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Ordering transitions, biaxiality, and demixing in the symmetric binary mixture of rod and plate
molecules described with the Onsager theory

Szabolcs Varga,* Amparo Galindo, and George Jackson
Department of Chemical Engineering and Chemical Technology, Imperial College of Science, Technology and Medicine,

Prince Consort Road, London SW7 2BY, United Kingdom
~Received 14 January 2002; published 29 July 2002!

The phase behavior of a liquid-crystal forming binary mixture of generic hard rodlike and platelike particles
is studied with the theory of Onsager@L. Onsager, Ann. N. Y. Acad. Sci.51, 627~1949!# for nematic ordering.
The mixture is chosen to be symmetric at the level of the second virial theory, so that the phase behavior of the
two pure components is identical. A parameterq is used to quantify the effect of the unlike rod-plate excluded
volumes on the phase behavior; a value ofq.1 indicates that the unlike excluded volume is greater than the
like excluded volume between the rods or plates, and a value ofq,1 corresponds to a smaller unlike excluded
volume. Two methods are used to solve the excluded volume integrals: the approximate L2 model@A.
Stroobants and H. N. W. Lekkerkerker, J. Phys. Chem.88, 3669 ~1984!#, in which a second-order Legendre
polynomial is used; and a numerical method where the integrals are solved exactly. By varying the unlike
excluded volume interactionq, the isotropic phase is seen to be stabilized~small q! or destabilized~largeq!
with respect to the nematic phase for both models. Isotropic-isotropic demixing is also observed for the largest
values ofq due to the unfavorable contribution of the unlike excluded volume to the entropy of the system. A
second-order nematic–biaxial nematic phase transition is observed for small values ofq in the L2 approxima-
tion, and for allq in the exact calculation; in the latter case the stability of the biaxial phase is enhanced by
increasingq, while in the L2 approximation nematic-nematic phase separation is favored. This result is the
most striking difference between the two methods, and is in contrast with the results of previous studies. We
show that the accuracy of the L2 expansion is particularly poor for parallel and perpendicular particle orien-
tations.

DOI: 10.1103/PhysRevE.66.011707 PACS number~s!: 64.70.Md, 64.60.Cn, 61.30.Cz
q-

on
re
r-
te
e
o
ct
sy

li

b
e

i-

is
av

ec

ger
ic-
rely
n-

opy

n-

ore
ch
ced.
pic
tic,

we
he
rd-
ial

e-
u-

xi-
se
e of

the

f-
re
I. INTRODUCTION

One of the most striking developments in the field of li
uid crystals was the seminal work of Onsager@1# presented
in the 1940s. He predicted a transition from an orientati
ally disordered isotropic phase to an orientationally orde
uniaxial nematic phase in a fluid of infinitely thin rod pa
ticles with purely repulsive interactions. Using compu
simulations, Vieillard-Baron@2# was the first to demonstrat
the isotropic-nematic transition in a fluid of hard ellipses
finite length. Positionally ordered phases, such as sme
columnar, and solid phases, were later also observed in
tems of hard spherocylinders@3# and hard platelets@4#.
Uniaxial nematic, smectic, columnar, and of course so
phases, are commonly observed experimentally@5#; in addi-
tion to the common uniaxial nematic phase, a so-called
axial nematic phase has also been proposed. A biaxial n
atic phase is positionally disordered~a characteristic of
nematic phases!, but exhibits orientational order in two, typ
cally normal, directions. Such a fluid has been observed
computer simulations of hard biaxial particles@6#, but has
not, as yet, been confirmed experimentally. Extreme an
tropic ordering can also result in cubatic phases, which h
been observed in fluids of hard platelike particles@7# and of
hard cylinders@8#.

It is therefore clear that attractive interactions are not n
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essary for the formation of liquid crystalline phases. Onsa
already showed in his seminal work that the isotrop
nematic phase transition can be described in terms of pu
entropic considerations. In order to maximize the total e
tropy, a competition arises between the orientational entr
~which favors the orientationally disordered state!, and the
available free volume~which increases the translational e
tropy and favors the orientationally ordered state! in the sys-
tem. At high density the translational term becomes m
important, favoring the formation of aligned phases in whi
the average excluded volume between particles is redu
As the density is increased in a fluid of hard anisotro
particles, phase transitions from isotropic liquid to nema
and more ordered, phases can be observed. In this work
are particularly interested in investigating the stability of t
biaxial nematic phase, but instead of studying a fluid of ha
biaxial particles, we consider a binary mixture of uniax
hard particles.

In mixtures of anisotropic molecules, an interplay b
tween the orientational and free volume entropic contrib
tions, and the ideal entropy of mixing, which is at a ma
mum for fully mixed states, gives rise to a very rich pha
behavior; this is especially true when the components ar
markedly different symmetry~such as rods and plates!. Even
in mixtures of components of the same symmetry~mixtures
of thick and thin rods, for example!, demixing can be ob-
served if the gain in the free volume entropy overcomes
loss in the mixing and orientational entropy.

A complete theoretical study of mixtures of fluids of di
ferent symmetry is rather difficult due to the complex natu
©2002 The American Physical Society07-1
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of the unlike interactions which give rise to computation
difficulties. Lattice models@9–12# and Mayer-Saupe-type in
teraction potentials@13–15# are frequently used in order t
simplify the numerical problem. The predictive ability o
these approaches is rather limited, but they nevertheless
vide a first insight of the qualitative phase behavior th
could be expected in the experimental systems.

