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Molecular dynamics simulation of polymer helix formation using rigid-link methods

D. C. Rapaport*
Physics Department, Bar-Ilan University, Ramat-Gan 52900, Israel

~Received 14 February 2002; published 15 July 2002!

Molecular dynamics simulations are used to study structure formation in simple model polymer chains that
are subject to excluded volume and torsional interactions. The changing conformations exhibited by chains of
different lengths under gradual cooling are followed until each reaches a state from which no further change is
possible. The interactions are chosen so that the true ground state is a helix, and a high proportion of simulation
runs succeed in reaching this state; the fraction that manages to form defect-free helices is a function of both
chain length and cooling rate. In order to demonstrate behavior analogous to the formation of protein tertiary
structure, additional attractive interactions are introduced into the model, leading to the appearance of aligned,
antiparallel helix pairs. The simulations employ a computational approach that deals directly with the internal
coordinates in a recursive manner; this representation is able to maintain constant bond lengths and angles
without the necessity of treating them as an algebraic constraint problem supplementary to the equations of
motion.

DOI: 10.1103/PhysRevE.66.011906 PACS number~s!: 87.15.Aa, 02.70.Ns, 45.40.Ln
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I. INTRODUCTION

Polymers, because of their importance and complex
have provided a longstanding challenge for computer sim
lation. Over the years, the field has become fragmented,
in terms of the problems addressed and the methodo
employed. Broadly speaking, the kinds of system studied
be classified into distinct groups; there are biological h
eropolymers, a category dominated by the proteins;
mopolymers and block copolymers that include a great v
ety of molecular types, from alkanes to plastics; a
idealized polymer models used for elucidating general p
ciples such as the theta point, reptation, and multiphase
havior. The computational techniques span an equally br
range; they include molecular dynamics~MD! simulation
employing models that represent the molecules at var
levels of detail, ranging from fully atomic to highly reduce
descriptions; Monte Carlo sampling of both continuum- a
lattice-based systems, again with different levels of repres
tation; and exact enumeration of small systems aimed
eliminating the sampling errors inherent in the other me
ods. While all three kinds of methodology provide importa
information about equilibrium behavior and, in a sen
amount to doing statistical mechanics numerically, the M
approach provides access to the dynamical and nonequ
rium aspects of the behavior; although it might be argu
that Monte Carlo shares some of this capability, the ass
ated dynamics is a consequence of the chosen stoch
sampling algorithm. Lattice-based approaches, though o
ing a vastly reduced configuration space, have the additio
problem of the discreteness of the lattice on which the po
mer is embedded, and the consequent absence of gra
transitions between different configurations.

The inherent difficulty in polymer simulation is that th
problem naturally embraces a broad range of time sca
ranging from very fast processes associated with bond vi
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tion, followed by the somewhat slower, highly localized co
formational changes such as crankshaft motions, then
even slower aspects of reorganization such as the still r
tively localized process of helix formation, and, finally, th
typically extremely slow changes that lead to the emerge
of tertiary structure characteristic of protein folding and
polymer diffusion in a concentrated solution. The time sca
associated with this hierarchy of processes span a range
siderably in excess of ten orders of magnitude, and so s
systems are clearly not generally amenable to direct mo
ing, unless subjected to major simplification. Considera
effort has been invested in the design of models and sim
tion methods with the aim of alleviating this problem to
least some degree.

One especially important application of polymer simu
tion is in the field of protein folding, e.g., Refs.@1–5#;
achieving an understanding of the mechanisms underly
this important process presents a major challenge to com
tational biochemistry. Protein modeling runs the gamut fro
at one extreme, highly detailed molecular representations
volving potentials derived from a mixture of theory and e
periment, together with a solvent of individual water mo
ecules, all solved by MD and an enormous amount
computational effort@6,7#, through highly simplified models
also solved by MD@8#, to yet even simpler models embed
ded in lattices with only a limited number of degrees
freedom~DOFs! studied using a suitable Monte Carlo pr
cedure and a greatly reduced investment in computing@2#;
even complete enumeration of all conformations is som
times feasible@9#. While the manner in which the amino aci
sequence of any given protein is able to determine its p
sumably unique spatial structure continues to be the sub
of intense study, of no less importance is the question of
folding pathway—the preferred route~or routes! through
multidimensional conformation space eventually terminat
at the native state. While all the widely differing methodol
gies enumerated above can be used for studying fol
states, the collective dynamical processes that underlie f
ing really demand an approach based on MD. But, a
©2002 The American Physical Society06-1
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reaching this conclusion, there is a practical question
whether, even after substantial simplification, serio
progress in understanding the mechanisms of folding can
achieved by computer simulation, owing to the diversity
intrinsic time scales; while substantial advances have b
made, a great deal remains to be done before this questi
answered.

The goal of the present paper is twofold. The first goa
a demonstration of a different perspective on the MD
proach to studying protein folding. The most ambitious le
of modeling is based on carefully constructed potential fu
tions, often with a multitude of parameters; since the nat
conformation generally corresponds to the state of minim
free energy, establishing the details of these interatomic
teractions, including solvent effects, provides the foundat
for such work. Determining whether the known native st
of a given protein is the one favored by energetic consid
ations is in itself a complex optimization task, but followin
the full dynamics over a sufficiently long period of time fo
the major structural changes that typify protein folding
occur verges on the impossible. The approach adopted
is just the opposite, and the question posed is the follow
Given a known structural motif, such as the helix, and
simplified model of a polymer chain with a readily dete
mined, unique ground state corresponding to this configu
tion, as in Fig. 1, will the chain collapse into this state with
a reasonable amount of computation time when allowed
move freely in space, as shown in Fig. 2, while subjected
gradual cooling?

The most elementary of these organized structures is
helix, which, while being a prominent feature in many glob
lar proteins, is only classified as a secondary structural
ment ~the primary structure being the amino acid seque
itself!, and because of its homogeneous nature~except for the

FIG. 1. A well-formed helix in a chain of length 90; a goal o
the simulations is to observe chains spontaneously collapsing
this state~the polymer is drawn as a tube whose radius is that of
monomers!.

FIG. 2. A randomly coiled chain of length 90; this configuratio
represents a typical state of the chain prior to the onset of fold
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ends! it might be argued that being able to fold a helix is n
really a significant step in learning how to fold an enti
protein. Therefore, another folding problem considered h
is the one with a ground state formed from an antipara
pair of helices. This, too, is a recognizable element in so
proteins, and is unquestionably classified as a tertiary st
ture.

The obvious extension of this approach, a subject for
ture exploration, is to design simple models for other str
tural motifs, with the hope of learning more about folding b
examining the collapse pathways of these idealized mod
some structures might fold more readily than others,
which case the steric and topological issues involved co
be investigated; for some structures there might be recog
able intermediate states along the folding trajectory; so
cases might reveal useful properties that, when regarde
conformational~or reaction! ‘‘coordinates,’’ might serve in
the design of other kinds of simplified models@9#; and fi-
nally, once the simple version has been found to have
correct behavior, the models could be enhanced by gradu
incorporating features from more realistic representatio
including specific interactions and structural details. T
represents the motivation for this kind of modeling approa

The second goal is methodological. Even when consid
ing the simplest of model polymers, in which, typically, a
the molecular detail is absorbed into effective atoms loca
along the backbone chain~more so if this simplification is
not made! there is a need to specify the internal DOFs of t
system. One possibility is to assume that adjacent atoms
connected by stiff springs represented by a suitable pote
function; in this case each atom has its full complement
three translational DOFs and, if these atoms are regarde
rigid particles rather than point masses, three rotatio
DOFs as well. If the bond potentials are made sufficien
stiff to correspond to a typical real system, the ensuing hi
frequency vibrations impose a very small integration tim
step, which runs contrary to the goal of efficiently simulati
over long periods of time.

