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Molecular dynamics simulation of polymer helix formation using rigid-link methods
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Molecular dynamics simulations are used to study structure formation in simple model polymer chains that
are subject to excluded volume and torsional interactions. The changing conformations exhibited by chains of
different lengths under gradual cooling are followed until each reaches a state from which no further change is
possible. The interactions are chosen so that the true ground state is a helix, and a high proportion of simulation
runs succeed in reaching this state; the fraction that manages to form defect-free helices is a function of both
chain length and cooling rate. In order to demonstrate behavior analogous to the formation of protein tertiary
structure, additional attractive interactions are introduced into the model, leading to the appearance of aligned,
antiparallel helix pairs. The simulations employ a computational approach that deals directly with the internal
coordinates in a recursive manner; this representation is able to maintain constant bond lengths and angles
without the necessity of treating them as an algebraic constraint problem supplementary to the equations of
motion.
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I. INTRODUCTION tion, followed by the somewhat slower, highly localized con-
formational changes such as crankshaft motions, then the
Polymers, because of their importance and complexityeven slower aspects of reorganization such as the still rela-
have provided a longstanding challenge for computer simutively localized process of helix formation, and, finally, the
lation. Over the years, the field has become fragmented, bottypically extremely slow changes that lead to the emergence
in terms of the problems addressed and the methodologyf tertiary structure characteristic of protein folding and to
employed. Broadly speaking, the kinds of system studied capolymer diffusion in a concentrated solution. The time scales
be classified into distinct groups; there are biological hetassociated with this hierarchy of processes span a range con-
eropolymers, a category dominated by the proteins; hosiderably in excess of ten orders of magnitude, and so such
mopolymers and block copolymers that include a great varisystems are clearly not generally amenable to direct model-
ety of molecular types, from alkanes to plastics; anding, unless subjected to major simplification. Considerable
idealized polymer models used for elucidating general prineffort has been invested in the design of models and simula-
ciples such as the theta point, reptation, and multiphase be&ion methods with the aim of alleviating this problem to at
havior. The computational techniques span an equally broagast some degree.
range; they include molecular dynami¢sID) simulation One especially important application of polymer simula-
employing models that represent the molecules at variouon is in the field of protein folding, e.g., Ref$1-5];
levels of detail, ranging from fully atomic to highly reduced achieving an understanding of the mechanisms underlying
descriptions; Monte Carlo sampling of both continuum- andthis important process presents a major challenge to compu-
lattice-based systems, again with different levels of represertational biochemistry. Protein modeling runs the gamut from,
tation; and exact enumeration of small systems aimed &it one extreme, highly detailed molecular representations in-
eliminating the sampling errors inherent in the other methvolving potentials derived from a mixture of theory and ex-
ods. While all three kinds of methodology provide importantperiment, together with a solvent of individual water mol-
information about equilibrium behavior and, in a sensegecules, all solved by MD and an enormous amount of
amount to doing statistical mechanics numerically, the MDcomputational efforf6,7], through highly simplified models
approach provides access to the dynamical and nonequilitalso solved by MO 8], to yet even simpler models embed-
rium aspects of the behavior; although it might be arguedied in lattices with only a limited number of degrees of
that Monte Carlo shares some of this capability, the associfreedom(DOFS studied using a suitable Monte Carlo pro-
ated dynamics is a consequence of the chosen stochastiedure and a greatly reduced investment in compuytiig
sampling algorithm. Lattice-based approaches, though offeeven complete enumeration of all conformations is some-
ing a vastly reduced configuration space, have the additionaimes feasiblg¢9]. While the manner in which the amino acid
problem of the discreteness of the lattice on which the polysequence of any given protein is able to determine its pre-
mer is embedded, and the consequent absence of gradglmably unique spatial structure continues to be the subject
transitions between different configurations. of intense study, of no less importance is the question of the
The inherent difficulty in polymer simulation is that the folding pathway—the preferred rout@r routes through
problem naturally embraces a broad range of time scalesnultidimensional conformation space eventually terminating
ranging from very fast processes associated with bond vibraat the native state. While all the widely differing methodolo-
gies enumerated above can be used for studying folded
states, the collective dynamical processes that underlie fold-
*Electronic address: rapaport@mail.biu.ac.il ing really demand an approach based on MD. But, after

1063-651X/2002/6@)/01190615)/$20.00 66 011906-1 ©2002 The American Physical Society



D. C. RAPAPORT PHYSICAL REVIEW E56, 011906 (2002

‘ ends it might be argued that being able to fold a helix is not

. really a significant step in learning how to fold an entire
u&&u&\\“\\\\ protein. Therefore, another folding problem considered here
‘ ' is the one with a ground state formed from an antiparallel

FIG. 1. A well-formed helix in a chain of length 90; a goal of pair of helices. This, too, is a recognizable element in some
the simulations is to observe chains spontaneously collapsing intBroteins, and is unquestionably classified as a tertiary struc-
this state(the polymer is drawn as a tube whose radius is that of thgure.
monomers The obvious extension of this approach, a subject for fu-

ture exploration, is to design simple models for other struc-
reaching this conclusion, there is a practical question otural motifs, with the hope of learning more about folding by
whether, even after substantial simplification, seriousexamining the collapse pathways of these idealized models;
progress in understanding the mechanisms of folding can béome structures might fold more readily than others, in
achieved by computer simulation, owing to the diversity ofwhich case the steric and topological issues involved could
intrinsic time scales; while substantial advances have beepe investigated; for some structures there might be recogniz-
made, a great deal remains to be done before this questionasle intermediate states along the folding trajectory; some
answered. cases might reveal useful properties that, when regarded as

The goal of the present paper is twofold. The first goal isconformational(or reaction “coordinates,” might serve in
a demonstration of a different perspective on the MD ap+the design of other kinds of simplified modd®]; and fi-
proach to studying protein folding. The most ambitious levelnally, once the simple version has been found to have the
of modeling is based on carefully constructed potential funccorrect behavior, the models could be enhanced by gradually
tions, often with a multitude of parameters; since the nativéincorporating features from more realistic representations,
conformation generally corresponds to the state of minimunincluding specific interactions and structural details. This
free energy, establishing the details of these interatomic inrepresents the motivation for this kind of modeling approach.
teractions, including solvent effects, provides the foundation The second goal is methodological. Even when consider-
for such work. Determining whether the known native stateing the simplest of model polymers, in which, typically, all
of a given protein is the one favored by energetic considerthe molecular detail is absorbed into effective atoms located
ations is in itself a complex optimization task, but following along the backbone chaimore so if this simplification is
the full dynamics over a sufficiently long period of time for not mad¢ there is a need to specify the internal DOFs of the
the major structural changes that typify protein folding tosystem. One possibility is to assume that adjacent atoms are
occur verges on the impossible. The approach adopted heg®nnected by stiff springs represented by a suitable potential
is just the opposite, and the question posed is the followingfunction; in this case each atom has its full complement of
Given a known structural motif, such as the helix, and athree translational DOFs and, if these atoms are regarded as
simplified model of a polymer chain with a readily deter- rigid particles rather than point masses, three rotational
mined, unique ground state corresponding to this configurabOFs as well. If the bond potentials are made sufficiently
tion, as in Fig. 1, will the chain collapse into this state within stiff to correspond to a typical real system, the ensuing high-
a reasonable amount of computation time when allowed térequency vibrations impose a very small integration time
move freely in space, as shown in Fig. 2, while subjected tatep, which runs contrary to the goal of efficiently simulating
gradual cooling? over long periods of time.