More recently, extensions of the original theory of O
sager have also been used to study the phase behavi
liquid crystalline mixtures of hard particles. Nemati
nematic phase separation has been obtained with exten
of the Onsager theory in mixtures of rods of different leng
@16–18#, in mixtures of rods of different diameter@19#, and
in the so-called symmetric mixture of rods~a mixture of rods
of different diameter and length but of the same like e
cluded volume! @20#. Surprisingly, isotropic-isotropic demix
ing is only observed in these mixtures when the rods are
different diameter, i.e., in a mixture of thick and thin ro
@21# and in the symmetric mixture of rods. In these case
four-phase coexistence point may exist in the phase diag
as calculated by Sear and Mulder@20# for the symmetric
mixture. In two recent studies, Hemmer@22,23# has studied
the regions representing the demixing transitions both in
isotropic and the nematic phases for this mixture in terms
the molecular diameter and length ratios.

Much attention has also been paid to mixtures of rodl
and platelike molecules in recent years due to the comb
interest in phase separation and phase biaxiality that ma
exhibited by these systems. Considering that most liqu
crystal-forming molecules are biaxial in shape, it may at fi
be surprising to realize that biaxial nematic phases~nematic
phases exhibiting alignment along the long molecular axis
well as in the direction of the molecular plane! are very
rarely observed; it turns out that solidification preempts
existence of the biaxial phase in most cases. It may be m
fruitful to investigate biaxial nematic phases in the context
mixtures of rod and plate molecules, as the composition
fers an extra tunable variable and transitions to solid pha
are normally destabilized in mixtures. Such a mixture w
first studied by Alben@9# using a lattice mean-field mode
Alben predicted the existence of a rod-plate biaxial nem
phase between a rod-rich uniaxial nematic phase and a p
rich uniaxial nematic~discotic! phase, and the phase trans
tions from the uniaxial nematic to the biaxial nematic we
found to be second order~i.e., continuous!. The phase dia-
gram predicted by Alben in 1973, was later confirmed fo
lattice model including long-range isotropic~dispersion! in-
teractions@24#, as well as in off-lattice models using th
Onsager@25# and Mayer-Saupe theories@15,26#. A number
of recent studies of the phase behavior in mixtures of bia
rod and plate molecules including association@27,28#, and
van der Waals like attractive interactions@29#, have also been
presented.

Discotic phases were observed experimentally a few ye
after the theoretical work of Alben, but the biaxial nema
phase still eludes experimental observation. Goozner and
bes@30# have studied a mixture of plate molecules ‘‘dope
with a small amount of rod molecules, and Hardouinet al.
@31# a mixture of rod particles doped with a small amount
01170
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plate particles. These studies suggest that the ordered ph
are destabilized on mixing. Yu and Saupe@32# have reported
the phase diagram of a mixture of potassium laura
1-decanol, and water, and have found a biaxial nematic ph
between two uniaxial phases~a micellar phase of bilaye
structure, and a cylindrical micellar phase!. Unfortunately, it
has not since been possible to confirm this phase beha
Van der Kooij and Lekkerkerker@33,34# have used essen
tially hard rod and plate colloidal particles to study the pha
behavior of the mixtures. In their work the rods have
aspect ratio of about 10, and the plates of about 1/15;
means that the mixture is strongly asymmetric, as the
cluded volume of the plate is much larger than that of
rod. Studying an extensive range of concentrations, they
serve nematic-nematic demixing as well as nema
columnar demixing, but never encounter a biaxial pha
Wensink et al. @35# have also studied this mixture in th
context of the theory of Onsager incorporating the high
virial terms with the scaling approach of Parsons@36,37#,
finding good qualitative agreement with the experimental
sults.

A limited number of simulation studies have also be
carried out which involve mixtures of rodlike and platelik
molecules. Camp and Allen@38# studied mixtures of hard
ellipsoidal particles of rod and plate shape with aspect ra
of 10 and 1/10, respectively. In this system nematic-nem
demixing appears to preempt the stable biaxial nem
phase. In an extension of the work Campet al. @39# used the
Gibbs ensemble simulation technique to study mixtures
hard ellipsoidal particles of aspect ratios 15~rodlike! and
1/15 ~platelike!, and 20 and 1/20. In both mixtures, stab
biaxial nematic phases were found to be in coexistence w
a plate-rich nematic phase. A mixture of hard spherocy
ders of aspect ratio 6, and hard cut spheres of aspect
0.12 has also recently been studied usingNVT Monte Carlo
simulations@40#. In this case a demixing into a rod-rich nem
atic phase and plate-rich columnar phase is observed
gether with a marked stabilization of the isotropic pha
@40#; a biaxial phase was not found.

The range of stability of the biaxial nematic phase is s
unresolved, because only limited regions of the molecu
parameter space have been examined for each system.
for a prescribed set of molecular parameters, a numbe
approximations have to be taken in order to solve the f
energy expressions within a given theoretical descripti
these approximations can have a dramatic effect on the
bal phase diagram and on the stability of the biaxial phas
particular, as will be shown later in this work. Using th
theory of Onsager to describe the continuous~off-lattice!
rod-plate mixture, Stroobants and Lekkerkerker@25# solved
the system of Euler-Lagrange integral equations with an
proximate expression for the excluded volumes~the spheri-
cal harmonic expansion of the excluded volume was tr
cated at second order; see Sec. II!. They observed a stabl
first-order isotropic-nematic transition and a second-or
uniaxial–biaxial nematic transition. The two transitions me
at an equimolar composition, where the isotropic, uniax
nematic, and biaxial nematic phases are in coexistenc
7-2
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should be noted that their study was restricted to the cas
which the rod-rod and plate-plate isotropic virial coefficien
as well as the unlike rod-plate isotropic virial coefficient a
the same. More recently, Chrzanowska@41# has performed a
more systematic study of the phase behavior in a mixture
hard rod and plate molecules considering two unlike
cluded volumes that are taken to be different from those
the pure components. The study was limited, however,
bifurcation analysis, which gives the upper bound for t
stability of the less ordered phase, but which does not g
conclusive information about the nature of the phase co
istence. The possibility of isotropic-isotropic or nemat
nematic demixing was not investigated, both of which co
preempt the isotropic-nematic transition or the uniaxia
biaxial nematic transition; thus it is possible that the biax
nematic phase is not stable in this system. One should
point out that the existing theoretical studies correspond o
to a small portion of the global phase diagram within t
Onsager approach for such mixtures; as indicated by Ch
nowska, different unlike excluded volume contributions gi
rise to very different types of phase behavior.