It is, however, possible to introduce geometrical restr
tions, such as strictly constant bond lengths, while retainin
soluble dynamical problem. This is done by introducing h
lonomic constraints and Lagrange multipliers into the eq
tions of motion @10#, and then solving a set of algebra
equations while integrating the differential equations of m
tion. Two approaches have been developed for doing t
one involves initially solving the unconstrained equations
motion over a single time step and then iteratively correct
the relative coordinates@11,12#, and, optionally, also the rela
tive velocities@13#, using a relaxation procedure to ensu
the constraints remain satisfied; the other tackles the prob
by constructing a matrix representing the contributions of
constraints which, in effect, must be inverted at each ti
step@14,15#, and which is subject to gradual drift requirin
regular correction. Similar geometric constraints can be
troduced to maintain constant bond angles as well, since
often a reasonable approximation to assume that the an
between consecutive bonds along the backbone~or else-
where! are unvarying. Such geometrical constraints ha
proved extremely useful, given the nature of the excitatio

to
e

g.
6-2



an
p
th
nt
re

t

in
rm
in
de
em
le
n

in-
th
,

th
m
di
c
in
lic
in

re
n

e
ha
.
in
a
e
a
n-
am

ar
he

is
If
o
le

ro

n

n

h
e

nd

ds

,

n-

e

re-

re
o-
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present in the system: fluctuations in bond lengths,
sometimes also angles, tend to be of relatively small am
tude and high frequency, so that freezing them out of
dynamics permits a substantial increase in the allowed i
gration time step. The amount of additional processing
quired for the constraints depends on their numbernc ; the
dependence is typicallyO(nc) for the iterative approach, bu
for the matrix approach it isO(nc

3), making the latter unsuit-
able for large problems.

If bonds lengths and angles are fixed, the only remain
internal DOFs are the dihedral angles, each defined in te
of a rotation about an axis lying along a bond, and affect
the relative orientation of the pair of bonds on either si
For reasons shrouded in history, dealing with this probl
has been perceived as difficult, as indeed it is, if the prob
is not addressed in a suitable manner. A significant adva
in the methodology for dealing with dynamical problems
volving internal coordinates occurred some years ago in
robotics field@16,17#, but with only the occasional exception
e.g., Ref.@18#, it appears to have gone unappreciated by
polymer simulation community at large. Because of the i
portance of this technique, the goal of which is to deal
rectly and economically with the internal DOFs, and sin
there is no reason why it should not be capable of replac
the various constraint-based approaches for most app
tions, a detailed treatment of the underlying theory is
cluded in the paper.

This approach to the dynamics of linked bodies also
quires solving the dynamics of individual rigid bodies. A
alternative, recently described means@19# of numerically
dealing with the rigid-body equations of motion is discuss
briefly; the method is based on rotation matrices, rather t
on quaternions~or even Euler angles! that are generally used
The present formulation differs slightly from the original
regard to the reference frame in which the computations
carried out. The use of rotation matrices offers improv
numerical stability, and since the method belongs to the le
frog family of integrators, it means that simple leapfrog i
tegration techniques can be used for the entire set of dyn
cal equations appearing in the problem.

II. LINKED-BODY DYNAMICS

A. Chain coordinates

Consider a linear polymer chain whose monomers
joined by rigid bonds. In the discussion that follows, t
terms ‘‘monomer,’’ ‘‘atom,’’ ‘‘site,’’ and ‘‘joint’’ will be used
interchangeably, as appropriate to the context, likew
‘‘link’’ and ‘‘bond.’’ Bond lengths and angles are constant.
each torsional DOF is regarded as a mechanical joint ass
ated with the site at one end of the link, with just a sing
rotational DOF, then the system is analogous to a basic p
lem in the field of robotic manipulators@16,17#.

The chain configuration is defined by the site positio
$rk%, and if the bond vectors between adjacent sites are$bk%
then rk115rk1bk . The internal configuration of the chai
can be specified by a set of bond rotation matrices$Rk%. The
transformation between the local coordinate frames attac
to bondsk21 andk(k>1) involves a rotation through th
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bond angleak about the axisx̂k21, where cosak5b̂k21•b̂k ,
followed by a rotation through the dihedral angleuk about
the joint axisẑk21. The matrix~actually its transpose! corre-
sponding to this rotation is

Rk21,k
T 5S cosuk 2sinuk cosak sinuk sinak

sinuk cosuk cosak 2cosuk sinak

0 sinak cosak

D ,

~1!

so that

Rk
T5R0

TR0,1
T
•••Rk21,k

T , ~2!

where R0
T represents the orientation of the initial site a

bond, and

rk115rk1ubkuRk
Tẑ. ~3!

In the present case,$ubku% and $ak% are all constant, so
that the only internal DOFs are those associated with$uk%.
Define ĥk to be the rotation axis of the joint between bon
k21 andk that is fixed in the frame of bondk21; in the
present caseĥk[ ẑk21. Insofar as indexing is concerned
there are nr internal rotational joints ~with labels
1, . . . ,nr), nb5nr11 bonds (0, . . . ,nr), andnr12 sites
(0, . . . ,nr11). In order to completely specify the chain co
figuration, an additional joint is attached to thek50 site,
with three translational and three rotational DOFs~concep-
tually equivalent to a telescopic ball-and-socket joint!; this
joint is included in the formalism but will, eventually, b
treated separately.

B. Kinematic and dynamic relations

If vk andvk are the linear and angular velocities of sitek,
then the velocities and accelerations of adjacent sites are
lated by

vk5vk211ĥku̇k , ~4!

vk5vk211vk213bk21 , ~5!

v̇k5v̇k211ĥkük1vk213ĥku̇k , ~6!

v̇k5v̇k211v̇k213bk211vk213~vk213bk21!, ~7!

where 1<k<nr . While the mass elements of the chain a
normally identified with the sites, here it is helpful to ass
ciate them with the bonds; ifrk1ck is the location of the
center of mass of the atoms attached to bondk, then the
center-of-mass acceleration of the bond is

v̇k
c5v̇k1v̇k3ck1vk3~vk3ck!. ~8!

If fk andnk are the force and torque acting on bondk across
joint k, then the equations of motion are
6-3
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Ikv̇k1vk3~Ikvk!5nk2nk112ck3fk

2~bk2ck!3fk111nk
e , ~9!

mkv̇k
c5fk2fk111fk

e , ~10!

wherefk
e andnk

e are the externally applied force and torqu
mk andIk are the mass and moment of inertia of~the atoms
associated with! the bond, the latter expressed in a spa
fixed frame and relative to the center of mass of the bond
is often convenient when dealing with rigid bodies to wo
in a center-of-mass frame@10#; this is not the case here, an
all vector components are expressed in the space-fixed c
dinate frame. Rearrange the terms of Eqs.~9! and ~10! to
obtain relations between torques and forces on adja
bonds,

nk5nk111bk3fk111mkck3v̇k
c1Ikv̇k1vk3~Ikvk!2nk

e

2ck3fk
e , ~11!

fk5fk111mkv̇k
c2fk

e , ~12!

and define the torque

tk5ĥk•nk ~13!

that acts along the axisĥk at joint k and corresponds to th
torsional interaction due to a twist around bondk21.

