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Critical and near-critical branching processes
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Scale-free dynamics in physical and biological systems can arise from a variety of causes. Here, we explore
a branching process which leads to such dynamics. We find conditions for the appearance of power laws and
study quantitatively what happens to these power laws when such conditions are violated. From a branching
process model, we predict the behavior of two systems which seem to exhibit near scale-free behavior—rank-
frequency distributions of number of subtaxa in biology, and abundance distributions of genotypes in an
artificial life system. In the light of these, we discuss distributions of avalanche sizes in the Bak-Tang-
Wiesenfeld sandpile model.
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[. INTRODUCTION away from it. In Sec. Ill, we apply this branching process
model to the taxonomic rank-frequency abundance patterns
Scale-free distributions, opower laws have been ob- of evolution, and discuss the universality of their underlying
served in a variety of biological, chemical, and physical sysdynamics. Finally, in Sec. IV, we discuss the implications of
tems. Such distributions can arise from different underlyingour work, including a discussion of the order and control
mechanisms, but always involve separationof scales, Pparameters for the branching process and its applications,
which forces the distribution to take a standard form. Scaleand suggest further questions.
free distributions are most often observed in the distribution
of sizes of eventgsuch as the Gutenberg-Richter |q]), Il. THE BRANCHING PROCESS
the distribution of times between everi&sg., the interevent

interval distribution in neuronal spike traifg]), and fre- . . . .
guencies. An example of the latter is the well-known andduced N 1874. to explain the dls_appearance of fa_m|ly names
ubiquitous 1f noise. Some systems are even more interest2°NY the B”“Sh peerad@]. It is the first b_ranchmg pro-
ing because they seem to exhibit self-organization or selfSS>S " the literature, and also one of the simplest. Consider
n organism that replicates. The number of replicants

tuning, concomitant with scale-free behavior as an inheren : ' . o .

and robust property of the system, not due to the tuning of da_ughter$ I spawns 15 determme_d_ probab|l!st_|cally, with

control parameter by the experimenter. pi(i=0,1,2...,) being the probability of having daugh-
ters. Each daughter replicatesith the samep; as the origi-

Two systems to which such spontaneous scale-free beha , ) .
ior has been attributed are sandpile models and taxon crcg'—al organism and the daughter's daughters replicate and so

ation in biological systems. The former has served as th8.nt; We aFr)e intefreﬁted inlthe ra;)nk-fr]?quenc_y prozability(;jiz-
paradigm of “self-organized criticality'SOQ [3], while the tribution P(n) of the total number of organisms descende

latter, manifested in the form of near power-law shapes of °M this organism plus 1for the original organism i.e.,

rank-abundance curves, has been advanced as evidence C}FS hist_orical size of the “C(_)any” th‘? ancesral replicant has
fractal geometry of evolutiofd]. given rise to. Notei that this is equivalent to asking for the
A much simpler system where power laws are observed igrobabmty distribution qf the Iength_ of a randpm Wa!k start-
the random walk5]. For example, the waiting timesfor "9 from 1 and returning to O with step sizes given by
first return to zero of the simple random walk in one dimen—P(An): Pi-1 (i :0'1_’2 e :) [8]. )
sion [starting atx=0, at each time step(t+1)=x(t)+1 . The abund_ance dls_trlbutlolﬁ(n) can be found by defin-
with equal probability have a probability distribution ing a generating function
~1732 Closely related to random walks, branching pro- »
cesse$6] can also create power_—law distributions. Thgy ha\{e F(s)= E P(i)s'. 1)
been used to model the dynamics of many systems in a wide i=1
variety of disciplines, including demography, genetics, ecol- . o . ]
ogy, physiology, chemistry, nuclear physics, and astrophys! his function satisfies the relationship
ics. Here, we use a branching process to model the creation w
and growth of evolutionary taxa, and discuss its application _ . i
to avalanches in SOC sandpile models. F(S)‘SEO PILF(S)T, @
In Sec. Il, we examine the properties of ti&alton-
Watsonprocess. We find that this process can generate powdrom which eachP(n) can be determined by equating coef-
laws by appropriate tuning of a control parameter, and exanticients of the same order ia[6]. This result can also be
ine the dynamics of the system both at the critical point andvritten as

The Galton-Watson branching process was first intro-
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1
P(n)=ﬁQ(n,n—1) (k=1), 3

whereQ(i,j) is defined as the probability thatorganisms
will give birth to a total ofi true daughter$5]. However,
these approaches are not numerically efficient, as the calcu-
lation of P(n) for each new value afi requires recalculation
of each term in the result.