Van Roij and Mulder@10# used the Zwanzig model@42# to
study the phase behavior of a mixture of rectangular rod
and platelike blocks, examining a range of molecular para
eters. For moderate aspect ratios they find strikingly differ
results from those of Stroobants and Lekkerkeker@25#, and
of Chrzanowska@41# as to the existence of a stable biax
nematic phase. They were able to show that the stability
the biaxial nematic phase and its extent are very sensitiv
the choice of the molecular aspect ratios. For modera
long and flat particles, no biaxial nematic phase is observ
while for longer and flatter particles this phase becom
more stable. A drawback of this study is that the orientatio
entropy term and the second virial term are rather poo
represented by the Zwanzig model. The aim of our work is
carry out a similar global investigation, concentrating on
effect of the unlike excluded volume on the phase beha
using the more accurate continuous theory of Onsager
rod-plate mixtures.

We undertake a comprehensive study of the phase c
istence in a symmetric mixture~equal pure component ex
cluded volumes! of hard rod and plate particles, in order
give some insight into the phase behavior of rod-plate bin
mixtures by studying different unlike excluded volume inte
actions between the rods and plates. We use the Gibbs
energy to confirm the stability of the phases relative to e
other, including the possibility of demixing transitions in th
isotropic and nematic phases. The isotropic, uniaxial nem
and the biaxial nematic phases are considered in detail.
ditionally, particular attention is paid to the commonly us
approximation for the description of the excluded volum
interactions in which a second-order Legendre polynom
expansion is used~the L2 approximation!. This approxima-
tion substantially reduces the computational burden, but
sults in a considerable error in the description of the
cluded volumes especially for the parallel and perpendic
configurations. We study the effect of this inadequacy
comparing the phase behavior obtained using the L2
proximation with calculations in which the excluded volum
01170
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integrals are solved numerically, i.e., without approxim
tions.

This paper is organized as follows. A short description
Onsager’s theory for ordering phase transitions in the s
cific case of binary mixtures of rod and plate molecules
given in the following section. The expressions for the eq
librium orientational distribution functions within the L2 de
scription and for the full numerical description are presen
in Sec. II A and II B. In Sec. II C a general~binodal and
spinodal! demixing analysis is presented, and a simple a
lytical equation is derived for the isotropic-isotropic demi
ing transition curve. The phase diagrams for a number
mixtures with different length and diameter ratios, which a
quantified through a parameterq that characterizes the unlik
excluded volume interaction, are presented in Sec. IV,
we make some general conclusions in Sec. V.

II. THEORY

In this work we consider a binary mixture of hard uniaxi
rodlike and platelike molecules, and study the fluid pha
behavior of the system. We take into account isotropic, a
orientationally ordered~nematic! phases, but not positionally
ordered~smectic and solid! phases. In a binary mixture o
uniaxial particles, which could be orientationally inhomog
neous but which is always spatially homogeneous, the p
tionally averaged densityr~v! is determined by an orienta
tional distribution function f (v) and the total number
densityr, so that it can be written asr(v)5r f (v), where
v is the orientational unit vector. In turn, the free energyF
can be written as a sum of ideal and residual contributi
given by

bF

N
5 ln r211(

i 51

2

xi~ ln xi1s@ f i # !1rB2 , ~1!

whereb51/kT ~T is the temperature andk is Boltzmann’s
constant!, r5N/V is the number density,xi is the mole frac-
tion of componenti, and v is the orientational unit vecto
defined by a polar angle (0,u,p) and an azimuthal angle
(0,w,2p). The last term in Eq.~1! is the residual contri-
bution to the free energy due to the repulsive interactio
treated at the level of Onsager’s second virial theory@1#. The
second virial coefficientB2 is a mole fraction weighted sum
of the like B11, B22, and unlikeB12 terms, so that

B25x1
2B1112x1x2B121x2

2B22. ~2!

The other terms in Eq.~1! are the ideal gas term, the ide
entropy of mixing, and a term proportional to the orient
tional entropy, which is defined in terms of the orientation
distribution function of each component as

s@ f i #5E f i~v!ln@4p f i~v!#dv. ~3!

For hard body fluids, the virial coefficientBi j corresponds to
half the orientationally averaged excluded volume betwe
componenti and j @43#
7-3
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Bi j 5
1

2 E nexc
i j ~v1 ,v2! f i~v1! f j~v2!dv1dv2 . ~4!

The calculation of the excluded volume between two h
spheres of different diameter or between two spherocylind
is reasonably straightforward, and an analytical express
has also been presented for the excluded volume betw
two cylinders of differing length and diameter@1#. For other
nonspherical hard bodies, such as ellipsoids or cut sphe
the calculation of the excluded volume is not straightf
ward.

