exceptions, each hantavirus is associated with &avior. We proceed in Sec. Ill to perform a spatial extension
single primary rodent host species, chronically infected, an@f the model to include movement and obtain results relating
infects humans that come into contact with it or its excretato the refugia. A summary is given in the final section.
Sin Nombre Virus is primarily carried by the deer mouse,
Peromyscus maniculatughe most numerous mammal in Il. BASIC MODEL OF MOUSE POPULATION
North America, prevalent throughout the region. It was the . . . . .
cause of an outbreak of fatal pulmonary disease in the South- we can incorporate the basic |ngredlent§ of the biological
west of the United States in 1993, when the virus was firsBYSEM in @ model of the mouse population of}. We

isolated and described. Since then, a great effort has beé?lppose fthqt the whole Ipopula_ticf)n s composed of two
devoted to understand the nature of the virus reservoir, it§asses of mice, susceptible and infected, representéddy

temporal and spatial dynamics, and its relation to the humaﬁn.dM' ' rz;pectiV(zlyHSexhgn% age corgplositrilon of the plopu—
population, in an attempt to ultimately identify and predict 'ation are disregarded in this basic model. The temporal evo-
the risk of the disease. lution of Mg andM, contains two basic ingredients: the con-

Needless to say, a complete mathematical description dagion of the infection, that converts susceptible into

the dynamics of the biological system, comprising the virus/nfectéd, and a population dynamics independent of the in-

the mice, the humans, and the environment, is a dauntin@aion:

task. The goal of the present investigation ismuch less ambi-

; . ; " dMg MM

tious. From the biological complexities we extract a few ma- ——=bM-cMg— —aMgM,, (1)
jor components centered on the basic ecological and epide- dt K

miological features ofthe mice population. As the motivation

for our analysis we choose two observed characteristics of dMm, M MM taMM @)
the disease. Both arise from the fact that environmental con- dt 'K st

ditions strongly affect the dynamics and persistence of the
infection. One of them, a temporal characteristic, is the rewhereMg and M, are the populationtor densitie$ of sus-
ported observation that the infection can completely disapeeptible and infected mice, respectively, aMidt) =M g(t)
pear from a population of mice if environmental conditions + M (t) is the total population of mice. The motivation for
are inadequate, only to reappear sporadically or when condthe terms in Egs(1) and(2) follows.
tions changg3-5]. The other, a spatial characteristic, is that  Births: b M represents births of mice, all of them born
there are indications of “focality” of the infection in “reser- susceptible, at a rate proportional to the total density, since
voir” populations [3,6]; as environmental changes occur, all mice contribute equally to the procreatif.
these “refugia”[7] of the reservoir can expand or contract, Deaths: crepresents the rate of depletion by death for
carrying the infection to other places. natural reasons, proportional to the corresponding density. If
necessary, separate ratsandc, could be introduced for
the susceptible and infected populations, respectively.
*Electronic address: abramson@cab.cnea.gov.ar Competition: —Mg M/K represent a limitation process
"Electronic address: kenkre@unm.edu in the population growth, due to competition for shared re-
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FIG. 1. Bifurcation diagram of the density of infected midg, _ F!C- 2. Temporal evolution of the population of mideottom
as a function of the carrying capaci. Model parameters ara in a caricature time-dependent carrying capatity). Two special
=0.1.b=1. andc=0.5. events are markeda) The carrying capacity is below thg&, thresh-

old (shown as a horizontal line(b) An extraordinary one-year

. . - event of greater carrying capacity. Same parameters as in Fig. 1.
sources. Each is proportional to the probability of an encoun- g ying capacity P g

ter of a pair formed by one mouse of the corresponding clas
susceptible or infected, and one mouse of any clasxe
every mouse, either susceptible or infected, has to compef
with the whole population K is a “carrying capacity,” char-
acterizing in a simplified way the capacity of the medium to

%t a critical value of the carrying capacity, a result that we
ow in Fig. 1 as a bifurcation diagram. The critical value of
e carrying capacity is

maintain a population of mice. Higher values of carrying K :E b )
capacity represent a higher availability of water, food, shel- ¢ alb—c/
ter, and other resources that mice can use to th@ye We can see that the prevalence of the infection can be