The most elementary of these organized structures is the |t is, however, possible to introduce geometrical restric-
helix, which, while being a prominent feature in many globu-tions, such as strictly constant bond lengths, while retaining a
lar proteins, is only classified as a secondary structural elesoluble dynamical problem. This is done by introducing ho-
ment (the primary structure being the amino acid sequencéonomic constraints and Lagrange multipliers into the equa-
itself), and because of its homogeneous natereept for the  tions of motion[10], and then solving a set of algebraic
equations while integrating the differential equations of mo-
tion. Two approaches have been developed for doing this;
one involves initially solving the unconstrained equations of
motion over a single time step and then iteratively correcting
the relative coordinatg4.1,12, and, optionally, also the rela-
tive velocities[13], using a relaxation procedure to ensure
the constraints remain satisfied; the other tackles the problem
by constructing a matrix representing the contributions of the
constraints which, in effect, must be inverted at each time
step[14,15, and which is subject to gradual drift requiring
regular correction. Similar geometric constraints can be in-
troduced to maintain constant bond angles as well, since it is
often a reasonable approximation to assume that the angles
between consecutive bonds along the backbtreelse-

FIG. 2. Arandomly coiled chain of length 90; this configuration wher@ are unvarying. Such geometrical constraints have
represents a typical state of the chain prior to the onset of foldingproved extremely useful, given the nature of the excitations
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present in the system: fluctuations in bond lengths, ang; 4 anglea, about the axi§<k_1, where COS"kZBk—l'Bki
sometimes also angles, tend to be of relatively small amp”followed by a rotation through the dihedral anglg about
tude and high frequency, so that freezing them out of the A . .
dynamics permits a substantial increase in the allowed intdn€ joint axisz._,. The matrix(actually its transpogecorre-
gration time step. The amount of additional processing reSPOnding to this rotation is

quired for the constraints depends on their nummer the

. ) . . cosf, —siné, cos sin 6, sin
dependence is typicall(n,) for the iterative approach, but K k LOSCk kST

for the matrix approach it i©(n2), making the latter unsuit- Re_1x=| SiNfk C€OSHCOSay  —COSb) SNy
able for large problems. 0 Sinay COSay
If bonds lengths and angles are fixed, the only remaining (1)

internal DOFs are the dihedral angles, each defined in terms

of a rotation about an axis lying along a bond, and affectingso that

the relative orientation of the pair of bonds on either side.

For reasons shrouded in history, dealing with this problem RI=R$R3,1- . ‘RI_LK, 2
has been perceived as difficult, as indeed it is, if the problem

is not addressed in a suitable manner. A significant advancahere R} represents the orientation of the initial site and
in the methodology for dealing with dynamical problems in- bond, and

volving internal coordinates occurred some years ago in the

robotics field[ 16,17, but with only the occasional exception, N 1=ret+|bdRiz (3)
e.g., Ref[18], it appears to have gone unappreciated by the

polymer simulation community at large. Because of the im- In the present casd|b,|} and{«,} are all constant, so
portance of this technique, the goal of which is to deal di-that the only internal DOFs are those associated Wf).
rectly and economically with the internal DOFs, and sincepefine i, to be the rotation axis of the joint between bonds

there is no reason why it should not be capable of replacing_ 1 andk that is fixed in the frame of bonk—1- in the
the various constraint-based approaches for most applica- ’

tions, a detailed treatment of the underlying theory is in_present CaSEth.Zkfl' Insofar_ as md_e_xmg IS concerned,
cluded in the paper. there are n, internal rotational joints (with Iapels
This approach to the dynamics of linked bodies also re—lc’)' o ,nr),+1nb|=nr;1 ::)onds (Io.t. I. ), antheri s_ltes
quires solving the dynamics of individual rigid bodies. An (. e A ). In order to compietely specify the ¢ ain con-
alternative, recently described meafd] of numerically figuration, an additional joint is attached to the-0 site,
dealing with the rigid-body equations of motion is discussed” |tr|1| three_ tra;nslattlonatl ?nd thr_eebrtl)ltan%nal ?g'é?’?;ﬁp'
briefly; the method is based on rotation matrices, rather thaft/@lly equivalent to a telescopic ball-and-socke iirdhis
on quaterniongor even Euler angleshat are generally used. joint is included in the formalism but will, eventually, be
The present formulation differs slightly from the original in treated separately.
regard to the reference frame in which the computations are . . . .
carried out. The use of rotation matrices offers improved B. Kinematic and dynamic relations

numerical stability, and since the method belongs to the leap- |t ;,, andaw, are the linear and angular velocities of dife

frog family of integrators, it means that simple leapfrog in-then the velocities and accelerations of adjacent sites are re-
tegration techniques can be used for the entire set of dynamiateq py

cal equations appearing in the problem.

wk:wk,1+ hkgk! (4)
II. LINKED-BODY DYNAMICS
A. Chain coordinates U=kt o1 X by, )
Consider a linear polymer chain whose monomers are ¢k:iﬂk—1+ﬁkbk+wk—1Xﬁk9k, ®

joined by rigid bonds. In the discussion that follows, the

terms “monomer,” “atom,” “site,” and “joint” will be used . .

interchangeably, as appropriate to the context, likewise — Vk=Uk-1F @ 1Xb1+ @1 X (o1 Xb1), (7)

“link” and “bond.” Bond lengths and angles are constant. If

each torsional DOF is regarded as a mechanical joint assodihere Isk<n,. While the mass elements of the chain are

ated with the site at one end of the link, with just a singlenormally identified with the sites, here it is helpful to asso-

rotational DOF, then the system is analogous to a basic prot#iate them with the bonds; if+c, is the location of the

lem in the field of robotic manipulatofd.6,17. center of mass of the atoms attached to bé&ndhen the
The chain configuration is defined by the site positionscenter-of-mass acceleration of the bond is

{r¢}, and if the bond vectors between adjacent sites e o

thenr,,,=r+b,. The internal configuration of the chain V=0t @ X Gt o X (e X Cy). (8)

can be specified by a set of bond rotation matrideg. The

transformation between the local coordinate frames attached f, andn, are the force and torque acting on bdnédcross

to bondsk—1 andk(k=1) involves a rotation through the joint k, then the equations of motion are
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T+ 0 X (Tyn) =Ng—Nies 1 — G X i whereV, andA, are examples of spatial vectors, and
— (b= ) X fi 1+, ©)) | 0
$eu=| g ] (19
M =f—fip 1+ 5, (10 K
. . ) _The 6X6 matricesepy 1x and ¢y 1 (laten) appear through-
wherefg andng, are the externally appheq for_ce and torque; ot the derivation, and their role is to propagate kinematic
my andZ, are the mass and moment of inertia(tife atoms 54 dynamic information between joints. Several other new
associated withthe bond, the latter expressed in a spaceygriables have been used,
fixed frame and relative to the center of mass of the bond. It

is often convenient when dealing with rigid bodies to work ﬁk
in a center-of-mass franfd.Q]; this is not the case here, and Hy= (20
all vector components are expressed in the space-fixed coor- 0

dinate frame. Rearrange the terms of E.and (10) to
obtain relations between torques and forces on adjace

riﬁfa six-component joint axis vect@n the more general case
bonds, 0

a joint with d DOFs, which the formalism is capable of
handling,H; would become a &d matrix),