In this work we study a binary mixture of rodlike mo
ecules~component 1, characterized by a lengthL1 to diam-
eterD1 ratio L1 /D1!, and platelike molecules~component 2,
characterized by a lengthL2 to diameterD2 ratio L2 /D2!
using the theory proposed by Onsager. Onsager’s theo
exact in the limit of rodlike particles of infinite aspect rati
but it quickly becomes inaccurate for less anisotropic m
ecules; this means that in our study the rodlike molecules
assumed to be very elongated withL1@D1 , while the plate-
like molecules are assumed to be very flat withL2!D2 and
that D2@D1 . It is important to mention at this stage th
while the second virial approach can be justified for fluids
rodlike molecules since theB3 /B2

2!1, this is not the case fo
fluids of platelike molecules, and the approximation is mo
severe in this case@4#. For long and flat molecules, the lea
ing terms of the excluded volumes are given by

nexc
11 ;2L1

2D1 sing,

nexc
12 ;

p

4
L1D2

2u cosgu, ~5!

nexc
22 ;

p

2
D2

3 sing,

whereg5arcos(vi•vj ) is the angle between particlesi and
j. It is interesting to note that neither the cross rod-plate
the plate-plate excluded volumes depend on the thicknes
the plateL2 ; this is only true at the level of the second viri
coefficient, as the free energy is a function of this parame
when the higher virial terms are taken into account.

In order to be consistent with the earlier work
Stroobants and Lekkerkerker@25#, we use the virial coeffi-
cients of the isotropic phase to characterize the intermole
lar parameters,

B11
iso5

p

4
L1

2D1 , B12
iso5

p

16
L1D2

2, B22
iso5

p2

16
D2

3. ~6!

These can be obtained by inserting the excluded volu
given by Eq.~5! into Eq. ~4!, and using the isotropic distri
bution functionsf i51/(4p). The molecular parameters a
determined by ensuring the virial coefficients are equal
the like rod-rod and plate-plate interactions, and a param
q is introduced which determines the contribution of the u
like excluded volume in the isotropic phase, so that
01170
d
rs
n
en

es,
-

is

l-
re

f

e

r
of

er

u-

es

r
er
-

B11
iso5B22

iso and q5
B12

iso

B11
iso. ~7!

It is important to note that this relation of the isotropic ro
rod and plate-plate second virial coefficients also means
the like second virial coefficients are equal in the nema
phases. As is customary, a reduced densityc is also defined
in terms of the rod-rod isotropic virial coefficient asc
5B11

isor. In this way, the mixture is fully defined by the thre
parametersx, candq, since a given value ofq corresponds to
a fixed aspect ratio of the rods (L1 /D1) and diameters ratio
(D2 /D1) ~see Sec. III!. Using the new variables, the residu
free energy can be written as

rB25c
4

p E @x1
2 sing f 1~v1! f 1~v2!1px1x2qucosgu f 1~v1!

3 f 2~v2!1x2
2 sing f 2~v1! f 2~v2!#dv1dv2 . ~8!

It may be clear at this stage that in order for the fr
energy @Eq. ~1!# to be fully determined, the equilibrium
single particle orientational distribution functionsf i(v) must
be known. This can be done by taking the functional deri
tives of Eq.~1! while maintaining the normalization cond
tions * f i(v)dv51,

d@bF/N1l i~12* f i~v!dv!#

d f i~v!
50, ~9!

wherel i are Lagrange undetermined multipliers. The resu
ing integral equations in our system are

ln@4p f 1~v!#5l12cS 8

p
x1E sing~v•v2! f 1~v2!dv2

14x2qE ucosg~v•v2!u f 2~v2!dv2D
~10!

and

ln@4p f 2~v!#5l22cS 8

p
x2E sing~v•v2! f 2~v2!dv2

14x1qE ucosg~v•v2!u f 1~v2!dv2D .

~11!

The Lagrange multipliers can be eliminated by using
normalization conditions of the orientational distributio
functions to give the following integral equations:
7-4
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f 1~v!5

expF2cS 8

p
x1E sing~v•v2! f 1~v2!dv214x2qE ucosg~v•v2!u f 2~v2!dv2D G

E expF2cS 8

p
x1E sing~v1•v2! f 1~v2!dv214x2qE ucosg~v1•v2!u f 2~v2!dv2D Gdv1

~12!

and

f 2~v!5

expF2cS 8

p
x2E sing~v•v2! f 2~v2!dv214x1qE ucosg~v•v2!u f 1~v2!dv2D G

E expF2cS 8

p
x2E sing~v1•v2! f 2~v1!dv114x1qE ucosg~v1•v2!u f 1~v1!dv1D Gdv2

. ~13!
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These two equations constitute the starting expressions
the calculation of the phase equilibria in this work, and
discuss different approximations for their solution in the f
lowing section. Together with this, the natural thermod
namic function to consider phase stability and equilibria
binary mixtures is the Gibbs free energy~in reduced form
g* 5bG/N!, which is derived from the Helmholtz free en
ergy by performing the Laplace transformation

g* 5 f * 1P* /c, ~14!

where the reduced pressureP* 5bPB11
iso can be obtained

from the reduced Helmholtz free energyf * 5bF/N as

P* 5c2
] f *

]c
. ~15!

