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Spatiotemporal patterns in the Hantavirus infection
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We present a model of the infection of Hantavirus in deer mouse,Peromyscus maniculatus, based on
biological observations of the system in the North American Southwest. The results of the analysis shed light
on relevant observations of the biological system, such as the sporadical disappearance of the infection, and the
existence of foci or ‘‘refugia’’ that perform as reservoirs of the virus when environmental conditions are less
than optimal.
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I. INTRODUCTION

Hantaviruses are infectious agents carried by rode
throughout the whole world@1–3#. Some of them are able t
cause severe disease in humans, with a mortality rate
around 50%, as in the case of the Hantavirus Pulmon
Syndrome~HPS! caused by the Sin Nombre Virus in th
North American Southwest, or the Andes Virus in Patagon
With few exceptions, each hantavirus is associated wit
single primary rodent host species, chronically infected,
infects humans that come into contact with it or its excre
Sin Nombre Virus is primarily carried by the deer mous
Peromyscus maniculatus, the most numerous mammal i
North America, prevalent throughout the region. It was
cause of an outbreak of fatal pulmonary disease in the So
west of the United States in 1993, when the virus was fi
isolated and described. Since then, a great effort has b
devoted to understand the nature of the virus reservoir
temporal and spatial dynamics, and its relation to the hum
population, in an attempt to ultimately identify and pred
the risk of the disease.

Needless to say, a complete mathematical descriptio
the dynamics of the biological system, comprising the vir
the mice, the humans, and the environment, is a daun
task. The goal of the present investigation ismuch less am
tious. From the biological complexities we extract a few m
jor components centered on the basic ecological and ep
miological features ofthe mice population. As the motivati
for our analysis we choose two observed characteristic
the disease. Both arise from the fact that environmental c
ditions strongly affect the dynamics and persistence of
infection. One of them, a temporal characteristic, is the
ported observation that the infection can completely dis
pear from a population of mice if environmental conditio
are inadequate, only to reappear sporadically or when co
tions change@3–5#. The other, a spatial characteristic, is th
there are indications of ‘‘focality’’ of the infection in ‘‘reser
voir’’ populations @3,6#; as environmental changes occu
these ‘‘refugia’’ @7# of the reservoir can expand or contrac
carrying the infection to other places.
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The model we introduce incorporates the decay by de
of the mice population, the spread of the infection throu
their interaction, the increase by birth and effect of the en
ronment to stabilize the population, and also their movem
as a process of diffusion. We begin in Sec. II by first omitti
the last feature~the movement from one location to anothe!,
motivating the different dynamical mechanisms, and obta
ing some basic results including the observed temporal
havior. We proceed in Sec. III to perform a spatial extens
of the model to include movement and obtain results relat
to the refugia. A summary is given in the final section.

II. BASIC MODEL OF MOUSE POPULATION

We can incorporate the basic ingredients of the biologi
system in a model of the mouse population only@8#. We
suppose that the whole population is composed of t
classes of mice, susceptible and infected, represented byMS
andMI , respectively. Sex and age composition of the po
lation are disregarded in this basic model. The temporal e
lution of MS andMI contains two basic ingredients: the co
tagion of the infection, that converts susceptible in
infected, and a population dynamics independent of the
fection:

dMS

dt
5b M2cMS2

MSM

K
2a MSMI , ~1!

dMI

dt
52c MI2

MIM

K
1a MSMI , ~2!

whereMS and MI are the populations~or densities! of sus-
ceptible and infected mice, respectively, andM (t)5MS(t)
1MI(t) is the total population of mice. The motivation fo
the terms in Eqs.~1! and ~2! follows.

Births: b M represents births of mice, all of them bor
susceptible, at a rate proportional to the total density, si
all mice contribute equally to the procreation@3#.

Deaths: c represents the rate of depletion by death
natural reasons, proportional to the corresponding densit
necessary, separate ratescS and cI could be introduced for
the susceptible and infected populations, respectively.

Competition:2MS,IM /K represent a limitation proces
in the population growth, due to competition for shared
©2002 The American Physical Society12-1
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sources. Each is proportional to the probability of an enco
ter of a pair formed by one mouse of the corresponding cl
susceptible or infected, and one mouse of any class~since
every mouse, either susceptible or infected, has to com
with the whole population!. K is a ‘‘carrying capacity,’’ char-
acterizing in a simplified way the capacity of the medium
maintain a population of mice. Higher values of carryi
capacity represent a higher availability of water, food, sh
ter, and other resources that mice can use to thrive@9#.