C. Spatial operator formulation

Equations~4!–~7! can be expressed more concisely
terms of six-component ‘‘spatial’’ vectors that combine t
translational and rotational quantities. It is also convenien
represent certain vectors by means of antisymmetric matr
of form

ũ5S 0 2uz uy

uz 0 2ux

2uy ux 0
D , ~14!

so thatũv[u3v. The resulting equations are

S vk

vk
D 5S I 0

2b̃k21 I D S vk21

vk21
D 1S ĥk

0
D u̇k , ~15!

S v̇k

v̇k
D 5S I 0

2b̃k21 I D S v̇k21

v̇k21
D 1S ĥk

0
D ük

1S vk213ĥku̇k

vk213~vk213bk21!
D , ~16!

or, equivalently,

Vk5fk21,k
T Vk211Hk

TẆk , ~17!

Ak5fk21,k
T Ak211Hk

TẄk1Xk , ~18!
01190
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whereVk andAk are examples of spatial vectors, and

fk21,k
T 5S I 0

2b̃k21 I D . ~19!

The 636 matricesfk21,k
T andfk,k11 ~later! appear through-

out the derivation, and their role is to propagate kinema
and dynamic information between joints. Several other n
variables have been used,

Hk
T5S ĥk

0
D ~20!

is a six-component joint axis vector~in the more general cas
of a joint with d DOFs, which the formalism is capable o
handling,Hk

T would become a 63d matrix!,

Xk5S ṽk21 0

0 ṽk21
D S ĥku̇k

vk2vk21
D ~21!

is a six-component spatial vector containing the remain
acceleration terms of the current site, andẆk[u̇k . When
used in vectors and matrices,I and 0 denote unit and zer
block submatrices of the implied size. The six-compon
vectors, and most of the associated matrices, are show
capital italic letters~to retain some similarity with Ref.@20#,
f, c, and M are also used!; no other special notation is
needed since the variable types will be obvious from
context.

In a similar way, Eqs.~11!–~13! can be rewritten as

S nk

fk
D 5S I b̃k

0 I
D S nk11

fk11
D

1S mkck3v̇k
c1Ikv̇k1vk3~Ikvk!

mkv̇k
c D

2S nk
e1ck3fk

e

fk
e D , ~22!

S tk

0 D 5S ĥk

0
D TS nk

fk
D , ~23!

or, equivalently,

Fk5fk,k11Fk111MkAk1Yk , ~24!

Tk5HkFk . ~25!

Here Eq.~8! has been used, and

Mk5S Ik2mkc̃kc̃k mkc̃k

2mkc̃k mkI
D , ~26!

is the symmetric, 636 mass matrix; the six-component ve
tor
6-4
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Yk5S ṽk~Ik2mkc̃kc̃k!vk

mkṽkṽkck
D 2S nk

e1ck3fk
e

fk
e D ~27!

contains the remaining force contributions. The identityck
3@vk3(vk3ck)#52vk3@ck3(ck3vk)# was used in ob-
taining these expressions. In order to use the recurrenc
lations forVk , Ak , andFk , the velocity and acceleration o
the initial site,V0 andA0, must be provided, while the forc
associated with the site at the end of the final bond,Fnr11, is
zero, since there is no joint associated with that site.

The purpose of the recurrence relations in Eqs.~18! and
~24! is to provide expressions for$Ẅk%, which, together with
A0, and assuming all the forces acting on the sites
known, can be integrated to solve for the chain dynam
this is actually the opposite of the typical robotics proble
in which the goal is to determine the forces required to p
duce a particular robot arm trajectory.

D. Stacked operators

Equations~17!, ~18!, ~24!, and ~25! can be rewritten in
condensed, ‘‘stacked’’ form

V5fTV1HTẆ, ~28!

A5fTA1HTẄ1X, ~29!

F5fF1MA1Y, ~30!

T5HF, ~31!

that combines the entire set ofk values. A quantity such asV
containing all theVk values for the chain is also referred
as a spatial vector, while, for example, the block matrixf
containing all thefk,k11 matrices is a spatial operator. Th
stacked formalism leads to a concise and elegant formula
of the problem, free from inundation by indices as is oft
the case in the robotics literature, e.g., Ref.@21#.

The spatial operator approach was originally develop
for the case of a fixed initial bond@16#—the base in the
example of a robot arm—for whichV050, so that Ẇ

5( u̇1 , . . . ,u̇nr
)T is a vector with justnr components, and

the other vectors and matrices are sized accordingly. In o
to remove the fixed-base restriction@22#, six extra DOFs are
added to the problem by redefiningẆ5(V0 ,u̇1 , . . . ,u̇nr

)T

as a vector withnr16 components; likewise forẄ. The size
of the original 6nr3nr block-diagonal matrix H
5diag(H1 , . . . ,Hnr

) is increased to 6(nr11)3(nr16) by

including an extra 636 block H05I , so that now H
5diag(I ,H1 , . . . ,Hnr

). The block-diagonal matrixM is of

size 6(nr11)36(nr11); f has the same size, and i
only nonzero blocks are those to the immediate right of
diagonal. Namely$f01, . . . ,fnr21,nr

%. VectorsV, A, F, X,

and Y, all have 6(nr11) components, e.g., V

5(V0 , . . . ,Vnr
)T, andT is organized in the same way asẆ,

with nr16 components;T050 because the specialk50
01190
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joint exerts no torque.~Note that index order has been r
versed from the original to make it more suitable for polym
use, and, for convenience, other aspects of the notation h
been altered or simplified.!

The next step is to define the matrix

F5~ I 2f!21, ~32!

which is also used in the alternative form,F5Ff1I ; be-
causefnr1150, Eq. ~32! is equivalent toF5I 1f1f21
•••1fnr, which is an upper-triangular block matrix whos
elements, each a 636 matrix, are

F i j 5H I , j 5 i ,

f i ,i 11 , j 5 i 11,

f i ,i 11•••f j 21,j , j . i 11.

~33!

Then, in terms ofF, Eqs.~28!–~31! reduce to

V5FTHTẆ, ~34!

A5FT~HTẄ1X!, ~35!

T5MẄ1HF~MFTX1Y!, ~36!

where

M5HFMFTHT. ~37!

While M is a sparse, 6(nr11)36(nr11) block-diagonal
matrix,M is only of size (nr16)3(nr16), but, although it
is typically much smaller, it is fully populated. In principle
Eq. ~36! can be numerically integrated to obtainW, and this
is one of the approaches actually used in solving the pr
lem, but the computational effort required for evaluati
M 21 at each time step to obtainẄ is of order O„(nr
16)3

…; for this reason such an approach is not practical
any but the shortest of chains. The alternative method,
scribed below, requires a computational effort of ord
O(nr), together with what amounts to the inversion of a
36 matrix; clearly this will prove to be a far more efficien
approach, even for relatively smallnr .

E. Inversion of the mass matrix

As a preliminary step in obtaining an explicit expressi
for M 21 define@16# the 636 matrix Pk in terms ofMk as

Pk5fk,k11~ I 2Gk11Hk11!Pk11fk,k11
T 1Mk . ~38!