By calculating the Gibbs free energy as a function of co
position at a given pressure, the phase diagram of the bi
mixture can be determined by simply taking the comm
tangent between the coexisting phases@44#. We follow this
method to construct the phase diagram of the present sys

A. L2 solution

1. Isotropic-nematic bifurcation

The coupled integral equations~12! and ~13! are quite
difficult to solve analytically, but they simplify substantiall
by expanding the kernels of the integrals in terms of Le
endre polynomials. In the so-called L2 approximation t
expansion is truncated at second order, so that

sing'
p

4
2

5p

32
P2~cosg!,

ucosgu'
1

2
1

5

8
P2~cosg!. ~16!

If we define the uniaxial order parameters as the orientatio
averages of the second Legendre polynomials

Si5E P2~cosu! f i~v!dv, ~17!
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the orientational distribution functions@Eqs. ~12! and ~13!#
can be expressed as functions of the uniaxial order par
eters of the two components, given now by

f 1~u!5
exp@ 5

4 c~x1S122x2qS2!P2~cosu!#

E exp@ 5
4 c~x1S122x2S2!P2~cosu1!#dv1

~18!

and

f 2~u!5
exp@ 5

4 c~x2S222x1qS1!P2~cosu!#

E exp@ 5
4 c~x2S222x1qS1!P2~cosu1!#dv1

.

~19!

In the derivation of these equations we have assumed tha
orientational ordering is symmetrical around the nematic
rector taken in the direction ofz axis ~as expected for a
uniaxial phase!. Moreover, we have used the L2 approxim
tion @Eq. ~16!# and the addition theorem of spherical harmo
ics @45#, such that

P2~cosg!5P2~cosu1!P2~cosu2!12(
i 51

2
~22 i !!

~21 i !!

3P2
i ~cosu1!P2

i ~cosu2!cos@ i ~w12w2!#.

~20!

It is important to note that the terms proportional to the
sociated Legendre polynomials (Pn

i ) will vanish in this case
since the nematic phase is uniaxial and does not depen
the azimuthal angle. In the following section, where the
axial nematic phase is considered, one of the terms of
two associated Legendre polynomials (P2

2) has a finite con-
tribution. Equations~18! and~19! were derived by Stoobant
and Lekkerkerker@25# in the context of mixtures of rodlike
and platelike particles; earlier, Flapper and Vertogen@46# had
also used the L2 approximation in a pure rod system.

After multiplying by the second Legendre polynomials o
both sides of Eqs.~18! and~19!, and integrating both sides,
set of self-consistent equations can be obtained for the o
parameters in the mixture, which can then be solved num
7-5
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cally @47#. However, an important insight can also be gain
from Eqs. ~18! and ~19! when a weakly ordered nemat
phase is considered. WhenS1 andS2→0 the exponentials in
Eqs.~18! and~19! can be expanded using the familiar Tayl
series up to second order (expx'11x) giving

f 1~u!5
11 5

4 ~x1S122qx2S2!cP2~cosu!

4p
~21!

and

f 2~u!5
11 5

4 ~x2S222qx1S1!cP2~cosu!

4p
. ~22!

The corresponding equations for the order parameters a

S15x1cS1/42qx2cS2/2 ~23!

and

S25x2cS2/42qx1cS1/2. ~24!

The elimination of the order parameters results in a quadr
equation for the reduced densityc,

05~124q2!x1x2c224c116. ~25!

In this way, it is possible to determine the density
which the nematic phase bifurcates from the isotropic ph
without solving the coupled integral equations. However
must be noted that this equation gives only an upper limit
the isotropic phase stability without determining the nat
of the isotropic-nematic phase transition; the isotrop
nematic phase transition may take place at lower dens
than indicated by Eq.~25!. The incorporation of an addi
tional term in the Taylor expansion of the exponentials
01170
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sults in slightly more complex coupled equations for the
der parameters; in this case, the density dependence o
order parameters including the bifurcation point is obtain
together with the correct order of the phase transition. U
fortunately, this expansion underestimates the order par
eters for dense nematic phases and so we do not pre
these equations here@48#. Equations~23! and ~24! also pro-
vide the order parameters of the two components in suc
way that they are interdependent. It can be seen from
expressions that if the order parameter of one compone
positive~determining the nematic director!, the order param-
eter of the second component must be negative; this me
that the symmetry axes of the two components align in p
pendicular directions with respect to each other. One sho
also note, however, that the second component is rando
oriented within the perpendicular plane~so-called planar
phase!. A large average excluded volume is associated w
such planar ordering, and as a consequence, the possibili
biaxial order~additional ordering in the plane perpendicul
to the uniaxial director! cannot be excluded in this system,
this will increase the free volume~translational! entropy.

2. Nematic-biaxial nematic bifurcation

In a rod-rich uniaxial nematic phase, the rods pack v
effectively, maximizing the packing entropy, but the plates
this planar configuration do not significantly increase t
free-volume entropy with respect to the isotropic phase. T
free-volume entropy is increased by additional ordering
the direction perpendicular to the alignment of rods~biaxial
ordering!; this gives rise to azimuthal anisotropy in the o
entational distribution functions.

In considering the possibility of biaxial ordering, Eq
~18! and~19! have to be expressed in a more general form
the case of the L2 approximation@Eq. ~16!# together with Eq.
~20! the corresponding expressions are
f 1~u,w!5
exp@ 5

4 c~x1S122x2qS2!P2~cosu!1 5
4 c~x1D122x2qD2!D~u,w!#

E exp@ 5
4 c~x1S122x2qS2!P2~cosu1!1 5

4 c~x1D122x2qD2!D~u1 ,w1!#dv1

~26!

and

f 2~u,w!5
exp@ 5

4 c~x2S222x1qS1!P2~cosu!1 5
4 c~x2D222x1qD1!D~u,w!#

E exp@ 5
4 c~x2S222x1qS1!P2~cosu1!1 5

4 c~x2D222x1qD1!D~u1 ,w1!#dv1

, ~27!
c-

ur-
where the biaxial order parameters

D i5E f i~u,w!D~u,w!dv, ~28!

have been introduced using a functionD(u,w) defined from
the second associated Legendre polynomialP2

2,
D~u,w!5
)

2
sin2 u cos~2w!.