Infection: aMIMS represents the number of susceptib
mice that get infected, due to an encounter with an infec
~and consequently infectious! mouse, at a ratea that we as-
sume constant. More elaborate models could incorpora
density dependence ona, for example, due to an increase
frequency of fights, during which contagion occurs throu
bites, when the density is too high and the population fe
overcrowded@4#. The infection is chronic, infected mice d
not die of it, and infected mice do not lose there infectiou
ness probably for their whole life@3,6#. For these reasons
this single term adequately describes the infection dynam
of the two subpopulations.

The sum of the two Eqs.~1! and ~2! reduces to a single
equation for the whole population of logistic form:

dM

dt
5~b2c!M S 12

M

~b2c! K D . ~3!

Logistic growth has been observed in laboratory populati
of Peromyscus@10#, and is a well established metaphor of t
dynamics of a self-limitating population@9#.

There are four parameters that characterize the sys
~1,2!, viz. a,b,c, and K. Of these, we will chooseK as a
control parameter of the dynamics, since it is the one t
best represents the influence of the environment.

The system~1,2! has four equilibria. Two of them are
irrelevant to the present analysis~the null state, which is
always unstable, and a state withMI,0 for any parameters!.
The other two equilibria interchange their stability charac

FIG. 1. Bifurcation diagram of the density of infected miceMI ,
as a function of the carrying capacityK. Model parameters area
50.1, b51, andc50.5.
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at a critical value of the carrying capacity, a result that
show in Fig. 1 as a bifurcation diagram. The critical value
the carrying capacity is

Kc5
1

a S b

b2cD . ~4!

We can see that the prevalence of the infection can
correlated, throughK, with the diversity of habitats and othe
ecological conditions. Thus, a scarcity of resources—tha
to say, a low value ofK—is accompanied by a lower numbe
of infected mice, as found in field studies such as@3,6,11#.
Moreover, for values ofK below the thresholdKc the num-
ber of infected animals is effectively zero, a fact that has a
been observed in the field~see, for example,@3–5#!. That is,
if temporarily the ecological conditions at a place in t
landscape get adverse for the mice~because of a drought, fo
example! the infection can drop to zero. Corresponding
when conditions improve again the infection reappears. T
density of infected mice can even display a dramatic incre
with respect to previous years, if a rare climatic event such
El Niño Southern Oscillation brings enhanced precipitat
and the consequent increase in edible resources for the m
An El Niño event in 1991-1992, precisely, preceded the o
break of HPS in 1993 in the Southwest@12#.

Figure 2 shows a simulation of such events, within t
context of the present model. A time-dependent carrying
pacity is shown in Fig. 2~top!, and the corresponding value
of the susceptible and infected mice populations,MS(t) and
MI(t), respectively, are displayed in Fig. 2~bottom!. We
model the carrying capacity with a yearly sinusoidal beh
ior to emulate seasonal variations. A period of 20 years
shown, during which the carrying capacity oscillates arou
a value, sometimes aboveKc ~shown as a horizontal line!,
sometimes below it. Discontinuities in the carrying capac
some of which are present in Fig. 2~top!, do not necessarily
occur in nature, and appear here because we keep the
eling of K(t) at an elementary level to illustrate the ma

FIG. 2. Temporal evolution of the population of mice~bottom!
in a caricature time-dependent carrying capacity~top!. Two special
events are marked:~a! The carrying capacity is below theKc thresh-
old ~shown as a horizontal line!. ~b! An extraordinary one-year
event of greater carrying capacity. Same parameters as in Fig.
2-2
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features of the system. The period marked ‘‘a’’ in Fig.
~from years 6 to 8! is characterized by values ofK belowKc ,
and corresponds to very adverse environmental conditi
During these ‘‘bad years’’ the infection level effective
drops to zero, while the population of healthy mice, even
reduced, subsists. A return to ‘‘normal’’ carrying capaciti
after year 8 produces a very slow recovery of the infec
population, which attains again appreciable values after y
11. An extraordinary event on year 17 is marked as ‘‘b’’
Fig. 2. It corresponds to an increase in the carrying capa
~top!, perhaps following an event such as El Nin˜o the year
before. These improved environmental conditions are
lowed by an immediate~if moderate! increase in the popula
tion of susceptible mice~bottom, dotted line!, and by a
slightly delayed outbreak of infection~bottom, full line!. An
event such as this would appreciably increase the risk for
human population to become infected.