Infection: aM,Mg represents the number of susceptiblecorrelated, througK, with the diversity of habitats and other
mice that get infected, due to an encounter with an infecte@cological conditions. Thus, a scarcity of resources—that is
(and consequently infectiousnouse, at a rata that we as-  to say, a low value okK—is accompanied by a lower number
sume constant. More elaborate models could incorporate @ infected mice, as found in field studies such[a$,11].
density dependence an for example, due to an increased Moreover, for values oK below the threshold . the num-
frequency of fights, during which contagion occurs throughber of infected animals is effectively zero, a fact that has also
bites, when the density is too high and the population feelgeen observed in the fieldee, for exampld;3—5]). That is,
overcrowded4]. The infection is chronic, infected mice do if temporarily the ecological conditions at a place in the
not die of it, and infected mice do not lose there infectious{andscape get adverse for the mibecause of a drought, for
ness probably for their whole lifg3,6]. For these reasons, examplg the infection can drop to zero. Correspondingly,
this single term adequately describes the infection dynamicghen conditions improve again the infection reappears. The

of the two subpopulations. _ density of infected mice can even display a dramatic increase
The sum of the two Eqg1) and(2) reduces to a single with respect to previous years, if a rare climatic event such as
equation for the whole population of logistic form: El Nifo Southern Oscillation brings enhanced precipitation

and the consequent increase in edible resources for the mice.
dM M An El Nino event in 1991-1992, precisely, preceded the out-
W=(b—c)M(1— m) €©)] break of HPS in 1993 in the Southw¢4P)].
Figure 2 shows a simulation of such events, within the
context of the present model. A time-dependent carrying ca-
Logistic growth has been observed in laboratory populationgacity is shown in Fig. Ztop), and the corresponding values
of Peromyscu§10], and is a well established metaphor of the of the susceptible and infected mice populatiovg(t) and
dynamics of a self-limitating populatior®]. M, (t), respectively, are displayed in Fig. ®ottom). We
There are four parameters that characterize the systemodel the carrying capacity with a yearly sinusoidal behav-
(1,2, viz. a,b,c, andK. Of these, we will choos& as a ior to emulate seasonal variations. A period of 20 years is
control parameter of the dynamics, since it is the one thashown, during which the carrying capacity oscillates around
best represents the influence of the environment. a value, sometimes abow€,; (shown as a horizontal ling
The system(1,2) has four equilibria. Two of them are sometimes below it. Discontinuities in the carrying capacity,
irrelevant to the present analysithe null state, which is some of which are present in Fig.(®p), do not necessarily
always unstable, and a state with <0 for any parametefs  occur in nature, and appear here because we keep the mod-
The other two equilibria interchange their stability charactereling of K(t) at an elementary level to illustrate the main
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features of the system. The period marked “a” in Fig. 2 | )
(from years 6 to Bis characterized by values KfbelowK ., i ~9(Ms,M)+D, VM, (6)
and corresponds to very adverse environmental conditions.

During these “ba_d years” the _infection level _effectively_ wheref and g are the right-hand sides of Eqd) and (2),
drops to zero, _wh|le the popula‘:uon of Tealthy mice, even Ifrespectively{and contain the specific form of the spatial de-
reduced, subsists. A return to “normal” carrying capacities endencek (x)], and we include separate diffusion coeffi-
after year 8 produces a very slow recovery of the infectec&emsD and D’ for the two classes of mice

population, Whi(.:h attains again apprecia_lble values after year rhe sSpecificzl\tion of the boundary conditibns for E@B.
11. An extraordinary event on year 17 is marked as b in and(6) will follow from the kind of problem one attempts to

Fig. 2. It corresponds to an increase in the carrying capacit . L :
(top), perhaps following an event such as Elbiithe year hddress. For example, quasi-laboratory conditions in the

before. These improved environmental conditions are fol_open air can be studied in the Sevilleta LTER facility that the

lowed by an immediatéf moderatg increase in the popula- University of New Mexico maintains near Socorro, NM.
tion of susceptible micebottom, dotted ling and by a There, mice populations can be studied inside a rectangular

: ; . . area enclosed by a fence impenetrable to the rodents. This
Sl'ghttly derllayeilh(_)utbreijk of mfe_ctlt())l(rtn(_)ttom, fulir:lne)_. C? thcan be defined as a Neumann condition of zero current at the
event such as this would appreciably Increase the risk for Boundary for the systertb) and(6). In more abstract analy-
human population to become infected.