As before, it is possible to expand the exponential fun
tions in Eqs.~26! and ~27! in the vicinity of the nematic–
biaxial nematic bifurcation point, i.e.,D1→0 andD2→0. It
can be seen that the orientational distribution functions bif
7-6
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cate from the uniaxial nematic distributionsf i ,N with the
D(u,w) function, since

f 1~u,w!5 f 1,N~u!@11 5
4 ~x1D122qx2D2!cD~u,w!#

~29!

and

f 2~u,w!5 f 2,N~u!@11 5
4 ~x2D222qx1D1!cD~u,w!#.

~30!

Integrating both sides of Eqs.~29! and ~30! with D(u,w),
and using the orthogonal property of this function, expr
sions for the biaxial order parameters are obtained for e
of the components,

D15
5

4
cS x1D1E D2~u,w! f 1,N~u!dv

22qx2D2E D2~u,w! f 1,N~u!dvD ~31!

and

D25
5

4
cS x2D2E D2~u,w! f 2,N~u!dv

22qx1D1E D2~u,w! f 2,N~u!dvD . ~32!

On eliminating the biaxial order parameters the bifurcat
equation for the L2 approximation is obtained as

25c2~124q2!x1x2E D2f 1,NdvE D2f 2,Ndv

220cS x1E D2f 1,Ndv1x2E D2f 2,NdvD11650.

~33!

The nematic–biaxial nematic bifurcation density is det
mined from this equation by using the uniaxial orientation
distribution functions given in Eqs.~18! and ~19!. An inter-
esting feature of Eq.~33! is that it reduces to the isotropic
nematic bifurcation@Eq. ~25!# if the orientational distribution
functions are isotropic, meaning that there is no dir
isotropic–biaxial nematic transition in the L2 approximatio
This will become apparent in the discussion of our result

B. Numerical solution

The use of simple approximations to obtain the equil
rium orientational distribution functions in ordered phas
such as trial function methods@43# or the L2 model@25,41#
discussed earlier have the obvious advantage of rela
mathematical simplicity. It is clear that in each case th
approximations introduce some degree of error. For exam
it has already been pointed out in previous work@18# that
these approximations may result in a qualitatively incorr
conclusion about the existence of a critical point in nema
nematic phase boundaries of rod-rod binary mixtures.
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In the present model the accurate solution of the Eu
Lagrange equations is even more important, because o
subtle competition between the entropy of mixing and
unlike excluded volume which determines the stability of t
biaxial nematic phase. The shortcomings of the series exp
sion methods can be demonstrated by calculating the a
lute difference between an orientationally dependent func
G~g! and its Legendre polynomial representation

xn~g!5UG~y!2(
i 50

n

ai Pi~cosg!U, ~34!

where ai is the corresponding coefficient of the Legend
expansion of the function. We have evaluated the funct
for the integral kernels@i.e., sing and ucosgu# up to 18th
order @note that Eq.~16! presents the expansion only up
second order#, and the results are depicted in Fig. 1. It
clear from the figure that the expansion converges v
slowly, and that the error is particularly large for the paral
and perpendicular directions. Hence, it is rather questiona
whether the second-order approximation~L2 model! or even
high-order expansions are adequate for a reliable quantita
~and even qualitative! description of the phase equilibria.

In order to test the accuracy and reliability of the L2 s
lution presented in the preceding section we solve
coupled integral equations~12! and~13! entirely numerically
~i.e., without approximations!. The integration over the ori-
entational unit vector~v! is carried out by Simpson’s
quadrature. We ensure that the polar~u! and azimuthal~w!
parts of v are treated at the same level by considering
interval@0, p# for u and an interval@0,2p# for w, and both are
divided into subintervals of the same grid size. In order
maximize the accuracy of the numerical approach, wh
minimizing the computational burden, the optimal grid si
is determined by solving integral equations~12! and ~13! in
the uniaxial nematic phase, where the calculation of the
entational distribution function depends only on the po
angle ~u!. We find that the minimum number of interva
between@0,p# must be at least 40. Using the grid size o
tained for the uniaxial nematic phase, Eqs.~12! and~13! are
solved iteratively: guesses are made forf 1(v) and f 2(v),
which are substituted into the right-hand side of the eq
tions to obtain a new pair off 1(v) and f 2(v); in each
iterative step the new solution is mixed with the previous o
so that the old function is 90% of the new one~this ensures
the convergence of the method! and the procedure is re
peated until the maxufi,new(v)2 f i ,old(v)u,1029 ( i 51,2).
The director defining the nematic phase is not unique
these systems. In the case of a uniaxial nematic phase
integration over the second azimuthal angle means that
director lies along thez axis in order to be consistent wit
uniaxial ordering. In the case of a biaxial nematic phase
is no longer possible because the solution also depend
the azimuthal angles. In order to fix the main nematic dir
tor along thez axis ~as before!, a biaxial initial guess of the
orientational distribution function is made such that the
rector is oriented along this axis; this is equivalent to t
pinning of the main nematic director. Finally, the coexisten
7-7
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conditions~equality of pressure and chemical potentials! in-
volving phases of different symmetry are solved using
downhill simplex method@47#; the accuracy in the coexist
ence pressureP52]F/]V and chemical potentialsm i
5]F/]Ni is chosen to be of at least six significant figure