In Eq. ~38!,

Gk5PkHk
TDk

21 , ~39!

Dk5HkPkHk
T , ~40!

where, for joints with a single DOF,Gk is a six-component
vector andDk is a nonzero scalar; note also thatPk is sym-
metric. ~The motivation for introducingPk is explained in
6-5
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Ref. @16# and derives from the formal similarity of thes
equations with those used in the completely unrelated fiel
linear filtering.! Also define

ck,k115fk,k11~ I 2Gk11Hk11! ~41!

and substitute this in Eq.~38!. The stacked versions of Eq
~38!–~41! are

P5cPfT1M , ~42!

G5PHTD21, ~43!

D5HPHT, ~44!

c5f~ I 2GH!. ~45!

MatricesP andc are of size 6(nr11)36(nr11), andG is
(nr16)36(nr11) and block-diagonal~thus the product
Gk11Hk11 is square!. Matrix D is of size (nr16)3(nr
16); its first 636 diagonal block corresponds toD0, and
the remainingnr diagonal elements are the scalarsDk . From
Eqs.~42! and ~45!,

M5P2fPfT1fGHPfT, ~46!

and so, by using Eq.~32!,

FMFT5P1FfP1PfTFT1FfPHTD21HPfTFT.
~47!

Substitute Eq.~47! in Eq. ~37!, then useGD5PHT from Eq.
~43!, together with Eq.~44!, to obtain

M5HPHT1HFfPHT1HPfTFTHT

1HFfPHTD21HPfTFTHT

5~ I 1HFfG!D~ I 1HFfG!T. ~48!

This alternative factorization ofM is a product of three
(nr16)3(nr16) matrices, unlike Eq.~37! that involves
nonsquare matrices.

It is now a straightforward matter to invertM. Use a
special case of the Woodbury formula for the inverse o
matrix @23# (I 1Q1Q2)215I 2Q1(I 1Q2Q1)21Q2 to write

~ I 1HFfG!215I 2HF~ I 1fGHF!21fG. ~49!

By analogy with Eq.~32! for F, defineC5(I 2c)21; then
from Eqs.~45! and ~32!,

C215F211fGH, ~50!

so that (I 1HFfG)215I 2HCfG. Thus the inverse of Eq
~48! is

M 215~ I 2HCfG!TD21~ I 2HCfG!, ~51!

and so, from Eq.~36!,
01190
of

a

Ẅ5~ I 2HCfG!TD21~ I 2HCfG!@T2HF~MFTX1Y!#

5~ I 2HCfG!TD21@T2HC~fGT1MFTX1Y!#,

~52!

where Eq. ~50! is used in simplifying H(I 2CfGH)F
5HC. To eliminateC, first rewrite Eq.~52! as

~ I 1HFfG!TẄ5D21@T2HC~fGT1MFTX1Y!#.

~53!

Next, use Eq.~42! with Eq. ~32! to get

CMFT5CP~fTFT1I !2CcPfTFT5CP1PfTFT.
~54!

Then, using the transpose of Eq.~43!, it follows that

~ I 1HFfG!TẄ5D21E2GTfTFTX, ~55!

in which the forcelike quantities

E5T2HZ, ~56!

Z5C~fGT1PX1Y! ~57!

have been defined. Rearranging Eq.~55! and using the ex-
pression forA given in Eq.~35! leads to

Ẅ5D21E2GTfTFT~HTẄ1X!5D21E2GTfTA.
~58!

It is also possible to eliminateC from Eq. ~57! by substitut-
ing T from Eq. ~56! to get (I 2CfGH)Z5C(fGE1PX
1Y), and then using Eq.~50! to obtain

Z5F~fGE1PX1Y!. ~59!

Explicit forms for the new recurrence relations embodi
in Eqs. ~58! and ~59! are obtained by using Eq.~32! and
reintroducing thek indices,

Zk5fk,k11~Zk111Gk11Ek11!1PkXk1Yk , ~60!

Ẅk5Dk
21Ek2Gk

Tfk21,k
T Ak21 . ~61!

These recurrence relations are used in oppositek directions;
they succeed in providing the required results without
need for explicit evaluation of the matrix inverseM 21 as
implied by Eq.~36!. It is for this reason that the method ha
not been referred to as an ‘‘inverse matrix method,’’ a te
sometimes seen in the literature, but rather a ‘‘rigid lin
method, a far more apt descriptor.

The expressions given here describe the entire chain,
provided the end joints are handled correctly, these res
can be used for linear segments that form part of a lar
assembly, allowing more complicated treelike structures
be treated. Furthermore, while the above formulation de
with the simplest case of a linear chain with a single t
sional DOF per joint, it is readily extended to more compl
joints, enabling, for example, the constant bond-angle con
tion to be eliminated by allowing two DOFs at each joint~an
6-6
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alternative would be to decompose an individual joint in
two coincident joints each with a single DOF!.

III. SIMULATION TECHNIQUES

A. Linked-chain equations of motion

The recurrence relations used to propagate velocit
forces, and accelerations along the chain are as follows:
~translational and rotational! velocities Vk are obtained by
starting withV0 and iterating Eq.~17!,

Vk5fk21,k
T Vk211Hk

TẆk , k51, . . . ,nr . ~62!

The forces~and torques!, as represented byEk , together with
the matricesDk andGk , are obtained by iterating Eqs.~38!
and~60!. For computational convenience, new quantitiesAk8
and Zk8 are introduced; then, starting withPnr1150 and

Znr118 50,

Pk5fk,k11~ I 2Gk11Hk11!

3Pk11fk,k11
T 1Mk ,

Dk5HkPkHk
T ,

Gk5PkHk
TDk

21 ,

Zk5fk,k11Zk118 1PkXk1Yk ,

Ek5Tk2HkZk ,

Zk85Zk1GkEk ,

6 k5nr , . . . ,0. ~63!

Finally, the values ofẄk ~or ük) are determined by startin
with A0 ~its evaluation is discussed below!, and iterating
Eqs.~18! and ~61!,

Ak85fk21,k
T Ak21

Ẅk5Dk
21Ek2Gk

TAk8

Ak5Ak81Hk
TẄk1Xk

J k51, . . . ,nr . ~64!

These recurrence relations, which are readily transform
into a suitable computer program, imply a series of ope
tions~multiplications and additions! involving 636 matrices
and six-component vectors, but the total computational ef
is only of orderO(nr).

Recall that thek50 joint has six DOFs, and also tha
H05I , X050, andẄ05A0. Now, becauseA2150, it fol-
lows from Eq.~64! that A05D0

21E0, and sinceT050,

D0A052Z0 , ~65!

where both D0 and Z0 have already been determine
~above!. Thus A0 can be evaluated numerically by solvin
the set of six linear equations contained in Eq.~65! using the
standard LU decomposition method@23#; the computational
effort required for this initial joint is fixed and independe
of nr .
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B. Leapfrog integration and rigid-body equations

The familiar leapfrog method for integrating the M
translational equations of motion—which is algebraica
equivalent to the Verlet method@24#—is usually expressed in
a form where the coordinates and velocities are evaluate
alternate half time steps@15#. This minor inconvenience can
be avoided by using a slightly modified form that breaks
integration procedure for a single time step into two pa
Prior to computing the latest acceleration (a) values, update
the velocities (v) by a half time step using the previou
accelerations, and then update the coordinates (r) by a full
time step using these intermediate velocity values,

v~ t1h/2!5v~ t !1~h/2!a~ t !, ~66!

r~ t1h!5r~ t !1hv~ t1h/2!. ~67!