N&=Ng+1+ kafk+1+ myCy X vﬁ+ Ik(:t)k"r‘ Wy X (Ikwk) - nﬁ

;k—l 0 F\kbk
— g X fE, (11) Xk:( ~ ( (21
0 Wy 1 U~ Uk-1
fie=fiee 1+ Miwi— 1y, (12) is a six-component spatial vector containing the remaining
and define the torque acceleration terms of the current site, aWg=6,. When
used in vectors and matricelsand O denote unit and zero
t, = hy- Ny (13)  block submatrices of the implied size. The six-component

vectors, and most of the associated matrices, are shown in

that acts along the axis, at joint k and corresponds to the capital italic lettergto retain some similarity with Ref20],

torsional interaction due to a twist around bdod 1. ¢, ¢, and M are also used no other special notation is
needed since the variable types will be obvious from the

context.

C. Spatial operator formulation o .
In a similar way, Eqs(11)—(13) can be rewritten as

Equations(4)—(7) can be expressed more concisely in

terms of six-component “spatial” vectors that combine the Nk [ '5k N1
translational and rotational quantities. It is also convenient to = f
represent certain vectors by means of antisymmetric matrices k U k+1
of form m, G X Uﬁ‘f‘ Ik(;l)k‘f‘ w X (l'kwk)

3 0 -u, wuy mki:ﬁ

u=| u 0 —uyl, 14

‘ x a4 NS+ g X ¢
-u, u 0 - e , (22)
k

so thatlv =uXwv. The resulting equations are

AT
. t he\ Nk
e R e
= = + )6, (19 0/ Ve
U by, 1) \vka 0
or, equivalently,
o | 0\ [ e A .
( _ k) :( 8 )( o 1) +< k) ) Fi= diks 1P 1+ MiAcHY,, (24)
vy by v, 0
. Te=H.F\. (25
+( wk,lx hk0k ) (16) K KK
o1 X (o 1Xb_ 1))’ Here Eq.(8) has been used, and
or, equivalently, Ty~ MCC MGk
| M= (26)
Vie= g1, Vi—1+ HgWy, 17 kG “
T _ is the symmetric, & 6 mass matrix; the six-component vec-
A=y A1 HWH X (18 tor
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O Ti— MG 0 @y e+ X 8 joint exerts no toqu_Je(Note that _index ord.er has been re-
Y= - - . (27)  versed from the original to make it more suitable for polymer
My @, @, Cy fi use, and, for convenience, other aspects of the notation have
) o o . . been altered or simplified.
contains the remaining force contributions. The idengty The next step is to define the matrix
X[ X (X ¢)]=— o X[ X (X @) ] was used in ob-
taining these expressions. In order to use the recurrence re- d=(1-¢) %, (32

lations forV,, Ay, andF,, the velocity and acceleration of

the initial site,Vy and Ay, must be provided, while the force which is also used in the alternative ford,=® ¢ +1; be-

associated with the site at the end of the final bdfyg, 1, is causes™"1=0, Eq.(32) is equivalent toP =1+ ¢+ >+

zero, since there is no joint associated with that site. -+ -+ ", which is an upper-triangular block matrix whose
The purpose of the recurrence relations in E4§) and ~ €lements, each a>66 matrix, are

(24) is to provide expressions f¢W,}, which, together with

. ) . I, j=i,
Ay, and assuming all the forces acting on the sites are :

known, can be integrated to solve for the chain dynamics; ®=4 bii+1, =i+l (33
this is actually the opposite of the typical robotics problem, b1 biory, =i+l
in which the goal is to determine the forces required to pro- ' '
duce a particular robot arm trajectory. Then, in terms ofP, Egs.(28)—(31) reduce to
D. Stacked operators V=®THTW, (34)
Equations(17), (18), (24), and (25) can be rewritten in N
condensed, “stacked” form A=d (H'W+X), (35
V=¢"V+HTW, (28 T= MW+HO(MOTX+Y), (36)
A=¢ A+HTW+X, (29  Wwhere
F=¢F+MA+Y, (30 M=HOMPTHT. (37)
T=HE (31) While M is a sparse, 61, +1)X6(n,+1) block-diagonal

matrix, M is only of size @, +6) X (n,+6), but, although it

that combines the entire setlof/alues. A quantity such ag IS typically much smaller, it is fully populated. In principle,
containing all theV, values for the chain is also referred to Ed- (36) can be numerically integrated to obtah and this
as a spatial vector, while, for example, the block matsix 'S Oneé of the approach(_as actually used.m solving the p.rob-
containing all theg ., matrices is a spatial operator. The lem, but the computational effort __requwed for evaluating
stacked formalism leads to a concise and elegant formulatiod! ~* at each time step to obtai/ is of order O((n,
of the problem, free from inundation by indices as is often+6)°); for this reason such an approach is not practical for
the case in the robotics literature, e.g., Refl]. any but the shortest of chains. The alternative method, de-

The spatial operator approach was originally developedcribed below, requires a computational effort of order
for the case of a fixed initial bonfll6]—the base in the O(n,), together with what amounts to the inversion of a 6
example of a robot arm—for which/y=0, so thatW X 6 matrix; clearly this Wi|| prove to be a far more efficient
=(6y, ... ,énr)T is a vector with justn, components, and approach, even for relatively smai .

the other vectors and matrices are sized accordingly. In order
to remove the fixed-base restrictip2?2], six extra DOFs are

added to the problem by redefinivgy=(Vo, 8y, . .. ,0,)" As a preliminary step in obtaining an explicit expression
' for M 1 define[16] the 6x 6 matrix P in terms ofM, as

E. Inversion of the mass matrix

as a vector witin, + 6 components; likewise foV. The size
of the original 6,Xn, block-diagonal matrix H Pe= P i+l _Gk+1Hk+1)Pk+1¢I,k+1+Mk- (39
=diagH,, ... ,Hnr) is increased to G(,+1)X(n,+6) by

including an extra &6 block Ho=I, so that nowH In Eq.(38),
=diag(,Hq, ... ,Hnr). The block-diagonal matriM is of

size 6, +1)X6(n,+1); ¢ has the same size, and its

only nonzero blocks are those to the immediate right of the B T
diagonal. Namely{ ¢¢;, - . . ’¢nr_l'nr}' VectorsV, A, F, X, Di=HPyHy, (40

and Y, all Pave §0f+1). components, e.g.,.V where, for joints with a single DOK3, is a six-component
=(Vo.....Vy) ' andTis organized in the same way ¥  vector andD, is a nonzero scalar; note also thRt is sym-
with n,+6 componentsTo=0 because the speci&l=0 metric. (The motivation for introducing?, is explained in

Gy=PyHD, (39)
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Ref. [16] and derives from the formal similarity of these W=(I—HW ¢G) D11 —HW $G)[T-HO(MDTX+Y)]
equations with those used in the completely unrelated field of

linear filtering) Also define

k1= Gk 1 = G aHis 1) (41)

and substitute this in Eq38). The stacked versions of Egs.