The equations we have used above, and their predict
as in Fig. 2, apply to a mean-field-like, continuous mod
such as the present one. In a real system the populatio
discrete, and when it drops below one it vanishes. Furth
more, the zero population state, which may be unstable in
continuous context, is stable against infinitesimal pertur
tions in a discrete model. The system requires a finite per
bation~one full mouse! to start moving towards the positiv
equilibrium. In a realistic situation, once the infection h
disappeared, it will not reappear until an infected mouse
rives in the system from the outside. We have addressed
issues in an ongoing discrete model@13#, simulated by
means of a Monte Carlo algorithm. Preliminary results
that the fluctuations in the population may show a very r
evant role, specially at low density values. The main effec
a shift of the critical carrying capacity towards larger valu
The size of the fluctuations, however, decays with the sys
sizeM asM 21/2, and the mean field results hold true as the
sizes tends to infinity.

III. SPATIALLY EXTENDED MODEL

The range of the deer mice is wide, comprising a dive
landscape with a variety of habitats. This spatial extens
and the inhomogeneous way in which it affects local po
lations can be included in a spatially extended version of
model, whereMS ,MI , andK become functions of a spac
variablex. Diffusive movement of the mice provide an a
equate mechanism of transport, since mice of the genusPer-
omyscusare known to hold a home range during most
their adult life, occasionally shifting it to nearby locations,
particular if these are vacant@14,15#. In principle, different
diffusion coefficients should be used for susceptible and
fected mice. The observation that juvenile animals are
most mobile@4# and that the infection affects mainly adu
males@2# certainly supports this. We will choose later, how
ever, for the sake of simplicity of the model, to keep bo
diffusivities equal. The extended model can be written as

]MS

]t
5 f ~MS ,MI !1DS¹2MS , ~5!
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]MI

]t
5g~MS ,MI !1DI¹

2MI , ~6!

where f and g are the right-hand sides of Eqs.~1! and ~2!,
respectively@and contain the specific form of the spatial d
pendenceK(x)#, and we include separate diffusion coef
cientsDS andDI for the two classes of mice.

The specification of the boundary conditions for Eqs.~5!
and~6! will follow from the kind of problem one attempts to
address. For example, quasi-laboratory conditions in
open air can be studied in the Sevilleta LTER facility that t
University of New Mexico maintains near Socorro, NM
There, mice populations can be studied inside a rectang
area enclosed by a fence impenetrable to the rodents.
can be defined as a Neumann condition of zero current a
boundary for the system~5! and~6!. In more abstract analy
ses, the system can be supposed infinite and either Diric
or Neumann conditions be given. For example, the propa
tion of ~nonlinear! waves in the system can be analyzed su
posing that the densities approach the various equilibria
ymptotically at infinity in different directions, as is usuall
done in the analysis of Fisher’s equation@16#.

Furthermore, the solution of the system~5! and ~6!, and
even its stationary solution, may be impossible to find, a
lytically, for an arbitrary functionK(x). A few general prop-
erties can be found analytically about the stability of t
solution in a homogeneous environment, in whichK does not
depend onx. In such a case, a plain wave ansatz shows
the homogeneoussolution is stable under the same cond
tions as the nonextended system, and that the fastest gro
instabilities are those which are also homogeneous. H
ever, the most interesting situations correspond to
x-dependentK, and these are analyzed numerically in t
following section.

Refugia

A nonhomogeneous environment is in fact the situation
the field, whereK follows the diversity of the landscape. W
have analyzed two cases of this situation by means of a
merical solution of Eqs.~5! and ~6!. The first case is a one
dimensional system, where the profile displayed by the
tionary solutions of the populations is readily accessible. T
second one is a two-dimensional system, intended to pro
a more realistic picture of the consequences of the bifur
tion. In both cases, the numerical method consists in
spatial discretization of the system on a regular grid. T
state of each node is advanced forward in time with a Run
Kutta algorithm of order 4 and coupled diffusively to neare
neighbors. The boundary conditions are periodic for the s
of simplicity of the resolution, since our purpose is to sho
in general the formation of refugia, without assessing a p
ticular field situation. The initial states (MS andMI) of each
node of the system is a random value in the interval (0,Kc).
The approach to equilibrium is not guaranteed from an a
trary initial condition, but we have found that the prese
approach consistently produces a steady state, and the
every time. Since we are using the temporal evolution of
system as a way to find the equilibrium, we will not repo
2-3
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the dynamical phenomenon of the approach to equilibriu
This, as well as other interesting dynamical processes in
system, are the subject of current work and will be repor
elsewhere.