C. Demixing transitions

In addition to the isotropic-nematic and nematic-biax
phase transitions which have already been discussed, a
ture of rodlike and platelike hard particles of differing si
may exhibit demixing in phases of the same symmetry~i.e.,
isotropic-isotropic or nematic-nematic demixing!. In the case
of our mixture of purely repulsive particles there is no vap
liquid phase transition. A given phase is stable if the sec
derivative of the Gibbs free energy with respect to the m
fraction is positive, which in our reduced units is express
as

FIG. 1. Error of the Legendre polynomial expansion method
~a! ucosgu and ~b! (sing) as a function of the angleg. The error is
calculated as indicated in Eq.~34!. The values ofn presented are
~from top to bottom in both parts!: 0, 2 ~dashed curve!, 4, 6, 8, 10,
12, 14, 16, and 18.
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S ]2g*

]x2 D
P

.0, ~35!

where we use the notationx for the mole fraction of one of
the components. Written as a function of the reduced f
energy f * 5bF/N, the second derivative of the Gibbs fre
energy is given by

S ]2g*

]x2 D
P

5S ]2f *

]x2 D
c

2c
S ]2f *

]x]cD 2

S 2
] f *

]c
1c

]2f *

]c2 D
x

, ~36!

where we have taken advantage of the fact thatf * depends
only onx andc, and have used the Euler chain relations. T
spinodal boundary~demixing limit! is obtained when this
expression is equal to zero@44#, so that substituting Eq.~1!
into Eq. ~36! gives the general equation for the spinod
curve of the phases studied in this work,

11c
8

p
xE ~x1f 1f 11x2f 2f 2!singdv1dv2

24c2x1x2Fq24S E ucosgu f 1f 2dv1dv2D 2

2
16

p2 E f 1f 1 singdv1dv2E f 2f 2 singdv1dv2G50.

~37!

In particular, the isotropic-isotropic demixing spinodal line
obtained from Eq.~37! by inserting the isotropic distribution
functions f i51/(4p), which gives a simple quadratic equa
tion

112c24x1x2~q221!c250. ~38!

The boundary can be seen to be symmetrical in composi
~aboutx51/2!. The determination of the demixing spinod
curve is very useful in such mixtures, as it provides t
boundary of phase separation without requiring an expl
solution of the phase coexistence. In the particular case
volving symmetric mixtures, the compositions of the ro
rich and plate-rich coexisting phases coincide with t
minima of the Gibbs function in demixing transitions involv
ing phases of the same symmetry~i.e., isotropic-isotropic
and nematic-nematic transitions!; this is due to the fact tha
the Gibbs surface is symmetric with respect tox50.5 since
the rod-rod and plate-plate excluded volumes are eq
Hence, in terms of derivatives of the reduced Gibbs functi
a relation

S ]g*

]x D
p

50 ~39!

r
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can be used to determine the phase equilibria in the spe
cases mentioned above. This relation can be rewritten
more convenient way as a function of the reduced Helmh
free energy as

S ]g*

]x D
p

5S ] f *

]x D
c

. ~40!

In this way, the solution of the phase coexistence conditi
is avoided by simply taking the derivative off * with respect
to the mole fraction, so that using Eq.~40! a relatively simple
equation for the demixing phase boundary of the rod-p
mixture is given by

lnS x2

x1
D1s@ f 2#2s@ f 1#14cH E S 2

p
x2 sing f 2f 21~x12x2!

3qucosgu f 1f 22
2

p
x1 sing f 1f 1Ddv1dv2J

50. ~41!

It is important to note that this equation cannot be solv
analytically for the uniaxial or the biaxial nematic phase
because of the density dependence of the orientational d
bution functions. In these cases we use the numer
Newton-Raphson method@47#. For the isotropic phase, th
solution is much simpler, and the reduced density can
expressed as a function ofq andx as

cI-I5

lnS x1

x2
D

2@x22x12~x22x1!q#
, ~42!

which is again found to be symmetrical about compositi
If x15x251/2 this equation is even simpler giving,

cI-I5
1

~q21!
. ~43!

This clearly indicates that isotropic-isotropic~I-I ! demixing
does not take place forq,1, but that it is possible for
isotropic-isotropic demixing to occur in mixtures withq
.1. Of course, this does not mean that the system will de
into a rod-rich and a plate-rich isotropic phase for allq.1,
as a favorable ordering into a nematic phase may pree
this transition. The delicate balance between the orientatio
free volume and mixing entropies gives rise to a wealth
phase behavior as will become clear in the following secti

III. RESULTS

We study the phase behavior for our symmetric mixture
rod and plate molecules taking into account isotropic, ne
atic, and biaxial nematic phases. We carry out a bifurca
analysis, and determine the phase coexistence boundarie
ing the second virial theory of Onsager; two approaches
used to solve kernels of the integrals, an expansion in L
endre polynomials up to second order~L2 approximation!,
and a numerical solution that involves no approximatio
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We investigate the global phase behavior of the mixture
terms of the molecular parameters, studying the effect
different rod-plate unlike excluded volume contribution
characterized by the parameterq @Eq. ~7!#. A change of the
unlike excluded volume does not of course give rise to
different phase behavior of the pure components, e
though this would correspond to different molecular asp
ratios in each case and to different transition densities; th
a direct result of the theory of Onsager, in which the conc
tration has been written in terms of the rod dimensions
should be noted that, due to the fact that the approach
Onsager is a second virial theory, it is accurate only in
case of very long and thin rods, and care needs to be ta
not to change the value of the unlike excluded volumeq in a
way that the aspect ratio of the rods becomes too small m
ing the theory inaccurate. In this work we present the ph
behavior of rod-plate mixtures for values ofq ranging from
0.5 to 1.6.