(38)—(41) are

P=yPs™+M, (42)
G=PH'D %, (43

D=HPHT, (44)
y=¢(1-GH). (45)

MatricesP and s are of size 6, +1)X6(n,+1), andG is
(n,+6)xX6(n,+1) and block-diagonalthus the product
Gy, 1Hy.1 is squarg Matrix D is of size @, +6)X(n,
+6); its first 6<6 diagonal block corresponds @, and
the remainingn, diagonal elements are the scalBrg. From
Egs.(42) and (45),

M=P—¢P¢"+ dpGHP, (46)
and so, by using Eq.32),

PMPT=P+DPpP+Pp'®T+DHPH'D 'HPH P
(47)

Substitute Eq(47) in Eq. (37), then useGD=PHT from Eq.
(43), together with Eq(44), to obtain

M=HPH"+HD$PHT+HPH'®HT
+HOPPHD HPp ®THT
=(I+H®¢G)D(I+HD $G)". (48

This alternative factorization of\1 is a product of three
(n,+6)X(n,+6) matrices, unlike Eq(37) that involves
nonsguare matrices.

It is now a straightforward matter to invemt1. Use a

=(I-HY¢G)'D YT-HY(4GT+MPTX+Y)],

(52)
where Eq.(50) is used in simplifyingH(l =V ¢GH)®
=HWV. To eliminateWV, first rewrite Eq.(52) as

(I+HP®PHG) " W=D {T-HP(SGT+MDTX+Y)].

(53

Next, use Eq(42) with Eq. (32) to get

YMOT=VP(p"dT+ 1)V yPp " ®T=VP+Pp P,

(54
Then, using the transpose of E4.3), it follows that
(I+H®$G)" W=D E-G ¢ "dTX, (55)
in which the forcelike quantities
E=T—-HZ, (56)
Z=V(GT+PX+Y) (57)

have been defined. Rearranging E§5) and using the ex-
pression forA given in Eq.(35) leads to

W=D E-G"¢p"®"(H'W+X)=D E-GT¢"A.
(58)

It is also possible to eliminaté from Eq.(57) by substitut-
ing T from Eq. (56) to get (—V¢GH)Z=V(4pGE+PX
+Y), and then using Eq50) to obtain

Z=D(HGE+PX+Y). (59

Explicit forms for the new recurrence relations embodied
in Egs. (58 and (59) are obtained by using Eq32) and
reintroducing thek indices,

Zy = b+ 1(Zk+ 1+ G 1B 1) FPX+ Yy, (60)

W=Dy "Ex— Gy 14Ak-1- (61)

special case of the Woodbury formula for the inverse of alhese recurrence relations are used in oppdésiiections;

matrix [23] (1 +Q;Q,) '=1-0Q,(1+Q,Q,) Q, to write
(I1+H®¢G) =1 —HD(I + pGHD) 1¢G. (49

By analogy with Eq.(32) for @, define¥ =(I— ) !; then
from Eqgs.(45) and (32),

Vl=d"1+ ¢GH, (50)

so that (+ H® ¢G) t=1—HW¥ ¢G. Thus the inverse of Eq.
(48) is

M I=(1-H¥¢G)'D I -HV ¢G), (51)

and so, from Eq(36),

they succeed in providing the required results without the
need for explicit evaluation of the matrix inversel ~* as
implied by Eq.(36). It is for this reason that the method has
not been referred to as an “inverse matrix method,” a term
sometimes seen in the literature, but rather a “rigid link”
method, a far more apt descriptor.

The expressions given here describe the entire chain, but,
provided the end joints are handled correctly, these results
can be used for linear segments that form part of a larger
assembly, allowing more complicated treelike structures to
be treated. Furthermore, while the above formulation deals
with the simplest case of a linear chain with a single tor-
sional DOF per joint, it is readily extended to more complex
joints, enabling, for example, the constant bond-angle condi-
tion to be eliminated by allowing two DOFs at each jdian

011906-6



MOLECULAR DYNAMICS SIMULATION OF POLYMER.. .. PHYSICAL REVIEW E 66, 011906 (2002

alternative would be to decompose an individual joint into B. Leapfrog integration and rigid-body equations
two coincident joints each with a single DOF The familiar leapfrog method for integrating the MD
translational equations of motion—which is algebraically
Il. SIMULATION TECHNIQUES equivalent to the Verlet methd@4]—is usually expressed in
) ) ) ] a form where the coordinates and velocities are evaluated at
A. Linked-chain equations of motion alternate half time steg4.5]. This minor inconvenience can

The recurrence relations used to propagate velocitied)e avoided by using a slightly modified form that breaks the
forces, and accelerations along the chain are as follows: Thigtegration procedure for a single time step into two parts.
(translational and rotationalelocities V, are obtained by Prior to computing the latest acceleratia) {alues, update

starting withV, and iterating Eq(17), the velocities ¢) by a half time step using the previous
_ accelerations, and then update the coordinatpdy a full
V= ¢I,1’kvk,l+ HIWk, k=1,...n,. (620  time step using these intermediate velocity values,
v(t+h/2)=v(t)+ (h/2)a(t), (66)

The forceqand torquey as represented k& , together with
the matriceD, andGy, are obtained by iterating Eq&38) r(t+h)=r(t)+ho(t+h/2). (67)
and(60). For computational convenience, new quantifgs

and Z; are introduced; then, starting witR, ,,=0 and In the case of the polymer chain, this procedure is applied to
§ the translation coordinates of the=0 site and(in scalar

“r+1:0’ form) to each of the dihedral anglék; the treatment of the
angular coordinates associated with kiwe0 site, below, em-
Pi=bik+1(l =Gy tHks1) ) ploys a related approach for dealing with the rotational equa-

tions. Next, use the new coordinatéand velocities if

XPri1dr v+ My, ,
ke 1Pkt k needed to compute the latest acceleration values, then up-

Dy=HPyHy, date the velocities over the second half time step,
— Th-1
Gy=PyHDy 7, » k=n,,...,0. (63 v(t+h)=v(t+h/2)+(h/2)at+h). (68)
4= brejer 121t P&t Y, In the linked-chain formulation, the initial bond of the
Ev=T—HZ, chain is treated as a rigid body; the influence of the rest of
7! =7, +G.E the chain on it has already been taken into account and is
ko Tk Pkl / contained in the force and torque transmitted through the first

i y . ) ~internal joint. There are a number of ways of describing the
Finally, the values of, (or 6,) are determined by starting orientation of a rigid body10]: Euler angles have proved
with A, (its evaluation is discussed belpwand iterating very useful for analytic purposes because of their intuitive

Egs.(18) and(61), nature, but owing to a potentially singular matrix that ap-
pears in the equations of motion they are not the preferred
Av=br 1 A1 method for dealing with numerical problems. Quaternions
. B have achieved popularity because of their singularity-free na-
W=D, 'E,—G]A, } k=1 64 . o _
k= Pk "Bk brAx I I (64 ture, but their normalization must be preserved against a
Ak:AliJFHI\'NkJFXk small but persistent numerical dr[25,15. A more recently

proposed alternative is to regard the complete rotation matrix

Th lati hich dilv t ¢ s the dynamical variable; this is the representation that will
ese recurrence relations, which are readily transformef, "\ 5o here, since the integration scheih@—which

into a suitable computer program, imply a series of Operajs pocad on operator splitting and maintains time

tions (multiplications and additionsnvolving 6X 6 matrices reversibility—is just another instance of the leapfrog
and six-component vectors, but the total computational efforf, .4

is only of orderO(nr_). - . In the original descriptiori19], vector components were
Recall that thek=0 joint has six DOFs, and also that gy ressed in the principal-axis frame of the body. Since the