For our present purposes, we approach the problem in a
different manner. LetP,; be the probability that given

P(n)

0

' .
original organisms, we end up with a total kforganisms o ©
after all organisms have finished replicating. Obviously,

10

FIG. 1. Predicted abundance pattefdén) of the branching

Pyi=0 (k<j), (4) ~ model with different values af. The curves have been individually
rescaled.
since it is impossible to have less total organisms than one
starts out with, and diverges from a power law towards an exponential. When
m=1/2, the curve is completely exponential. For a popula-
P11=Po, (5  tion of organismsm is a measure of the tendency for new

. = ] generations to grow, or shrink, in number. A valuenof- 1
i.e., the probability for one organism to have no daughters. Angicates a growing generation size, which implies that there

little less obviously, will, on average, be no generation with no daughters, and
k-1 that the expected number of total organisms is infinite. Con-

P = Py 6 vgrsely,m<1 |nd|cat¢s a ;hnnkmg population size: There
K1 121 PiF -y © will be a final generation with no daughters, and the expected

number of organisms is finite. When=1, the system is in

between the two regimdthe system is said to be “critical;

Pui= 2 PinPig-1y (i=k>1). (7)  and only then is a power-law distribution found. In general,
=1 the branching rate is determined by the ratio of the rate of

fntroduction of competitor® to the intrinsic rate of growth

of existing assemblagés,, via

k—1

These equations allow us to use dynamic programming tec
niques to calculat®(n)(=Py1), significantly reducing the
computational time required. Also, from E¢6), we can

. R.\ 7t
write m=|1+=°| (11)
Ry
Pt Pin-1)2 Pin-1)3
= =P1tP2p tPsp t---. (8  ascan be shown by assuming stationarity. As this ratio goes
(n—1)[1 (n—1)|1 (n—1)|1 L
to 0, m—1 and the system becomes critical.
Since, forn—o, Py; is uniformly decreasing, we see In the following section, we explore systems where the
“organisms” are individual members of species or taxa in a
P(n)  Pqs taxonomic tree, anth is the average number of exact copies

—C asn—x, (C<1) (9 anindividual makes of itself, or the average number of new

taxa of the same supertaxon a taxon spawns, respectively.
whereC is a constantC indicates the asymptotic behavior of The same thinking can be applied to tumbling sites in a
P(n) asn—o. If C<1, the probability distribution is as- sandpile model, wheren would stand for the average num-
ymptotically exponential, while folC=1, the probability ber of new tumbles directly caused by a tumbling site.
distribution is a power law with exponent3/2.

P(n—1) P-1)1

Let us now examine the behavior B{n) whenn=<10*, I1l. APPLICATIONS
the more relevant case in the examples to follow. Using Egs.
(4)—(7), we can numerically calculate(n) for different sets A. Neutral model
of p;. We definem as the expected number of daughters per We first present a simple simulation to test our analysis
organism, given a set of probabilitigs, and lay the groundwork for the exploration of more compli-
cated systems. Consider a population of organisms on a finite
m:z, ip:. (10) two-dimensional Euclidean lattice, one organism to a grid
|

square. Each organism can biable or sterile All viable
organisms replicate approximately everyime stepgthere
We see that the branching rate(the control parameteris a  is a small random component to each individual’s replication
good indicator of the shape of the probability cuf¥eg. 1). time to avoid synchronization effegfswhile sterile organ-
Whenm s close to 1, the distribution is nearly a power law, isms do not replicate. When an organism replicates, its
and the furtherm diverges from 1, the further the curve daughter replaces the oldest organism in the parent’s nine-
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[ ]
P(n)