In the case of the polymer chain, this procedure is applied
the translation coordinates of thek50 site and~in scalar
form! to each of the dihedral anglesuk ; the treatment of the
angular coordinates associated with thek50 site, below, em-
ploys a related approach for dealing with the rotational eq
tions. Next, use the new coordinates~and velocities if
needed! to compute the latest acceleration values, then
date the velocities over the second half time step,

v~ t1h!5v~ t1h/2!1~h/2!a~ t1h!. ~68!

In the linked-chain formulation, the initial bond of th
chain is treated as a rigid body; the influence of the res
the chain on it has already been taken into account an
contained in the force and torque transmitted through the
internal joint. There are a number of ways of describing
orientation of a rigid body@10#: Euler angles have prove
very useful for analytic purposes because of their intuit
nature, but owing to a potentially singular matrix that a
pears in the equations of motion they are not the prefer
method for dealing with numerical problems. Quaternio
have achieved popularity because of their singularity-free
ture, but their normalization must be preserved agains
small but persistent numerical drift@25,15#. A more recently
proposed alternative is to regard the complete rotation ma
as the dynamical variable; this is the representation that
be used here, since the integration scheme@19#—which
is based on operator splitting and maintains tim
reversibility—is just another instance of the leapfro
method.

In the original description@19#, vector components were
expressed in the principal-axis frame of the body. Since
chain dynamical problem as a whole is solved in the spa
fixed frame, the corresponding form of the rotational equ
tions will be described here. IfR denotes the rotation matrix
of a rigid body, then the first part of the leapfrog integrati
step consists of a half-time-step update of the angular vel
ties,

v~ t1h/2!5v~ t !1~h/2!a~ t !, ~69!

wherea[v̇, followed by a full-time-step update ofR using
a symmetric product of matrices describing a series of sm
partial rotations,
6-7
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RT~ t1h!5U1 U2 U3 U2 U1 RT~ t !, ~70!

where, for convenience, the transpose ofR is treated. Note
that for the linked chain, the rigid body is associated with
k50 joint, so thatR[R0. Each of the matrices

U15Ux~vxh/2!, U25Uy~vyh/2!, U35Uz~vzh!
~71!

describes a rotation about a single axis and is evaluate
the space-fixed frame. For small angles, they can be app
mated in a way that preserves orthogonality, e.g.,

Ux~u!5S 1 0 0

0 cosu 2sinu

0 sinu cosu
D

'S 1 0 0

0
12u2/4

11u2/4

2u

11u2/4

0
u

11u2/4

12u2/4

11u2/4

D . ~72!

The second part of the leapfrog step is

v~ t1h!5v~ t1h/2!1~h/2!a~ t1h!. ~73!

In the case of a single rigid body, the angular acceleratio
determined from the torquet, namely, a(t1h)5I21t(t
1h), whereas for the linked chain this treatment is on
required for thek50 joint, anda is obtained by solving Eq
~65!; the reason rigid bodies are usually treated in the bo
fixed principal-axes frame is to ensure the diagonality ofI, a
consideration that is not relevant here.

The complete procedure for a single time step can
summarized as the following sequence of operations. I
grate ~first part! to obtain base velocities and coordinate
and joint angular velocities and angles; determine site vel
ties, Eq.~62!; evaluate site coordinates, Eqs.~1!–~3!; com-
pute external forces and torques, and other necessary q
tities; determine joint forces, Eq.~63!; solve Eq.~65! for the
base acceleration; determine joint accelerations, Eq.~64!; in-
tegrate~second part! to obtain base velocities and joint an
gular velocities.

C. Polymer chain model

Two kinds of interactions are required in this model
excluded volume and torsion. The former is provided by
pair interaction that prevents overlap of the atoms~or atom
groups! located at the chain sites. Here a simple soft-sph
repulsion, based on the Lennard-Jones potential with a sh
range cutoff, is all that is required: for a pair of atoms loca
at r i andr j , wherer i j 5r i2r j , andr i j 5ur i j u, the potential is
01190
e

in
xi-

is

-

e
e-
,
i-

an-

a

re
rt-
d

uss~r i j !5H 4e@~r i j /s!122~r i j /s!6#, r i j ,r c,

0, r i j >r c,
~74!

with a cutoff r c521/6s ~nearby pairs of atoms that are pr
vented from approaching too closely because of geometr
restrictions need not be considered!. Should a pairwise at-
traction between particular pairs of distant chain atoms
required~as will be the case later on!, it can be obtained from
Eq. ~74! by simply increasingr c . The pair forces derived
from this potential, and their associated torques, contribut
fk
e andnk

e in Eqs.~9! and ~10!.
The torsional potential associated with the dihedral ang

uk has the simple form

ut~uk!52uk cos~uk2uk
(0)!, ~75!

whereuk
(0) is the dihedral angle that produces a ground st

having the correct helical twist, anduk is the interaction
strength. The torque appearing in Eq.~13! is

tk5uk sin~uk2uk
(0)!, ~76!

a result whose simplicity stands in sharp contrast to the
tricate vector algebra associated with torque calculati
when working in Cartesian coordinates@15#.

For the chains considered here it is assumed allubku5b,
ak5a, uk

(0)5u (0), and, except for the later twin-helix
studies where selecteduk50, all uk5u(0). Since the torsion
also acts at the first internal joint, it is necessary to add
extra site and bond to the chain~effectively with an index
‘‘ 21’’ ! to make this torsion term meaningful; the first thr
sites of the modified chain form a rigid unit~the extra bond
does not alter the preceding analysis! and the chain length is
increased by unity.

A spherical mass element~with a finite moment of inertia
about its own center of mass! is associated with each site; fo
bonds withk.0, the mass is attached to the far (k11 site!
of the bond, while thek50 bond, as explained above, ha
three masses associated with it. The components of the
tia tensor in Eqs.~26! and ~27! are

~Ik! i j 5H (
kPk

mk~r k
22r k i

2 !, i 5 j ,

2 (
kPk

mkr k i r k j , i 5” j ,

~77!

where the sum~or volume integral! is over all mass element
k fixed to bondk, and coordinates are relative to the cen
of mass of each bond in the space-fixed frame.

D. Order parameter

While the appearance of an ordered helical structure, e
one with the occasional defect, is easily recognized visua
in order to facilitate statistical analysis of the behavior it
important to be able to quantify the degree of order pres
in the chain. Letdk5bk213bk , then
6-8
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S5
1

nr
U(

k51

nr

d̂kU ~78!

defines an order parameter that measures the long-rang
der present in the folded structure based on the orientatio
the helical turns; for a single, well-formed helix,S should
have a value close to unity. A slightly modified version ofS
will be introduced later for studying twin-helix structures.