Ho=1, Xo=0, andWp=A,. Now, becauséA_;=0, it fol-  chain dynamical problem as a whole is solved in the space-
lows from Eq.(64) that A;=D, “E,, and sinceT,=0, fixed frame, the corresponding form of the rotational equa-
tions will be described here. R denotes the rotation matrix
DoAg=—Zo, (65) of a rigid body, then the first part of the leapfrog integration

step consists of a half-time-step update of the angular veloci-

where bothD, and Z, have already been determined ties,

(above. Thus Ay can be evaluated numerically by solving w(t+h/2)=w(t)+(h/2)a(t), (69)

the set of six linear equations contained in E&p) using the _

standard LU decomposition meth¢23]; the computational wherea= w, followed by a full-time-step update & using
effort required for this initial joint is fixed and independent a symmetric product of matrices describing a series of small
of n,. partial rotations,
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RT(t+h)=U; U, U3 U, U RT(1), (70 4el(rijlo)P=(rijl0)®],  ryj<rq,

Usd(rij) = 0, ry=r (74

where, for convenience, the transposeRois treated. Note

that for the linked chain, the rigid body is associated with thewith a cutoffr ;=28 (nearby pairs of atoms that are pre-
k=0 joint, so thatR=R,. Each of the matrices vented from approaching too closely because of geometrical
restrictions need not be considere&hould a pairwise at-
traction between particular pairs of distant chain atoms be
required(as will be the case later @rit can be obtained from
Eq. (74) by simply increasing .. The pair forces derived

_ . _ _ _ from this potential, and their associated torques, contribute to
describes a rotation about a single axis and is evaluated ¥ andn? in Egs.(9) and (10).

the space-fixed frame. For small angles, they can be approxi- The torsjonal potential associated with the dihedral angles

Uy=Uy(@,1/2), Up=Uy(w,h/2), Us=U,(wh)
(77)

mated in a way that preserves orthogonality, e.g., 0, has the simple form
1 0 0 Uy( 0)) = — uy cog B— 6), (75)
Udo)=| 0 c950 —sing where 0(k0’ is the dihedral angle that produces a ground state
0 sing cosé having the correct helical twist, and, is the interaction
1 0 0 strength. The torque appearing in Ef3) is
o 1- 6’4 -6 t= Uy sin( ,— 62, (76)
~ 1+6°14 1+6°%4 |, (72)
P 1—62/4 a result whose simplicity stands in sharp contrast to the in-
0 > > tricate vector algebra associated with torque calculations
1+6°4 1+6°74 when working in Cartesian coordinatgkb.
For the chains considered here it is assumedbgl=b,
The second part of the leapfrog step is a = «, 0(k°)=0(°), and, except for the later twin-helix
studies where selecteg =0, all u,=u®. Since the torsion
o(t+h)=w(t+h/2)+ (h/2)a(t+h). (73) also acts at the first internal joint, it is necessary to add an

extra site and bond to the chaieffectively with an index
“—1") to make this torsion term meaningful; the first three
In the case of a single rigid body, the angular acceleration isites of the modified chain form a rigid urithe extra bond
determined from the torque, namely, a(t+h)=Z 17t does not alter the preceding analysaisd the chain length is
+h), whereas for the linked chain this treatment is onlyincreased by unity.
required for thek=0 joint, ande is obtained by solving Eq. A spherical mass elemefwith a finite moment of inertia
(65); the reason rigid bodies are usually treated in the bodyabout its own center of masis associated with each site; for
fixed principal-axes frame is to ensure the diagonalitZpd  bonds withk>0, the mass is attached to the f&H{1 site
consideration that is not relevant here. of the bond, while th&k=0 bond, as explained above, has
The complete procedure for a single time step can behree masses associated with it. The components of the iner-
summarized as the following sequence of operations. Intetia tensor in Eqs(26) and (27) are
grate (first par) to obtain base velocities and coordinates,
and joint angular velocities and angles; determine site veloci- s 5 o
ties, Eq.(62); evaluate site coordinates, Eq4)—(3); com- Ek m(re=ri), 1=],
pute external forces and torques, and other necessary quan- (T = s 77
tities; determine joint forces, E@63); solve Eq.(65) for the —E M., i#]
base acceleration; determine joint accelerations(&4j; in- P ’
tegrate(second pajtto obtain base velocities and joint an-

gular velocities. where the sunfor volume integralis over all mass elements
k fixed to bondk, and coordinates are relative to the center

C. Polymer chain model of mass of each bond in the space-fixed frame.

Two kinds of interactions are required in this model—
excluded volume and torsion. The former is provided by a
pair interaction that prevents overlap of the atofmsatom While the appearance of an ordered helical structure, even
groups located at the chain sites. Here a simple soft-spherene with the occasional defect, is easily recognized visually,
repulsion, based on the Lennard-Jones potential with a shorir order to facilitate statistical analysis of the behavior it is
range cutoff, is all that is required: for a pair of atoms locatedimportant to be able to quantify the degree of order present
atr; andr;, wherer;j=r;—r;, andr;;=|r;|, the potential is in the chain. Let,=by_,xby, then

D. Order parameter
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sites, the degree to which folding is able to proceed to
(78) completion, and the steric and topological effects of ex-
cluded volume. The key question, of course, is whether the
intrinsic time scales of these processes are sufficiently small
defines an order parameter that measures the long-range #+ simulation to be computationally feasible, an issue ad-
der present in the folded structure based on the orientation sfressed by the results presented here. While the present
the helical turns; for a single, well-formed heli$ should ~ model is admittedly a mere caricature of the detailed models
have a value close to unity. A slightly modified version®f normally employed in studies of individual proteins, it has
will be introduced later for studying twin-helix structures. W0 undeniable advantages, namely, a known native ground
This definition of S is particularly useful for detecting State compatible with the interactions, and sufficiently mod-
structures consisting of two or more helical domains with€St computational requirements that MD simulation is able to

axes aligned in different directions due to a localized defecENCOMPass the time interval required for major conforma-

of the type seen in helically wound telephone and electricali©@l change. More complex protein structures also display
cords. Since the correct helicitpr “handedness) is built certain common characteristics, and ought to be accessible to

. : . L . .. simulations of this type; it is, however, essential to eliminate
Into t_he Interactions, it Is uniikely that segments of (_)pposneany ambiguity from the ground state, something that nature
helicity will independently nucleate at separate locations but

. o . itself has presumably achieved in the interests of efficiency
as the chain collapses, individual turns with the wrong twisty g reliability.