FIG. 4. Abundance distributions and predicted curves for two
FIG. 2. Neutral model grid. The organisms live on an Euclideanneutral model runs. The run shown by circles {.5x 1¢° data
grid, one organism to a site. When an organism replicates, it®0ints had a grid size of 30003000, F=0.5, andR,=0.5, while
daughter replaces the oldest organism in the nine-site neighborhoot® one represented by crosses((6x 10° data points had a grid
(If the organism marked by a black dot replicates, its daughter resize of 100<100, F=0.2, andR,=0.1.
places one of the organisms at a gray §ite.
viable daughters a viable organism has. Introducirgthe
site neighborhoodFig. 2. We define thefidelity F as the  average number of true daughtédsughters which share the
probability that the organism will create a daughter of theparent's genotypefor a viable organism—we see that
same type as itself and the correspondijggomic mutation
rate R(=1—F) at which it creates copies different from V= F+ Ry
itself. The genomic mutation rate is actually the sum of two F
rates, a probabilityr,, for the daughter to be viable but to be
of a newgenotypedifferent from that of the pareriheutral-

m=(F+R,)a. (14

From Egs.(12)—(14), we obtain steady state solutions for

ity rate), and a probabilityRs of the daughter being sterile. andm,

Of course R, + Rs=R. Note that all viable mutant daughters (=S

still share the same replication time—all mutations are a= , (15
neutral(see Fig. 3. Such a system gives rise to abundance 1+ &

distributions of power law and near-power-law type, which
can be predicted as follows.

The total number of organisms is determined by the size 1
of the grid. We write equilibrium conditions for the total
number of organismp,, and for the total number of viable 1+ =
organismspy,,

(16)

Using the branching process model, we can predict the abun-
Apa~apy=pa=0, (12 gance curve from the values afandm (or converselyF and

R,). Figure 4 shows abundance data for two neutral model
Apy~vpy=py=0, 13 uns with differing values oR,, (and consequently), along
with predicted distributiongwhich use onlyR,, and F as
parametersbased on the branching model. Although the dis-
tribution patterns are very different, both are fit extremely
well by the branching process model’s predicted curves. In
Eg. (16), note thatR, is the rate of influx of new genotypes
(and therefore new competitors for spaaeghile F is the rate
of growth of existing genotypes. The value wof is deter-
mined by the ratio of these two rates. Unless the total num-
ber of creatures is increasingi<1 (m=1 if and only if
R,—0 and new competing genotypes are introduced at a
vanishing ratg

wherea is the average number of daughtériable and ster-
ile) a viable organism has, andis the average number of

B. Artificial life

Our next system is the atrtificial life systesanda[9], an

FIG. 3. Neutral replications and mutations. An organism’s €xample of environments which host digital organigr@].
daughter is of the same genotype as the organism with probabilityn this system, while the organisms occupy a two-
F, it is of a new, viable genotype with probabilig,, and it is  dimensional grid as in the neutral model detailed above, the
sterile with probabilityRg such thatF + R,+R,=1. organisms are no longer simple, and instead each has a com-
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= lead to nontrue daughters. The instruction set is robust; copy
[soarcht |—JnopA |—{nopA || add |—| inc |—jalocae errors (mutation$ induced during the replication of viable
organisms have a nonvanishing probability of creating viable

10 new organisms and genotypes. Indeed, by selecting for cer-
<| push |—{rop8 |—f pop |—fnopc | pop |—{nop8 }> tain traits(such as the ability to perform binary logical op-

eration$ by increasing the relative speed at which instruc-
tions are executed in organisms which carry these traits, the

15 .
C|"°P‘C |_| — H - |_|"_un |_|iump_b |_|“°‘*A }) system can be forced ®volveand find novel genotypes that

contain more informatioand less entropythan their ances-
tors [11]. Even without this external selection, the system

20 evolves organism&nd genotypeswhich replicate more ef-

C|"°'*B || dvide |—{nopB |—] nopB | ficiently in less executed instructions.
. As a result of this evolution, the fidelity and neutral mu-

FIG. 5. Example sanda genotype. Sanda organisms have gengstion rate are not fixed, but can vary with the length of an
types that are strings of sanda code. The string shown above rep“)'rganism’s genome and the instructions contained therein.
cates by searching forwa(tnstru'ction 1 for the complement of the Also, new genotypes formed by beneficial mutations that al-
template nopA nopA (2,3, which is nopB nop8 (21,23, ma- 1 agter replication than previously existing genotypes will
nipulating this value in an internal register to find the genotypehave (on averagean increasing number of organismsi—
length (4,9, allocating enough memory fo store code of genotype> 1—until the new, faster replicating genotypes fill up a siz-
length (6), setting registers to prepare for copyifiy-11, copying able portion of the’ grid. All ?hese fgc%ors cy(fmbine tg make