The equations we have used above. and their redictionses, the system can be supposed infinite and either Dirichlet
e eq , ! neirp Br Neumann conditions be given. For example, the propaga-
as in Fig. 2, apply to a mean-field-like, continuous model

such as the present one. In a real svsiem the population tion of (nonlineaj waves in the system can be analyzed sup-
. P . ' yst '€ pop osing that the densities approach the various equilibria as-
discrete, and when it drops below one it vanishes. Further:

) . . mptotically at infinity in different directions, as is usually
more, the zero populgt|on state, whlch .mally.be .unstable in th one in the analysis of Fisher's equatidrs].
continuous context, is stable against infinitesimal perturba-

tions in a discrete model. The system requires a finite pertur- Furthermore, the solution of the systd) and (6), and
bation (one full mousg to start myovin tO\?VElI’dS the osiF;ive even its stationary solution, may be impossible to find, ana-

D - {0 start moving the pe Iytically, for an arbitrary functiorK(x). A few general prop-
equilibrium. In a realistic situation, once the infection has

disappeared, it will not reappear until an infected mouse ar(_erues can be found analytically about the stability of the

rives in the system from the outside. We have addressed thiSOIUtion in & homogeneous environment, in whictoes not
; . y . : : . dsepend orx. In such a case, a plain wave ansatz shows that
issues in an ongoing discrete moddl3], simulated by

means of a Monte Carlo algorithm. Preliminary results ar the homogeneousolution is stable under the same condi-
. : 9 - ry Sions as the nonextended system, and that the fastest growing
that the fluctuations in the population may show a very rel- . )
. . : . Instabilities are those which are also homogeneous. How-
evant role, specially at low density values. The main effect is : . N
. o . . ever, the most interesting situations correspond to a
a shift of the critical carrying capacity towards larger values.
The size of the fluctuations, however, decays with the syste
sizeM asM ~*2, and the mean field results hold true as thes

sizes tends to infinity.

x-dependent, and these are analyzed numerically in the
(Tollowing section.

Refugia

A nonhomogeneous environment is in fact the situation in
Ill. SPATIALLY EXTENDED MODEL the field, whereK follows the diversity of the landscape. We

The range of the deer mice is wide, comprising a diversdiave analyzed two cases of this situation by means of a nu-
landscape with a variety of habitats. This spatial extensiotinerical solution of Eqs(5) and (6). The first case is a one-
and the inhomogeneous way in which it affects local popudimensional system, where the profile displayed by the sta-
lations can be included in a spatially extended version of théionary solutions of the populations is readily accessible. The
model, whereMg,M,, andK become functions of a space second one is a two-dimensional system, intended to provide
variablex. Diffusive movement of the mice provide an ad- & more realistic picture of the consequences of the bifurca-
equate mechanism of transport, since mice of the gleus  tion. In both cases, the numerical method consists in the
omyscusare known to hold a home range during most ofspatial discretization of the system on a regular grid. The
their adult life, occasionally shifting it to nearby locations, in state of each node is advanced forward in time with a Runge-
particular if these are vacafit4,15. In principle, different  Kutta algorithm of order 4 and coupled diffusively to nearest
diffusion coefficients should be used for susceptible and inheighbors. The boundary conditions are periodic for the sake
fected mice. The observation that juvenile animals are th@f simplicity of the resolution, since our purpose is to show
most mobile[4] and that the infection affects mainly adult in general the formation of refugia, without assessing a par-
males[2] certainly supports this. We will choose later, how- ticular field situation. The initial states{s andM,) of each
ever, for the sake of simplicity of the model, to keep bothnode of the system is a random value in the intervak(p,
diffusivities equal. The extended model can be written as The approach to equilibrium is not guaranteed from an arbi-
trary initial condition, but we have found that the present
approach consistently produces a steady state, and the same
every time. Since we are using the temporal evolution of the