can become trapped in the structure. These defects are ca-pach simulation run considers a single chain constructed
pable of traveling along the chain, but this is a slow processyg described earlier. The absence of a solvent, apart from
and the direction of motion is random unless close to thehanging the time scales, should not alter the outcome; in-
chain end. There are instances where the definitio8 of  deed many, if not most, protein simulations avoid introduc-
Eq. (78) can give an incomplete picture; if a wrong turn ing an explicit solvent for reasons of computational effi-
occurs very close to the chain end, its effect ®mwill be  ciency. The simulation is begun at a relatively high
minimal, and even a perfectly formed helix is subject to lowtemperature, so that the kinetic energy is sufficiently large to
frequency bending motion. Other order parameters can bsurmount the torsional potential barriers. The initial chain
defined that are of a more short-range nature; for example, eonfiguration is a large loop extending across the simulation
simple count of the number of pairs of chain sites lyingcell, with a very slight helicity to prevent any overlap; initial
within a specified rangé.e., the number of “contacts” be- dihedral angles are chosen so that locally, the conformation
tween adjacent turns of the heligivided by the maximum is almost a planar zigzag state. The joint angular velocities
possible value, but for long chains the tolerance in theare assigned random values corresponding to the starting
threshold required to accommodate thermal fluctuationée€mperature, and memory of this initial state rapidly vanishes

might allow significant changes in the helical-axis direction€@rly in the simulation. The temperature is gradually reduced
to go undetected. by a factor slightly less than unity at regular intervals until,

towards the end of the run, very little kinetic energy remains
in the system. The simulation region is bounded by hard,

IV. RESULTS reflecting walls; while there are occasional wall collisions,
this has little influence on the overall behavi@rhe alterna-
tive would be to use periodic boundaries, which for a simu-

One of the more prominently recognizable structural mo-ation cell not large enough to contain the chain in a fully
tifs found in proteins is théa) helix. The helix, because of stretched state, would be subject to chain wraparound ef-
its uniformity along the longitudinal axis, is a particularly fects; while these are also unlikely to affect the overall be-
simple structure to specify, and both Monte Carlo and MDhavior, they can prove visually confusing given the impor-
helix-folding simulations based on the complex potentialstance of computer-generated visualization in this work.
designed for protein modeling have been carried out, e.g., The gradual cooling that is imposed throughout the run
Refs.[18,26. Complex potentials have also been used inplays several distinct roles. During the early stage it is used
MD studies of reversible folding processes that involve he+o drive the chain from a totally random state to one in which
lical states[27]. Since the complexity of these potentials is the torsional potential begins to have some influence over the
not obviously essential for a basic understanding of generidihedral angles. Then, as the temperature is reduced further,
folding phenomena, the present simulations are based on tla increasing degree of local order emerges and precursors to
much simpler model and potentials described previously. Inlong-range order appear, either as a consequence of the
deed, an analogous approach has been employed experimenerging of separate ordered domains, or the spread of order
tally [28] in a study of helix formation in synthesized non- from a nucleation regiorfor a combination of both pro-
biological chain molecules, where the interactions arecessel during this stage the imposed cooling performs a
simpler than in proteingn particular, there are no hydrogen task normally the responsibility of the solvent, namely, the
bonds. removal of excess potential energy as the chain evolves to-

The importance of examining simple structures, such asvards states of lower energy. Once the chain has reached a
the helix, is that the process by which ordered arrangementstate consisting mainly of helical segments, possibly sepa-
emerge from randomly coiled states is likely to capturerated by small misfolded regions that have become trapped,
something of the essence of real protein folding, such as théne purpose of further temperature reduction is to gradually
cooperativity of the folding process, the role of nucleationfreeze out thermal fluctuations—without further major struc-

S= —

= d
n, K

k=1

A. Simulation details
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tural change—in order to allow evaluation of the long-range
order parametefS (the measure of success of the folding
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TABLE |. Details of helix folding runs discussed in the text.

process the latter part of this cooling stage is not intended Length(L) ~ Tums  f;®  Steps 10°)  Succes$
to imitatg any real physical process. o . 18 3 0.95 400 1.00

The simulations use stgndard, reduced MD_ units, in which 3¢ 6 0.95 400 0.94
all distances and energies are expres_sed in term_s of the 54 9 0.95 400 0.85
Lennard-_Jones parametersand e, respectively; mass is ex- 54 9 0.97 800 0.94
pressed in terms of the monomer massnd, consequently, 72 12 0.95 400 0.69
the unit of time is.\/malzle. Temperature and energy are 72 12 0.97 800 0.91
made numerically identical by setting the Boltzmann con- 90 15 0.97 800 0.85

stantkg to unity. In terms of these units the parameters used
in the runs are as follows: The bond lendik 1.3, a value

&Cooling factor.

sufficiently short to prevent the chain crossing itself, thebcriterion for successful helix formation is defined in the text.
bond anglex and the preferred dihedral ang” are cho-

sen to produce helices with periodicity six, and the torsiona
potential strengthu(®=5. In the studies of twin helices, the
cutoff in the attractive interaction, based on E¢d), occurs
atr.=2.2. The initial temperature is &orresponding to a
kinetic energy per DOF of )2and the final temperature is
10 3; temperature is reduced by rescaling all velocities an
angular velocities by a factdr every 4000 time steps, with
f+=0.95 or 0.97. The runs reported here are each of lengt
4-8x10° steps; the integration time stém MD units) is
h=4x10"3. In order to produce reliable statistics, a large
number of runs were carried out for each case studied; the

runs differed in the choice of initial random values {ak}.

Measurements were made of the long-range order para
eterSand the total energy, the latter a sum over contribution€
from the soft-sphere pair interactions, E@4), the torsional
terms, Eq.(75), and the kinetic energy. The measurements>
involved 400 independent runs for each of several chairlV
lengthsL and different cooling rates. These quantitative re-
sults were complemented by an interactive graphical versio
of the simulation program that provided real-time visual
monitoring of the folding process; in addition to learning
about any potential obstructions to complete folding, the
ability to observe chains directly also helped when choosin

B. Folding to a single helix

Bnalysis confirms that, for the cases considered, this thresh-
old for S provides a quite reliable estimator; it tends to be
sensitive to defects in the helical structure, while allowing
for the fact that a properly folded helix may still have some
c{esidual curvature along its major axis.
It is clear from Table | that a high success rate for helix
roduction is achieved. Two trends are apparent in the re-
ults, neither of them unexpected. For a givign longer
chains are less likely to fold properly than shorter chains,
and, for a giverL, a largerf (corresponding to slower cool-
g) raises the success rate. Thus the longer the chain, the
slower the desired cooling rate; additional runs with faster

cooling confirm this observation. The longest of the chains
folds to a helix with 15 turns, which, considering the poten-

ntropy.

a cooling rate sufficiently fast for folding to proceed to
completion, but not too fast for an excessive number of de- 5

fects to become trapped in the nascent structures.