the instructions one at a timg2-19 until all instructions have L mE
been copied15,16, and replicating20)—placing the daughter in predicting the abundance distributions for sanda much harder

its own grid site. Execution restarts at the beginning of the genotyp&h@n for the neutral model. ,

when the end of the genotype is reached, and continues until the INdeed, rather than being constant during the course of a

organism is replaced by the newly replicated daughter of anothefanda experimen®, and F will vary unpredictably as the

organism(or its own daughtér The copy command14 in this  population of organisms occupies different areas in geno-

particular genotypefails and writes a random instruction with typic phase space. Certain genotypes mayitigle, allow-

probability 7. ing very few mutations that result in new viable genotypes.
The length of the organisms may change, changing both the

plex genotype consisting of a string of assembly Ianguagegenomic mutation rate apd the neutrality rate. Genotypes ex-
like instructions(Fig. 5). Each organism independently ex- iSt that make systematic errors when copying, which de-
ecutes the instructions of its genotype, and this genotyp€réases the fidelity. In short, the dynamlcs_ of these dlglta_l
determines the organism’s replication timeUnlike the neu- ~ Organisms are complex and messy, much like those of their
tral model, the system allows non-neutral mutations whicH?iochemical brethren. These variations are observed at the
lead to new genotypes with both lower and higher replicatiors@me time across different organisms in the population, and
times than the parent. are also obse_rved with the progression pf time. Still, we at-
The system and the instructions are designed so that tH€MPt to predict the abundance distributions by approximat-
organisms can self-replicate by executing certain sequencddd the ratio of neutral mutations to true copies by tie
of instructions. The replication time of an organism is not aServedratio of viable genotypes to the total number of viable
predetermined constant, rather it is determined by the gendfdanisms ever created
type of the organism: Organisms can replicate faster or R
slower than other competing organisms with different geno- .9 (17)
types. For an organism to successfully replicate, its genotype F N,
must contain information that allows the organism to allocate ) )
temporary spacgmemory for its daughter, replicate its Whe.zreNg is the total numbgr of viable genotypes ob_served
genotype (one instruction at a timeinto this temporary during a sanda run anl, is the total number of viable
space, and then to divide, placing its daughter in a grid sit®r9anisms. This relation should hold approximately under
of its own (Fig. 5). As in the neutral model, on division, the €duilibrium conditions. Then, Ed16) becomes
daughter replaces the oldest organism in its parent’s nine-site
neighborhood.
Organisms, depending on their genotype, may not be able
to replicate(may be sterileor may only be able to replicate
imperfectly (resulting in no true daughtersAlso, the copy and from Eq.(15)
instruction, which the organisms must use to copy instruc-
tions from their own code into that of their nascent daugh-
ters, has a probability of failurecopy mutation ratg which
can be set by the experimenter. When the copy instruction
fails, an instruction is randomly chosen from all the instruc-The fidelity F is inferred from the average lengtlof geno-
tions available to the organismshe instruction set and types during a run and théexternally enforced per-
written in the string location copied to. Copy mutations alsoinstruction copy mutation ratg, F=(1—7)'. Because we

Z

-1

Do , (18

+
1Nv

m==

m
a= E (19)
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10 . — tions of taxonomic and evolutionary assemblages found in
I ] nature are surprisingly uniform. Indeed, Burlando has specu-
° Run 132 . lated that all higher-order taxonomic rank-frequency distri-

* Run 192 ] butions follow power laws stemming from underlying fractal

. dynamicdq4]. We believe this conclusion is hasty: The diver-

] gence of the distributions from power law can be observed
] by applying appropriate binning methods to the da&ee

the Appendix. Yule [13] attempted a branching process

P(n)

0t E ; S model explanation of these distributions, and claimed that
S .-,»:. divergence from power law of rank-abundance patterns was

10_5100 o — transient and indicated a finite time since the creation of the
n evolutionary assemblage. Our model indicates that this is not

enerally the case. We find that the divergence from power

FIG. 6. Abundance data from two sanda runs with predicte pw is not a result of disequilibration, but is an inherent prop-
abundance curves. Both runs were started with the same initia

genotype for all organisms, the same per-instruction copy mutatio rty of_the_ evolutionary a_ssem_blage L_Inder c_:onSIderatlon and
rate (y), and the same grid size (18@00). Run 192’s genotypes t "ﬂ this divergence provides insight |nt(_) microscopic prop-
evolved into a regime of genotypic phase space with longer averag%rtles of the assemblage.g., ,the rate Of_ innovation

length, and therefore lower fidelify and higher neutralitRR,,, than Say, for example, we are interested in the rank-frequency