This definition of S is particularly useful for detecting
structures consisting of two or more helical domains w
axes aligned in different directions due to a localized def
of the type seen in helically wound telephone and electr
cords. Since the correct helicity~or ‘‘handedness’’! is built
into the interactions, it is unlikely that segments of oppos
helicity will independently nucleate at separate locations b
as the chain collapses, individual turns with the wrong tw
can become trapped in the structure. These defects are
pable of traveling along the chain, but this is a slow proce
and the direction of motion is random unless close to
chain end. There are instances where the definition ofS in
Eq. ~78! can give an incomplete picture; if a wrong tu
occurs very close to the chain end, its effect onS will be
minimal, and even a perfectly formed helix is subject to lo
frequency bending motion. Other order parameters can
defined that are of a more short-range nature; for examp
simple count of the number of pairs of chain sites lyi
within a specified range~i.e., the number of ‘‘contacts’’ be-
tween adjacent turns of the helix! divided by the maximum
possible value, but for long chains the tolerance in
threshold required to accommodate thermal fluctuati
might allow significant changes in the helical-axis directi
to go undetected.

IV. RESULTS

A. Simulation details

One of the more prominently recognizable structural m
tifs found in proteins is the~a! helix. The helix, because o
its uniformity along the longitudinal axis, is a particular
simple structure to specify, and both Monte Carlo and M
helix-folding simulations based on the complex potenti
designed for protein modeling have been carried out, e
Refs. @18,26#. Complex potentials have also been used
MD studies of reversible folding processes that involve
lical states@27#. Since the complexity of these potentials
not obviously essential for a basic understanding of gen
folding phenomena, the present simulations are based on
much simpler model and potentials described previously.
deed, an analogous approach has been employed exper
tally @28# in a study of helix formation in synthesized no
biological chain molecules, where the interactions
simpler than in proteins~in particular, there are no hydroge
bonds!.

The importance of examining simple structures, such
the helix, is that the process by which ordered arrangem
emerge from randomly coiled states is likely to captu
something of the essence of real protein folding, such as
cooperativity of the folding process, the role of nucleati
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sites, the degree to which folding is able to proceed
completion, and the steric and topological effects of e
cluded volume. The key question, of course, is whether
intrinsic time scales of these processes are sufficiently sm
for simulation to be computationally feasible, an issue a
dressed by the results presented here. While the pre
model is admittedly a mere caricature of the detailed mod
normally employed in studies of individual proteins, it h
two undeniable advantages, namely, a known native gro
state compatible with the interactions, and sufficiently mo
est computational requirements that MD simulation is able
encompass the time interval required for major conform
tional change. More complex protein structures also disp
certain common characteristics, and ought to be accessib
simulations of this type; it is, however, essential to elimina
any ambiguity from the ground state, something that nat
itself has presumably achieved in the interests of efficie
and reliability.

Each simulation run considers a single chain construc
as described earlier. The absence of a solvent, apart f
changing the time scales, should not alter the outcome;
deed many, if not most, protein simulations avoid introdu
ing an explicit solvent for reasons of computational ef
ciency. The simulation is begun at a relatively hig
temperature, so that the kinetic energy is sufficiently large
surmount the torsional potential barriers. The initial cha
configuration is a large loop extending across the simula
cell, with a very slight helicity to prevent any overlap; initia
dihedral angles are chosen so that locally, the conforma
is almost a planar zigzag state. The joint angular veloci
are assigned random values corresponding to the sta
temperature, and memory of this initial state rapidly vanish
early in the simulation. The temperature is gradually redu
by a factor slightly less than unity at regular intervals un
towards the end of the run, very little kinetic energy rema
in the system. The simulation region is bounded by ha
reflecting walls; while there are occasional wall collision
this has little influence on the overall behavior.~The alterna-
tive would be to use periodic boundaries, which for a sim
lation cell not large enough to contain the chain in a fu
stretched state, would be subject to chain wraparound
fects; while these are also unlikely to affect the overall b
havior, they can prove visually confusing given the impo
tance of computer-generated visualization in this work.!

The gradual cooling that is imposed throughout the r
plays several distinct roles. During the early stage it is u
to drive the chain from a totally random state to one in wh
the torsional potential begins to have some influence over
dihedral angles. Then, as the temperature is reduced fur
an increasing degree of local order emerges and precurso
long-range order appear, either as a consequence of
merging of separate ordered domains, or the spread of o
from a nucleation region~or a combination of both pro-
cesses!; during this stage the imposed cooling performs
task normally the responsibility of the solvent, namely, t
removal of excess potential energy as the chain evolves
wards states of lower energy. Once the chain has reach
state consisting mainly of helical segments, possibly se
rated by small misfolded regions that have become trapp
the purpose of further temperature reduction is to gradu
freeze out thermal fluctuations—without further major stru
6-9
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tural change—in order to allow evaluation of the long-ran
order parameterS ~the measure of success of the foldin
process!; the latter part of this cooling stage is not intend
to imitate any real physical process.

The simulations use standard, reduced MD units, in wh
all distances and energies are expressed in terms of
Lennard-Jones parameterss ande, respectively; mass is ex
pressed in terms of the monomer massm and, consequently
the unit of time isAms2/e. Temperature and energy a
made numerically identical by setting the Boltzmann co
stantkB to unity. In terms of these units the parameters u
in the runs are as follows: The bond lengthb51.3, a value
sufficiently short to prevent the chain crossing itself, t
bond anglea and the preferred dihedral angleu (0) are cho-
sen to produce helices with periodicity six, and the torsio
potential strengthu(0)55. In the studies of twin helices, th
cutoff in the attractive interaction, based on Eq.~74!, occurs
at r c52.2. The initial temperature is 4~corresponding to a
kinetic energy per DOF of 2! and the final temperature i
1023; temperature is reduced by rescaling all velocities a
angular velocities by a factorf T every 4000 time steps, with
f T50.95 or 0.97. The runs reported here are each of len
4–83105 steps; the integration time step~in MD units! is
h5431023. In order to produce reliable statistics, a lar
number of runs were carried out for each case studied;
runs differed in the choice of initial random values for$u̇k%.

B. Folding to a single helix

Measurements were made of the long-range order par
eterSand the total energy, the latter a sum over contributio
from the soft-sphere pair interactions, Eq.~74!, the torsional
terms, Eq.~75!, and the kinetic energy. The measureme
involved 400 independent runs for each of several ch
lengthsL and different cooling rates. These quantitative
sults were complemented by an interactive graphical vers
of the simulation program that provided real-time visu
monitoring of the folding process; in addition to learnin
about any potential obstructions to complete folding,
ability to observe chains directly also helped when choos
a cooling rate sufficiently fast for folding to proceed
completion, but not too fast for an excessive number of
fects to become trapped in the nascent structures.

The viability of the underlying approach depends
whether it can actually produce correctly structured helic
The first series of results measures the fraction of chains
successfully fold into a helical state, and the manner
which the success rate depends onL and the cooling rate. A
summary appears in Table I;L ranges from 18 to 90, which
since the helix period is six, corresponds to 3–15 full heli
turns.

Owing to the large number of runs it is not possible
provide a detailed history of each, so a quantitative meas
of folding success must be introduced. A successfully fold
helix is deemed to be one for whichS.0.88 at least once
during the last 1.23105 steps of the run~measurements ar
made every 4000 steps!; by this stage of the run the syste
has reached a comparatively low temperature, so that fur
substantial conformational changes are unlikely. Vis
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analysis confirms that, for the cases considered, this thr
old for S provides a quite reliable estimator; it tends to
sensitive to defects in the helical structure, while allowi
for the fact that a properly folded helix may still have som
residual curvature along its major axis.