The viability of the underlying approach depends on
whether it can actually produce correctly structured helices.
The first series of results measures the fraction of chains that
successfully fold into a helical state, and the manner in
which the success rate dependsloand the cooling rate. A
summary appears in Tablell;ranges from 18 to 90, which,
since the helix period is six, corresponds to 3—15 full helical

turns.

order, energy

Owing to the large number of runs it is not possible to 1
provide a detailed history of each, so a quantitative measure
of folding success must be introduced. A successfully folded

helix is deemed to be one for which>0.88 at least once

rﬁi_al for defects, represents a significant victory of energy over

The rate at which chains approach the helically ordered
tate can be studied by monitoring the mean valueS afs
ell as the negative of the total energyhich is dominated
by the torsional component when in the folded Statieese
uantities provide measures of the long- and short-range or-
er, respectively. The results, normalized per DOF, for 54-
and 90-site chains, averaged over all 400 runs, are shown in
Figs. 3 and 4. The overall results are divided into two groups,
éiepending on whether the chain is classified as having folded

4t

o=

TETEa ===

- - energy

order

1600
time

2400

3200

FIG. 3. Averaged order parameter afmkgative total energy

during the last 1.2 10° steps of the rurfimeasurements are per DOF as functions of timéin dimensionless MD uniisfor
made every 4000 stepdy this stage of the run the system chains withL =54; the contributions of chains that do and do not
has reached a comparatively low temperature, so that furthésid correctly appear in separate curves, with the upper curve in
substantial conformational changes are unlikely. Visuakach case corresponding to the successful folders.
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FIG. 4. Order parameter and energy for=90 (similar to FIG. 6. Order parameter distributions; separate curves show re-
Fig. 3. sults for chains that digpeaks on the rightand did not(multiplied

by a factor of 10 fold correctly.

successfully or not, and error bars indicate the standard de- I C .
viations of the measurements. In each case it is the uppdp€re are several contributing causes for this, including

curve that represents the average for the successfully foldetioWer folding rates(all the runs were of equal length
chains, and it has the smaller error bars. chains not managing to fold successfully but having one or

An alternative estimate of the rate at which folding pro- Mmore intermediateS values which passed the test, and the
ceeds is based on the time dependence of the fraction dfcreasing ef_fect_of bending along the helical axis. The latter,
chains in a helical state, relative to all those that eventuallproader distributionsscaled up by a factor of 10 to make the
succeed in reaching this state. This provides informatiorfiétails visiblg are due both to the many defective structures

about when, assuming a chain folds successfully, the apped?©SSiPle, each with its own spread fvalues, and also to
ance of helical order actually occurs. Figure 5 shows thesE'® defects themselves reducing the structural rigidity and so
cumulative distributions for the differet, each at the slow- '2iSing the susceptibility to slow thermal vibration. Only for
est cooling rate considered. The cooling rate clearly affectd1® longest chains is there any overlap of the curves, and
the results, as can be seen from the separation of the w@/en then it is minimal. , , o
groups of curves that are based on different réses Table The best way to follow the folding process is by viewing
1): for a given cooling rate, the folding speed tends to drop a@nimated sequences of images taken at various points _durmg
the chains become longdthe slight crossover of thé the run; some sequences can actually be generated while run-
=72 and 90 curves is probably not significant ning the simulation interactively, if the computations proceed
A more detailed examination of final-state conformationsSufficiently rapidly. Here, due to the limitations of the printed
is based on histograms of tiSdistribution, using measure- Pad€, @ selection of static images must sufflce. One could
ments made over the last XK40P steps. These results ap- attempt a verbal description of what transpires but, as was
pear in Fig. 6 for several values(at the slowest cooling € case in Ref.18], there are no obvious features shared by
rate). There are two separate curves for eachne showing the individual folding trajectories. Even if certain common
the spread ofS for those chains that satisfied the folding characteristics do exist, the strong random conformational
criterion at least once during this measurement period, and Ajctuations make their observation difficult; a systematic,

broader, much lower curve for the chains that did not. Theduantitative means for identifying pathways, that extends
former set of distributions become broader with increasing Lﬁ?satsalsjlied for equilibrium stat¢8], might prove helpful in

Figure 1, which appeared early in the paper, shows an

Lo image of a typical, well formed, almost straight helix ob-
i tained in one of the runs, while Fig. 2 shows a random chain
08 configuration observed near the start of a run, bothLfor
i 31 ¢ ] =90 chains. For clarity, these and subsequent pictures rep-
g 06 ¢ [é [ 4 ] resent the chains by their tubular envelopes, rather than by
§ i .;1' i ] showing individual, partially overlapped spheres represent-
04 4 i ]
02 | " f 1 \\\\\
00 ommailemimnst SRRV \ |
0 800 1600 2400 3200 \\, ‘ L
time 4

FIG. 5. Cumulative distributions of chains in the folded state as FIG. 7. Correctly folded helixI{ =90) with residual curvature;
a function of time, for different lengthd (). this is the most extreme case of bending observed.
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FIG. 10. Folded state with a localized intertwined defect.
FIG. 8. Incorrectly folded state with a single defect. classed as secondary because helices often serve as structural
. i components in more complex assemblies. Globular proteins
ing the monomers. The tube thickness corresponds to Unifre characterized by at least one additional level in the struc-
diameter, slightly less than the soft-sphere interaction cutoffy g hierarchy, namely, tertiary structure. A model capable of
to ensure that a small amount of space remains visible bejemonstrating tertiary structure requires at least some differ-
tween adjacent turns of the helix. The maximum amount Okntiation among the chain sites that breaks the translational
residual curvature that was observed in the backbones Gfyariance. Building on the helix-forming model investigated
properly folded helices is apparent from Fig. 7; this examplenere, the next stage of complexity is a packed assembly of
actually meets the criterion for folding success indeed it pgjices, a structure that incorporates both the secondary and
ShOU@- o ) . tertiary levels of the hierarchy. The simplest way to design
While the majority of run(85% for chains with. =90,  gych a structure is to include nonlocal, attractive forces be-
and an even higher proportion for smaller see Table)l  tween selected pairs of chain sites; here, the pairs involved
result in a correctly folded helix, examination of the kinds of ;e |ocated at chain positions that will be brought into prox-
defects that appear in the final states of those runs that fail ity following the collapse into a state with two adjacent
fold properly is an informative exercise. The first such pic-pejices aligned in antiparallel directions. Such highly specific
ture, Fig. 8, is of anL=90 chain with two helical regions jnteractions are reminiscent of an approach used for lattice
separated by a single defect. The defect is essentially a Singiﬁotein modelg29]. The overall simplicity should be con-
loop of the helix with a reverse fold that became frozen inyasted with the highly detailed model, complete with sol-
place during the cooling process. This is the most frequen&ent' used in an MD study of thenfolding of a three-helix
type of defect, and its location can be anywhere in the Chairbundle[?.o]; the folding of such bundles has been studied
even right at the end. [31] using a continuum version of the simplified specific-
Less frequent are chains with two spatially separated denteraction approachi29] by means of discrete-event MD
fects, as shown in Fig. 9. More extreme, but very rare ex{32 15.
amples of other kinds of defects appear in Figs. 10 and 11. choosing the interactions to produce a twin-helix struc-
These show what can happen when the chain starts to bgyre is accomplished as follows. For a homogeneous chain
come entangled with itself; in the first case the problem isyth L=n,+1 sites, in which the periodicity of the helix is
localized, but in the secontthe only example of its kind p, the ground state consists of=L/p turns. Now assume
observed there is a relatively large loop trapped by the en-ih ¢ n, is an odd number and choose the interactions appro-
tanglement. The fact that these defects are relatively i”frepriate for a pair of adjacent helices, each with,+1)/2
qguent, and that even this low level of failure can be reducequmsy joined by a “bridging” chain segment of length All
by lowering the cooling rate still further, attests to the robustnat remains is to identify the pairs of sites in the two helical
ness and reliability of the folding process. regions that must attract; these are just neighboring sites in
adjacent turns of one of the helical segments, matched with

&

C. Folding to a pair of helices

The helix formation described above is obtained in a
study of homopolymers where, due to the uniformity of the
chain, the only kind of repeating structure that can be pro-
duced is the heliXthe planar zigzag conformation is a de-
generate cageln a protein context, this kind of structure is

FIG. 11. Folded state with a complex defect involving a large
FIG. 9. Incorrectly folded state with two separate defects. loop.
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time FIG. 14. Pair of helices that have failed to align.