Run 132, resulting in the differences in the abundance distributiongJistribution of the number of families in each order for fossil
The predicted curves were generated by approximating a represef@rine animal orders. We assume that all new families and
tative value ofR,/F from the ratio of the number of viable geno- Orders in this assemblage originate from mutations in extant

types to the number of viable organisms observed over the run. Th@milies. Then, we can define rates of successful mutdion
data was binned using the template threshold method Wit ~ for mutations which create new families in the same order as
(see the Appendix the original family, andR, for mutations which create an
entirely new order. In this case, unlike the cases treated
estimatem and a from macroscopic observables averaged?POVve, we approximate—ce; many individual births and
over the length of a run, we expect some error in our result§nutations occur, but the proportion that are family or order

due to the shifting dynamics of the evolution of genotypes ad0rming is minuscule. Finally, assuming a quasisteady state
the system moves in genotypic phase space. (the total numbers of orders and families vary slofly]),

The abundance data from two different sanda runs ar¥e rewrite Eq.(16),
shown in Fig. 6 with the predicted abundance curves. The

two runs shared the same grid size and per-instruction copy m=| 1+ & (20)
mutation rate, and were started with the same initial geno- Ry
types, but the runs evolved into different regions of geno-

. . g . N -1
typic phase space and consequently had significantly differ- ~[ 1420 21)
ent statistics. Considering the many gross approximations we N/ 7

have made, the agreement between our prediction and the
experimental data is surprisingly godgéspecially as no fit- in terms of N, and N¢, the total numbers of orders and
ting is involved. Sanda is most closely related to an asexufamilies, respectively. As in the previous systems studigd,
ally replicating biological population, such as colonies ofis the rate of creation of new—competing—orders, wiRtle
certain types of bacteria occupying a single niche. The gends the rate of growth of existing orders, andis determined
type abundance distributions measured in sanda are analby their ratio.
gous to the species or subspecies abundance distributions of Data for the abundance distribution of the number of
its biological counterparts. In general, species abundance digamilies in fossil marine animal ordef$5] are shown in Fig.
tributions are complicated by the effects of sexual reproduc?. We obtained values fa¥, andN; directly from the fossil
tion, and of the localized and variable influences of otherata to generate the predicted curve withfree parameters
species and the environment on species abundances. HoWhe agreement is very good, much better than that for the
ever, we believe the branching model—used judiciously—sanda runs where evolutionary parameters such as the fidel-
can be helpful in the study of such distributions as well. ity F and the neutralityR,, were constantly changing. Com-
paringm and the resultant abundance curves with those ob-
tained above for the rank-abundance distribution of sanda
genotypes leads us to the expected conclusion that the prob-
Rank-abundance distributions at taxonomic levels higheability of creation of a new genotype in sanda per birth is
than speciese.g., the distribution of the number of families much higher than the probability of a new family creating an
per ordey are simpler to model than species abundance diserder in natural evolution. Indeed, a wide variety of higher-
tributions, as the effects of the complications noted above arerder taxonomic assemblages have abundance distributions
weak or nonexistent. We find that the available data is weltonsistent withm near 1/4]. We believe this is a robust result
fitted by assuming no direct interaction or fitness differenceof the evolutionary process. Low values of may not be
between taxd12]. The shapes of rank-frequency distribu- observed for large taxon assemblages for several reasons. A

C. Evolution
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N(n)

1 1 uc u

FIG. 8. Order parameter as a function of the control parameter
m. For u below u., the order parameter is O—organisrr
event$ in the system spawn greater and greater number of daughter
10 organisms(eventg, and there is exponential growth. Far>u.,
competition from newly created organisnievent$ stops abun-
FIG. 7. The rank-frequency distribution of fossil marine animal dances from growing without boung.= .. marks the critical point
orders(squares[15] and the predicted abundance cufiiee). The where abundances can grow to infinity, but do not show exponential
predicted curve was generated—with no free parameters—by agrowth, and power-law distributions arise.
proximating R,/F by N,/N¢=0.115. The empirical distribution
agrees with the predicted curve with significance 0.12 using the
Kolmogorov-Smirnov tesf12]. The fossil data is shown binned
using the template threshold binning method explained in the Ap
pendix withT=1.