It is clear from Table I that a high success rate for he
production is achieved. Two trends are apparent in the
sults, neither of them unexpected. For a givenf T , longer
chains are less likely to fold properly than shorter chai
and, for a givenL, a largerf T ~corresponding to slower cool
ing! raises the success rate. Thus the longer the chain,
slower the desired cooling rate; additional runs with fas
cooling confirm this observation. The longest of the cha
folds to a helix with 15 turns, which, considering the pote
tial for defects, represents a significant victory of energy o
entropy.

The rate at which chains approach the helically orde
state can be studied by monitoring the mean values ofS, as
well as the negative of the total energy~which is dominated
by the torsional component when in the folded state!; these
quantities provide measures of the long- and short-range
der, respectively. The results, normalized per DOF, for
and 90-site chains, averaged over all 400 runs, are show
Figs. 3 and 4. The overall results are divided into two grou
depending on whether the chain is classified as having fol

FIG. 3. Averaged order parameter and~negative! total energy
per DOF as functions of time~in dimensionless MD units! for
chains withL554; the contributions of chains that do and do n
fold correctly appear in separate curves, with the upper curve
each case corresponding to the successful folders.

TABLE I. Details of helix folding runs discussed in the text

Length ~L! Turns f T
a Steps (3103) Successb

18 3 0.95 400 1.00
36 6 0.95 400 0.94
54 9 0.95 400 0.85
54 9 0.97 800 0.94
72 12 0.95 400 0.69
72 12 0.97 800 0.91
90 15 0.97 800 0.85

aCooling factor.
bCriterion for successful helix formation is defined in the text.
6-10
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successfully or not, and error bars indicate the standard
viations of the measurements. In each case it is the up
curve that represents the average for the successfully fo
chains, and it has the smaller error bars.

An alternative estimate of the rate at which folding pr
ceeds is based on the time dependence of the fractio
chains in a helical state, relative to all those that eventu
succeed in reaching this state. This provides informat
about when, assuming a chain folds successfully, the app
ance of helical order actually occurs. Figure 5 shows th
cumulative distributions for the differentL, each at the slow-
est cooling rate considered. The cooling rate clearly affe
the results, as can be seen from the separation of the
groups of curves that are based on different rates~see Table
I!; for a given cooling rate, the folding speed tends to drop
the chains become longer~the slight crossover of theL
572 and 90 curves is probably not significant!.

A more detailed examination of final-state conformatio
is based on histograms of theS distribution, using measure
ments made over the last 1.23105 steps. These results ap
pear in Fig. 6 for severalL values~at the slowest cooling
rate!. There are two separate curves for eachL, one showing
the spread ofS for those chains that satisfied the foldin
criterion at least once during this measurement period, a
broader, much lower curve for the chains that did not. T
former set of distributions become broader with increasingL;

FIG. 4. Order parameter and energy forL590 ~similar to
Fig. 3!.

FIG. 5. Cumulative distributions of chains in the folded state
a function of time, for different lengths (L).
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there are several contributing causes for this, includ
slower folding rates~all the runs were of equal length!,
chains not managing to fold successfully but having one
more intermediateS values which passed the test, and t
increasing effect of bending along the helical axis. The lat
broader distributions~scaled up by a factor of 10 to make th
details visible! are due both to the many defective structur
possible, each with its own spread ofS values, and also to
the defects themselves reducing the structural rigidity and
raising the susceptibility to slow thermal vibration. Only fo
the longest chains is there any overlap of the curves,
even then it is minimal.

The best way to follow the folding process is by viewin
animated sequences of images taken at various points du
the run; some sequences can actually be generated while
ning the simulation interactively, if the computations proce
sufficiently rapidly. Here, due to the limitations of the printe
page, a selection of static images must suffice. One co
attempt a verbal description of what transpires but, as w
the case in Ref.@18#, there are no obvious features shared
the individual folding trajectories. Even if certain commo
characteristics do exist, the strong random conformatio
fluctuations make their observation difficult; a systema
quantitative means for identifying pathways, that exten
ideas used for equilibrium states@9#, might prove helpful in
this task.

Figure 1, which appeared early in the paper, shows
image of a typical, well formed, almost straight helix o
tained in one of the runs, while Fig. 2 shows a random ch
configuration observed near the start of a run, both foL
590 chains. For clarity, these and subsequent pictures
resent the chains by their tubular envelopes, rather than
showing individual, partially overlapped spheres represe

FIG. 7. Correctly folded helix (L590) with residual curvature;
this is the most extreme case of bending observed.

s

FIG. 6. Order parameter distributions; separate curves show
sults for chains that did~peaks on the right! and did not~multiplied
by a factor of 10! fold correctly.
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D. C. RAPAPORT PHYSICAL REVIEW E66, 011906 ~2002!
ing the monomers. The tube thickness corresponds to
diameter, slightly less than the soft-sphere interaction cu
to ensure that a small amount of space remains visible
tween adjacent turns of the helix. The maximum amoun
residual curvature that was observed in the backbone
properly folded helices is apparent from Fig. 7; this exam
actually meets the criterion for folding success~as indeed it
should!.

While the majority of runs~85% for chains withL590,
and an even higher proportion for smallerL, see Table I!
result in a correctly folded helix, examination of the kinds
defects that appear in the final states of those runs that fa
fold properly is an informative exercise. The first such p
ture, Fig. 8, is of anL590 chain with two helical regions
separated by a single defect. The defect is essentially a s
loop of the helix with a reverse fold that became frozen
place during the cooling process. This is the most frequ
type of defect, and its location can be anywhere in the ch
even right at the end.

Less frequent are chains with two spatially separated
fects, as shown in Fig. 9. More extreme, but very rare
amples of other kinds of defects appear in Figs. 10 and
These show what can happen when the chain starts to
come entangled with itself; in the first case the problem
localized, but in the second~the only example of its kind
observed! there is a relatively large loop trapped by the e
tanglement. The fact that these defects are relatively in
quent, and that even this low level of failure can be redu
by lowering the cooling rate still further, attests to the robu
ness and reliability of the folding process.

C. Folding to a pair of helices

The helix formation described above is obtained in
study of homopolymers where, due to the uniformity of t
chain, the only kind of repeating structure that can be p
duced is the helix~the planar zigzag conformation is a d
generate case!. In a protein context, this kind of structure

FIG. 8. Incorrectly folded state with a single defect.

FIG. 9. Incorrectly folded state with two separate defects.
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classed as secondary because helices often serve as stru
components in more complex assemblies. Globular prote
are characterized by at least one additional level in the st
tural hierarchy, namely, tertiary structure. A model capable
demonstrating tertiary structure requires at least some di
entiation among the chain sites that breaks the translati
invariance. Building on the helix-forming model investigate
here, the next stage of complexity is a packed assembl
helices, a structure that incorporates both the secondary
tertiary levels of the hierarchy. The simplest way to des
such a structure is to include nonlocal, attractive forces
tween selected pairs of chain sites; here, the pairs invol
are located at chain positions that will be brought into pro
imity following the collapse into a state with two adjace
helices aligned in antiparallel directions. Such highly spec
interactions are reminiscent of an approach used for lat
protein models@29#. The overall simplicity should be con
trasted with the highly detailed model, complete with s
vent, used in an MD study of theunfoldingof a three-helix
bundle @30#; the folding of such bundles has been studi
@31# using a continuum version of the simplified specifi
interaction approach@29# by means of discrete-event MD
@32,15#.