We consider first a one-dimensional landscape, consis
of a spot of high carrying capacity (K.Kc) in the middle of
a bigger region of low carrying capacity (K,Kc). A typical
situation is shown in Fig. 3, where vertical lines represent
boundaries between the three zones. From an arbitrary in
condition of the populations, a steady state is attained
which the infected population is concentrated at the spo
higher K, that constitutes a ‘‘refugium.’’ A ‘‘leak’’ of infec-
tion is seen outside the high-K region, due to the diffusion
Far from this, the mouse population remains effectively
infected.

In Fig. 4 we show the steady state of a two-dimensio
realization of the system~5,6! on a square grid which simu
lates a hypothetical landscape by assigning different va
to Ki j , the carrying capacity at each site. This is suppo
higher along a ‘‘river’’ as can be inferred from the dens
plots shown. The noninfected population occupies the wh
landscape, with a nonhomogeneous density. Moreover, a
pected from the results of the homogeneous model, for sm
and moderate values of the diffusion coefficient, the infec
population survives in a patchy pattern, only in the regions
high carrying capacity, becoming extinct in the rest. The
‘‘islands’’ of infection become reservoirs of the virus@6# or
‘‘refugia’’ @7#, which are the places of highest risk for hum
exposure and contagion of the virus. It is also from the
refugia that the disease would spread~blurring the patchi-
ness, as observed in@3,11#! when environmental condition
change. While our model is qualitative at this stage, this
precisely what is observed in the field. We comment in pa
ing that the steady state distribution of neither infected
susceptible mice reproduces exactly the distribution of
carrying capacity. This is the result of the interaction of d
fusion with the nonlinear interactions. Thus notice in t

FIG. 3. Stationary solution of the extended model in one dim
sion. The carrying capacityK consists of a spot of high value,K
.Kc , immersed in a region of lower capacity,K,KC . The bound-
aries are shown as vertical lines. Model parameters as in Fig
D520, K51.5Kc in the refugium,K50.9Kc outside of it.
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one-dimensional representation shown in Fig. 3 that,
though the carrying capacity follows a step distribution, t
mice populations are not steps. BothMS andMI have diffu-
sive ‘‘leaking,’’ the former exhibiting a dip as one moves o
of the region of large capacity. Similarly, in the two
dimensional case shown in Fig. 4, we see that the peak
the populations represented by pure white appear at diffe
places for the susceptible and infected. They do not occ
the entire ‘‘river’’ region or follow precisely the peaks of th
distribution of the carrying capacity.

IV. CONCLUDING REMARKS

Two observed characteristics of Hantavirus infection ha
served as the focus of our present investigation: temp
patterns in the evolution of the population of infected mic
and emergence of spatial features in the landscape of in
tion, the so-called ‘‘refugia.’’ Our theoretical model, repr
sented by Eqs.~5! and ~6!, incorporates nonlinear terms de
scribing infection transfer between mice populations,
logistic description of their interactions with the enviro
ment, and diffusive terms representing their motion over
terrain. We have shown that the combination of these vari
terms, while simple, naturally predicts the temporal and s
tial patterns whose observations have motivated the anal
Our tools of investigation comprise of analytic stability co

-

1,

FIG. 4. Stationary solution of the extended model in two dime
sions. The carrying capacityK simulates a landscape where it
higher near a ‘‘river.’’ Model parameters as in Fig. 1,D51.
2-4
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siderations which result in features such as bifurcation
havior ~e.g., Fig. 1! as well as numerical procedures whic
yield the temporal evolution~e.g., Fig. 2!. The spatial exten-
sion inherent in our model allows us to analyze the existe
of the ‘‘refugia’’ ~see Figs. 3 and 4!.

We are currently in the process of investigating a num
of further features of the spread of infection on the basis
the model and techniques explained in the present pa
They include among others: traveling waves which can
pict the spread of fronts of infection emanating from t
refugia in periods favorable to the propagation of the inf
tion; situations in which the mice are limited in their mea
derings to more or less localized regions for territorial re
sons but spread the infection when the localized regi
overlap; nondiffusive effects in the motion of the mice ov
the terrain; the effect of stochastic disturbances in the e
ronment; and relevant details of the infection process suc
.E

rg

rg

um

.T.

s,
,
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delay effects related to finite incubation periods. The res
of these investigations will be reported elsewhere.
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