IV. DISCUSSION

The Galton-Watson branching process generates power-
Taw distributions when its control parametar=1. In all the
systems we have examined above,
small value ofmimplies either a small number of individuals -t
in the assemblage, or a very specialized niche with a very
low rate of taxon formation. A low number of individuals
W0u|d |ead to a IOW probabmty of the taxon being discov_ is determined by the ratio of the rate of introduction of com-
ered and cataloged by biologists. A small number of indi-PetitorsR. to the intrinsic rate of growth of existing assem-
viduals and taxa would result in an assemblage with too fewW!2gesR, . As this ratio goes to Om—1 and the system
taxa to give us a clear statistical picture. Also, since such aR€comes critical. _ _
assemblage would have a small population, be incapable %c This relation can be translated into the standard relation
further adaptation, or both, we expect it would be more sus- etween arorder parameter
ceptible to competition and environmental effects leading to R
early extinction. a=— (23

R
1+ -

m=
RP

(22)

) and a new form for the control parameter
D. Sandpile models

It was originally suggested that the self-organization ob- p=m-*t. (24)
served in the sandpile model of Bak, Tang, and Wiesenfel
(BTW) [3] (and the power laws it displaygd/as an inherent
property of the system, while it now seems established that
the system is actually tuned by waiting until avalanches are a=
over before dropping new grains—this is equivalent to al- 0 (w=me),

lowing nonlocal interactiongl6,17]. The same conclusion is where =1 andg=1 (Fig. 8. The order parameter repre-

reached when using a branching process to describe the Ants the rate at which competition is introduced in the sys-

Ianche_ dynamics. Branching processes have been applied ttélm(the strength of selectionA value of the control param-
sandpile models as early as 1988] (see also[18,20-23).  gter < 4. implies a system with no competition and no
Using a mean-field approach in higher dimensiods=4),  selection—an exponentially growing population. Valueg:of
power-law distributions for the size of avalancts{s) can  nigher thany, indicate that new competition is always being
be obtained analytically, and critical exponents can be calcUntroduced and that all existing species or avalanches must
lated exactly to revead(n)~n~*?[18] in the limit of infini-  eventually die out. Whep= ., competition is introduced
tesimally small driving. This is supported by numerical at a vanishingly small rate, and we find the critical situation
simulations. However, for lower dimensions, sandpiles willwhere separation of scales occurs.

“interfere” with themselves, and a smaller exponent is For sandpile models, this is arbitrarily set close to 0 by
found. Attempts to calculate the effects of this “final-state” using large lattice size§educing dissipationand waiting
interaction through renormalization have as yet not beeifior avalanches to finish before introducing new perturbations
completely successf{iR4]. Still, the phenomenon of “viola- (resulting in an infinitesimal driving rate and a diverging
tions” of power-law behavior due tan<1 (noncritical diffusion coefficient. For the biological and biologically in-
branching procegsan be seen there as well. spired systems we have considered, the control parameter is

%riting a in terms of i,

(p—p)? (> pe),
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FIG. 9. Binned avalanche size distribution for the BTW sandpile  FIG. 10. Avalanche size distribution in the two-dimensional
in the limit of infinitesimally slow driving(the standard BTW pro- BTW sandpile model with infinitesimal driving rate (¥6.0° ava-
tocol). The inset shows avalanche size distribution data aftetanches.
100000 avalanches. The main panel shows the same data binned
using the data threshold method with=1000. That this binning
method accurately reproduces the function this data is drawn from
can be seen by comparing to the data set ok 16° avalanches When dealing with event distributions best plotted on
(Fig. 10, which shows no discernible differences between the pl’eSing|e |og or double |og SC&|€$UCh as exponentia| and
dictions made by binning and the conclusions given by more datapower-law distributions care must be taken in the proper
binning of the experimental data. Say we are interested in the
probability distributionP(n) of an event distribution over
positive integer values af. We conducN trials, resulting in
a data se@Q(n) of the number of events observed for evary
. : . ._value. For ranges ai where the expected or observed num-
small, especially for higher taxonomic orders. The dynam|csDer of events for each is much high

gher than 1, normally no

of evolution act, robustly, to keep nearu.. This in turn _binning is required. However, for rangesrofvhereQ(n) or
leads to a near power-law pattern for rank-frequency distri-