Choosing the interactions to produce a twin-helix stru
ture is accomplished as follows. For a homogeneous ch
with L5nb11 sites, in which the periodicity of the helix i
p, the ground state consists ofnt5L/p turns. Now assume
that nt is an odd number and choose the interactions app
priate for a pair of adjacent helices, each with (nt21)/2
turns, joined by a ‘‘bridging’’ chain segment of lengthp. All
that remains is to identify the pairs of sites in the two helic
regions that must attract; these are just neighboring site
adjacent turns of one of the helical segments, matched w

FIG. 10. Folded state with a localized intertwined defect.

FIG. 11. Folded state with a complex defect involving a lar
loop.
6-12
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MOLECULAR DYNAMICS SIMULATION OF POLYMER . . . PHYSICAL REVIEW E 66, 011906 ~2002!
the corresponding sites, in reverse order, of the other.
strength of the attractive potential responsible for the terti
structure, which is based on Eq.~74!, is 0.2u(0); it is weaker
than the torsion, but the question of whether tertiary struct
formation is the beneficiary or the cause of secondary st
ture formation@2# is not addressed here. In these explorat
computations, the torsional interactions along the bond
the bridging segment are set to zero for simplicity; such
teractions could actually be used to assist the folding
will be the subject of future study.

The definition of the long-range order parameterS, Eq.
~78!, must be modified to reflect the structure of the anti
pated collapsed state. The partial contributions toS of the
two helical segments are now combined with opposite sig
and contributions from the bridging region ignored; this p
vides a reasonably sensitive, but unambiguous, measur
folding success. Figure 12 shows how both the modifieS
and the energy vary with time, forL578 chains~correspond-
ing to a folded state consisting of a pair of six-turn helice!,
using runs whose details are otherwise similar to those
L590. Based on visual analysis of the behavior, a differ
definition of what constitutes successful folding is need
here, namely, that the value of the modifiedS must now
exceed 0.95 for folding to be considered successful; us
this criterion the success fraction was found to be 0.66.

Figure 13 shows an example of a successfully folded
lix pair, an ordered conformation in which both seconda

FIG. 12. Averaged order parameter and energy as function
time for chains that form antiparallel helix pairs (L578).

FIG. 13. Well-formed pair of helices with antiparallel alignmen
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and tertiary structural elements are manifest; two thirds
the runs ended in this state. The failure to fold properly w
generally not due to defects in the individual helical se
ments, but because the two secondary components did
succeed in aligning correctly; an example of such an o
come is shown in Fig. 14. The attractive forces become m
more effective once the helical segments have formed; th
due to the linear arrangement of the attraction sites enab
them to function cooperatively, an effect that may be
flected in real proteins with prominent secondary-structu
features. As a result of the nature of the interactions and
relative interaction strengths, the helical segments form fi
essentially unimpeded, and only then do they attempt
align. The failure to align here is a symptom of the absen
of any driving force for bringing the helices together; there
no torsional preference in the bridging segment and the ra
of the interhelix attraction is too short to be felt if the helic
segments are well separated. Changes to either or both t
aspects of the potential should alter the behavior, but car
required to avoid hindering the helix formation process
any way.

V. CONCLUSIONS

The present paper has focused on both methodology
results. A formalism developed for the dynamics of robo
manipulators and other coupled mechanical systems—
provides a convenient and direct representation of the
namics of bodies connected by rigid links with restrict
degrees of freedom—has been utilized in a polymer cont
with the clear implication that existing methods based
geometric constraints may be redundant in many instan
Since the treatment also involves dealing with rigid-bo
dynamics, a computationally more effective method than
often-used quaternion approach is also employed.

The results of an extensive series of MD simulations de
onstrate that homopolymer chains with suitable torsional
teractions consistently collapse into well-formed helices;
probability of localized defects being frozen into the stru
ture depends on the cooling rate, and it can be reduced
very low level by cooling sufficiently slowly. In order to
demonstrate that the present simplified approach is rele
to protein folding, heterogeneous chains, with interactio
favoring the development of antiparallel pairs of helice
were shown to produce coexisting secondary and tert
structural features.

of

FIG. 14. Pair of helices that have failed to align.
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The order parameters introduced to quantify the degre
folding were tailored to capture the structural order pres
in the final state of the polymer. To study the details of fo
ing pathways, other order parameters~or reaction coordi-
nates! that capture features present in the intermediate sta
but not necessarily in the final state, could be defined. In
twin-helix case, for example, a simple sum of the absol
values ofS, evaluated separately for each helix-forming se
ment of the chain, might prove useful, since this quan
reaches its maximum upon completion of secondary st
ture formation, and is not seriously affected by subsequ
rearrangement at the tertiary level.

The apparent success of the MD approach to chain f
ing used here is important for another reason. The wid
cited Levinthal ‘‘paradox’’@5# implies that since the numbe
of states accessible to a protein grows exponentially w
residue count, the time required for even a small protein
seek out its native state is, for practical purposes, infin
Since nature does not suffer from this problem, the impli
tion is that substantial portions of the folding process oc
along certain well-characterized pathways; thus the m
ecules do not really wander almost aimlessly through con
mation space, and hence there is no paradox. In orde
begin to simulate such processes it is necessary to resor
computationally efficient model, with realistic dynamics a
a unique but readily determined low-energy ‘‘native’’ sta
this is precisely what has been accomplished in the pre
work.

The type of model introduced here provides a start
point for exploration in several directions. While the intera
tions were weighted to construct the secondary helix str
ture prior to forming features at the tertiary level, a change
the relative strength of the interactions would allow aspe
of both levels of organization to appear concurrently. Cha
could be designed to fold into other idealized compact str
tures, such as the packed cube used in some lattice stu
o

.

y

pu

01190
of
t

-

s,
e
e
-
y
c-
nt

-
ly

h
o
.
-
r
l-
r-
to
o a

;
nt

g
-
c-
n
ts
s
-
ies

@2,3#, or sheetlike conformations that also represent imp
tant secondary structure components; furthermore, pac
states with different degrees of accessibility could prov
useful information on how this feature influences foldin
success. The interactions can be modified and new type
interactions added; polymer topology can be changed by
addition of side chains corresponding to residues with
tended structure. Common to all these enhancements is
the model must always be designed with a known lowe
energy state, and in this respect the approach differs f
many other types of protein simulation. While models of th
kind are perhaps limited in the kinds of questions they c
address, there are more than enough issues requiring a
tion where they can prove helpful.

In a sense, the role played by such highly simplified mo
els is analogous to the Ising model of ferromagnetism@33#;
while it is not usually claimed that an Ising spin syste
accurately represents a real magnetic material~or, for that
matter, any other kind of real physical system, when used
other kinds of problems such as lattice gases! it does, how-
ever, capture a great deal of the essence of the problem,
extent that the study of Ising and related models has resu
in important advances, both for spin systems in particu
and for statistical mechanics and critical phenomena in g
eral. Proteins can also be modeled with a high level of de
and specificity, but the tradeoff is that only short trajecto
segments can be followed with an investment of a reason
amount of computing effort; hopefully, extensive studies
simplified polymer models of the kind examined here,
which the design is tailored to reproduce certain generic
pects of macromolecular behavior, will achieve greater po
larity as their usefulness becomes established.
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