~ FIG. 12. Averaged order parameter and energy as functions ofq tertiary structural elements are manifest; two thirds of
time for chains that form antiparallel helix pairk £ 78). the runs ended in this state. The failure to fold properly was
generally not due to defects in the individual helical seg-
the corresponding sites, in reverse order, of the other. Thents, but because the two secondary components did not
Strength of the attractive pO'[entia| reSponSible for the tertiar)éucceed in aiigning Correctiy; an exampie of such an out-
structure, which is based on E@4), is 0.2u%); it is weaker  come is shown in Fig. 14. The attractive forces become much
than the torsion, but the queStion of whether tertiary StrUCtUr@nore effective once the helical segments have formed; this is
formation is the beneficiary or the cause of secondary strucjye to the linear arrangement of the attraction sites enabling
ture formation[2] is not addressed here. In these exploratorythem to function cooperatively, an effect that may be re-
computations, the torsional interactions along the bonds ifiected in real proteins with prominent secondary-structural
the bridging segment are set to zero for simplicity; such infeatures. As a result of the nature of the interactions and the
teractions could actually be used to assist the folding ange|ative interaction strengths, the helical segments form first,
will be the subject of future study. essentially unimpeded, and only then do they attempt to

The definition of the long-range order parame®rEq.  align. The failure to align here is a symptom of the absence
(78), must be modified to reflect the structure of the antiCi'of any driving force for bringing the helices together; there is
pated collapsed state. The partial contributionsStof the  ng torsional preference in the bridging segment and the range
two helical segments are now combined with opposite signsef the interhelix attraction is too short to be felt if the helical
and contributions from the bridging region ignored; this pro-segments are well separated. Changes to either or both these
vides a reasonably sensitive, but unambiguous, measure gkpects of the potential should alter the behavior, but care is
folding success. Figure 12 shows how both the modified required to avoid hindering the helix formation process in
and the energy vary with time, far=78 chaingcorrespond- any way.
ing to a folded state consisting of a pair of six-turn heljces
using runs whose details are otherwise similar to those for V. CONCLUSIONS
L=90. Based on visual analysis of the behavior, a different
definition of what constitutes successful folding is needed The present paper has focused on both methodology and
here, namely, that the value of the modifi€dmust now results. A formalism developed for the dynamics of robotic
exceed 0.95 for folding to be considered successful; usingnanipulators and other coupled mechanical systems—that
this criterion the success fraction was found to be 0.66.  provides a convenient and direct representation of the dy-

Figure 13 shows an example of a successfully folded henamics of bodies connected by rigid links with restricted
lix pair, an ordered conformation in which both secondarydegrees of freedom—has been utilized in a polymer context,

with the clear implication that existing methods based on
P> geometric constraints may be redundant in many instances.
Since the treatment also involves dealing with rigid-body
dynamics, a computationally more effective method than the
often-used quaternion approach is also employed.

The results of an extensive series of MD simulations dem-
onstrate that homopolymer chains with suitable torsional in-
teractions consistently collapse into well-formed helices; the
probability of localized defects being frozen into the struc-
ture depends on the cooling rate, and it can be reduced to a
very low level by cooling sufficiently slowly. In order to
demonstrate that the present simplified approach is relevant
to protein folding, heterogeneous chains, with interactions
favoring the development of antiparallel pairs of helices,
were shown to produce coexisting secondary and tertiary
FIG. 13. Well-formed pair of helices with antiparallel alignment. structural features.
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The order parameters introduced to quantify the degree d,3], or sheetlike conformations that also represent impor-
folding were tailored to capture the structural order presentant secondary structure components; furthermore, packed
in the final state of the polymer. To study the details of fold-states with different degrees of accessibility could provide
ing pathways, other order parametéws reaction coordi- useful information on how this feature influences folding
nate$ that capture features present in the intermediate state§uccess. The interactions can be modified and new types of
but not necessarily in the final state, could be defined. In théteractions added; polymer topology can be changed by the
twin-helix case, for example, a simple sum of the absolutéddition of side chains corresponding to residues with ex-
values ofS, evaluated separately for each helix-forming Seg_tended structure. Common to aI_I these _enhancements is that
ment of the chain, might prove useful, since this quantity"® model must always be designed with a known lowest-
reaches its maximum upon completion of secondary strucEnergy state, and in th|s.res'pect t.he appfoach differs frpm
ture formation, and is not seriously affected by subseque any other types O.f prote_ln S|mulgt|on. While ”_“Ode's of this

ind are perhaps limited in the kinds of questions they can

rearrangement at the tertiary level. . o
The apparent success of the MD approach to chain foldgddress, there are more than enough issues requiring atten-
ion where they can prove helpful.

ing used here is important for another reason. The widel); In a sense, the role played by such highly simplified mod-

cited Levinthal “paradox”[5] implies that since the number Is i | 0 the Isi del of f tisgi:
of states accessible to a protein grows exponentially witlf'S 1S analogous 1o the Ising model of ferromagne ’
hile it is not usually claimed that an Ising spin system

residue count, the time required for even a small protein td” tel i | i tagal for that
seek out its native state is, for practical purposes, infinitedCCUrately represents a real magnetic maténgl for tha
Since nature does not suffer from this problem, the implica—r‘n""tter’.any other kind of real physma} system, when used for

' Pther kinds of problems such as lattice gasesloes, how-

along certain well-characterized pathways; thus the mol€Ver. capture a great deal of the essence of the problem, to an

ecules do not really wander almost aimlessly through conforf—axtent that the study of Ising and related models has resulted

mation space, and hence there is no paradox. In order {5 important advances, both for spin systems in particular,

begin to simulate such processes it is necessary to resort toa’é?d for statistical mechanics and critical phenomena in gen-

computationally efficient model, with realistic dynamics and eral. Proteins can also be mode[ed with a high level c_)f detail
a unique but readily determined low-energy “native” state'and specificity, but the tradgoff is 'that only short trajectory
! £gments can be followed with an investment of a reasonable

;[,U(l)srlls precisely what has been accomplished in the IoreselZmount of computing effort; hopefully, extensive studies of
X implified polymer models of the kind examined here, in

The type of model introduced here provides a startin hich the desian is tailored t d i ;
point for exploration in several directions. While the interac- Ich the design IS tarlored 1o reproduce certain generic as-
tions were weighted to construct the secondary helix stru pects of mag:romolecular behavior, wil achleve greater popu-

arity as their usefulness becomes established.

C
ture prior to forming features at the tertiary level, a change H
the relative strength of thg interactions would allow aspects ACKNOWLEDGMENT
of both levels of organization to appear concurrently. Chains
could be designed to fold into other idealized compact struc- This work was partially supported by the Israel Science
tures, such as the packed cube used in some lattice studiEsundation.
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