) P(n) is small, binning is necessary to produce both statisti-
butions. D ZL ; A )

cally significant data points, and intuitively correct graphical

We have shown that the apparent power laws of ava- ; A ]

. . N : . ... representations. A constant bin size has several drawbacks:

lanches in species-abundance distributions in artificial life ; . L

A . One must guess and choose an intermediate bin size to serve

systems, as well as rank-abundance distributions in tax:

onomy can be explained by modeling the dynamics of {hCToss a broad range of parameter space, and the shape and

underlying system with a simple branching process. Thi slopes of the_curvéeven in a double log plptare d|s§orted .
. ; : 10]. These disadvantages can be overcome by using a vari-
branching process model successfully predicts, without fre

parameters, the observed abundance distributions—includin%ble _bm. size. However, Choos”.‘g bin sizes for varlgble b!n—
their divergence from power law ng is time consuming and arbitrary—different choices will

: , Pad to different conclusions. We propose two related meth-
A branching process approach may allow the deduction o . L : : .
ods of systematically determining appropriate variable bin

the microscopic parameters OT th? system Q|rectly from thesizes. Both methods lead to binned data which help in visu-

macroscopic abundance distribution. We find that we can . . ) T

, . alizing the underlying distributior{slopes and shapes are

identify a control parameter—the average number of new, onservey

events an event d|r_ectly spawns, and an or_der parameter— For the first methodthe data threshold methgdwe start

the rate of introduction of competing events into the system selecting a threshold valié Startina fromn=1 and

and that these are related in a form familiar from secon p)r/oceedinggto higher values nd binninggis done until a value

order phase transitions in statistical physics. of n is found for whichQ(n)<T. When such a valua, is

found, subsequen®(n) values are added to this amount

until the sum of these values is greater than the threshold
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kindly sending us his amended data set for fossil marine

animal families. J.C. thanks M. C. Cross for continued sup-

port and discussions. Access to the Intel Paragon XP/S was il

provided by the Center of Advanced Computing Research at n; Q(n)>T. (A1)

the California Institute of Technology. This research was S
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and DEB-9981397. Part of this work was carried out at the L . n

Jet Propulsion Laboratory, California Institute of Technol- '/ then have a bin size(—ns+1), with valuez L, Q(n).

ogy, under a contract with the National Aeronautics andWhen plotting, it is convenient to plot this as a single point at

Space Administration. the midpoint of[ ng,n,], with an averaged value,

APPENDIX: BINNING METHODS

not set arbitrarily to a critical value. However, the dynamics
of the evolutionary process, in which it is much harder to
effect large jumps in fitness and function than it is to effect
small ones, lead to naturally observed valuesaobeing

ACKNOWLEDGMENTS

011907-7



CHRISTOPH ADAMI AND JOHAN CHU PHYSICAL REVIEW E66, 011907 (2002

n |
> Q(n) > E(n)>T. (A4)

Ng+N; n=ng n=ng
A2
2 'n—ng+1 (A2)

We then have a bin dfng,n,] with corresponding sizen(

This yields a graphical representation with little distortion ~Nst1). The average value associated with this bin is

and good predictive powe(fFigs. 9 and 10 This binning n

procedure is continued until no more data remains to be > Q(n)

binned. n=ns (A5)
The second binning methodthe template threshold n—ngt1l’

method, uses a predicted probability distributiét(n), or a This procedure is repeated until the data is exhausted. For

reasonable surrogate. Again, we define a threshold value for. : .
fitting T. However, in this case, the bin sizes are determinetﬁF"S method, the data may be graphically represented either

by comparing values of thexpected distribution as a single point per bifas in the data threshold method
above, or as a pointshowing the associated average value

E(n)=P(n)N (A3)  for each measurethonzerg data pointQ(n).
The data threshold method requires ariori knowl-
to T. Starting fromn=1 and proceeding to higher values, no edge, and is a good predictor of the underlying distribution.
binning is done until a value dafi is found for whichE(n) However, when there are few data points, the template
<T. When such a valugg is found, subsequefii(n) values threshold method is more reliable. For both methods, a range
are added to this amount until the sum of these values isf T should be tried and the be%t (neither over or under

greater than the threshold value, binning) chosen.
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