Ms ,
¢~ [(Ms;M)+DsV'Ms, ® system as a way to find the equilibrium, we will not report

d
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FIG. 3. Stationary solution of the extended model in one dimen- >4.0
sion. The carrying capatlzltK consists of a §pot of high valu& 36 - 40
>K., immersed in a region of lower capacity<K.. The bound- 85 ... 3G
aries are shown as vertical lines. Model parameters as in Fig. 1 -2 -3
D=20,K=1.5, in the refugiumK=0.9%K outside of it. m2s - 32

24 - 28
the dynamical phenomenon of the approach to equilibrium. 2o - 24
This, as well as other interesting dynamical processes in thg 6 - 20
system, are the subject of current work and will be reported 216
elsewhere. R

We consider first a one-dimensional landscape, consisting —
of a spot of high carrying capacitk(>K.) in the middle of ’ ’

Eoo - 04

a bigger region of low carrying capacitkK KK_.). A typical
situation is shown in Fig. 3, where vertical lines represent the i ) ] i
boundaries between the three zones. From an arbitrary initia] F'C: 4. Stationary solution of the extended model in two dimen-
condition of the populations, a steady state is attained i§'°"S- The carrying capacit¢ simulates a landscape where it is
which the infected population is concentrated at the spot ofigher near a “river.” Model parameters as in Fig.0=1,

higherK, that constitutes a “refugium.” A “leak” of infec-  gne.dimensional representation shown in Fig. 3 that, al-
tion is seen outside the high-region, due to the diffusion. hough the carrying capacity follows a step distribution, the

Far from this, the mouse population remains effectively notyice populations are not steps. Bdihs andM, have diffu-

infected. _ _ sive “leaking,” the former exhibiting a dip as one moves out
In Fig. 4 we show the steady state of a two-dimensionaht the region of large capacity. Similarly, in the two-
realization of the systertb,6) on a square grid which simu-  gimensional case shown in Fig. 4, we see that the peaks of
lates a hypothetical landscape by assigning different valuege populations represented by pure white appear at different
to K;j, the carrying capacity at each site. This is supposeghiaces for the susceptible and infected. They do not occupy

higher along a “river” as can be inferred from the density the entire “river” region or follow precisely the peaks of the
plots shown. The noninfected population occupies the wholgjistribution of the carrying capacity.

landscape, with a nonhomogeneous density. Moreover, as ex-
pected from the results of the homogeneous model, for small
and moderate values of the diffusion coefficient, the infected
population survives in a patchy pattern, only in the regions of Two observed characteristics of Hantavirus infection have
high carrying capacity, becoming extinct in the rest. Theseserved as the focus of our present investigation: temporal
“islands” of infection become reservoirs of the vir(i§] or  patterns in the evolution of the population of infected mice,
“refugia” [7], which are the places of highest risk for human and emergence of spatial features in the landscape of infec-
exposure and contagion of the virus. It is also from theseion, the so-called “refugia.” Our theoretical model, repre-
refugia that the disease would spredurring the patchi- sented by Eqs(5) and(6), incorporates nonlinear terms de-
ness, as observed [8,11]) when environmental conditions scribing infection transfer between mice populations, a
change. While our model is qualitative at this stage, this idogistic description of their interactions with the environ-
precisely what is observed in the field. We comment in passment, and diffusive terms representing their motion over the
ing that the steady state distribution of neither infected noterrain. We have shown that the combination of these various
susceptible mice reproduces exactly the distribution of theerms, while simple, naturally predicts the temporal and spa-
carrying capacity. This is the result of the interaction of dif- tial patterns whose observations have motivated the analysis.
fusion with the nonlinear interactions. Thus notice in theOur tools of investigation comprise of analytic stability con-

IV. CONCLUDING REMARKS
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siderations which result in features such as bifurcation bedelay effects related to finite incubation periods. The results
havior (e.g., Fig. 3 as well as numerical procedures which of these investigations will be reported elsewhere.
yield the temporal evolutiofe.g., Fig. 2. The spatial exten-
sion inherent in our model allows us to analyze the existence
of the “refugia” (see FlgS 3 and)4 ACKNOWLEDGMENTS
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