The aspect ratio (k5L1 /D1) and the diameter ratio (k8
5D2 /D1) are determined from the value ofq through the
following relations:k54p2q3 and k854pq2. Throughout
this section, we report the aspect and diameter ratios
corresponding values of theq parameter and denote the mo
fraction of the plates asx. The results obtained using the L
approximation are presented before those of the full num
cal solution.

A. Phase behavior in the L2 approximation

The L2 approximation of the excluded volume is rath
crude as we have seen in the comparisons shown in Fig
The advantage of the L2 approach is, however, that i
possible to get an indication of the phase behavior of
mixture without the need for a full solution. Instead of sol
ing the system of integral equations given by Eqs.~18! and
~19!, we start by examining the isotropic-nematic bifurcati
@Eq. ~25!# and the isotropic-isotropic spinodal@Eq. ~38!#
boundaries. Equation~25! is quadratic in the reduced densi
c and can easily be solved, giving the known pure fluid
furcation limit of c54 @49#; it is clearly symmetric in mole
fraction ~the same bifurcation density is found for both pu
components since their second virial coefficients are
sameB115B22!. It is interesting to note that when the unlik
excluded volume parameter isq50.5 the isotropic-nematic
bifurcation density is independent of the mole fraction with
constant value ofc54, while for lower or higherq, the bi-
furcation densities of the mixture increase or decrease,
spectively~see Fig. 2!. The bifurcation curves give an indi
cation of the relative stability of nematic and isotropic phas
with respect to each other, suggesting that for our model w
q,0.5 a destabilization of the nematic phase with respec
the isotropic phase is predicted. In contrast with this,
conclusions of previous theoretical@25,41# and simulation
studies@38,39# suggest that there is a tendency to stabil
the nematic phase on mixing. A more recent Monte Ca
simulation study of a near-symmetric binary mixture of ha
spherocylinders and hard cut spheres indicates that there
destabilization of the nematic phase in such mixtures@40#.
7-9
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The rod aspect ratio and plate-rod diameter ratio of
model simulated in Ref.@40# (k55, k853.62) are very
close to those corresponding toq50.5 ~k54.93 andk8
53.14! in our present work. It is not useful, however,
attempt a quantitative comparison of the theoretical res
presented in our current work with the simulation data@40#
as the aspect ratios involved are too small for the Onsa
theory to be accurate. Furthermore, the simulations were
ried out for a mixture of hard spherocylinders and hard c
spheres, while in our theoretical model the particles are
lindrical in shape as the end effects in the excluded volu
have been neglected. It should also be noted that the liq
crystalline phase obtained for the cut-sphere fluid in
simulation exhibits columnar positional order instead of j
nematic orientational order. Having acknowledged the
portant point that our theoretical predictions for the sm
values ofq yield quantitatively inaccurate results, we use t
low q results as a starting point in our examination of t
phase behavior for larger values ofq where the Onsage
theory is known to be much more accurate.

The nematic-biaxial nematic bifurcation line can be
cated using Eq.~33! together with the orientational distribu
tion functions given in Eqs.~18! and ~19!, which are ob-
tained by iteration. It can be seen from the bifurcati
expression that an increase in the unlike interactionq pro-
motes the biaxial nematic phase; a larger value of the par
eterq extends the stability of the biaxial phase to lower de
sities ~and lower pressures! and to wider ranges o
composition ~see Fig. 2!. It is also apparent that th
isotropic-nematic and nematic–biaxial nematic bifurcat
boundaries always meet at an equimolar composition, wh
suggests that the isotropic-nematic transition is second o
at this point, as the bifurcation equations~25! and ~33! are
identical for isotropic distributions of the particles.

FIG. 2. Bifurcation phase diagram of the symmetric mixture
rods and plates forq50.49 ~short dashed curves!, 0.5 ~continuous
curves!, and 0.6 ~long dashed curves! in the reduced density
composition plane. The labelsI, Nr , Np , andNb denote isotropic,
rod-rich nematic, plate-rich nematic, and biaxial nematic pha
respectively.x corresponds to the mole fraction of the plates.
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The full phase diagrams of the rod-plate binary mixtu
have been calculated forq50.5 to 1.6. As has already bee
mentioned, the theory of Onsager at the level of the sec
virial coefficient becomes very inaccurate for smaller asp
ratios. It significantly overestimates the transition densities~a
value ofq50.63 corresponds to rods with an aspect ratio
about 10, for which the Onsager approach starts providin
more quantitative description@43#!. Furthermore, the ap
proach does not take into account the positionally orde
phases such as smecticA and columnar phases that are f
vored for smaller aspect ratios. In Fig. 3~a! the pressure-
composition phase diagram obtained with the L2 approxim
tion for a mixture withq50.5 ~corresponding to a rod aspe

f

s,

FIG. 3. Pressure-composition (P* x) representation of the phas
diagram for a symmetric mixture of rods and plates obtained w
the L2 approximation for~a! q50.5 and~b! q50.6. The continuous
curves represent the stable coexistence curves of the isotro
nematic and nematic–biaxial nematic transitions, while the das
curves indicate the metastable nematic-nematic demixing transi
The labelsI, Nr , Np , and Nb denote isotropic, rod-rich nematic
plate-rich nematic, and biaxial nematic phases, respectively.x cor-
responds to the mole fraction of the plates.
7-10
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ratio of k54.93 and a plate-rod diameter ratio ofk853.14!
is shown. The isotropic-nematic bifurcation curve was fou
to be independent of composition forq50.5 ~see Fig. 2!.
When the coexistence boundaries are examined for this
tem one finds that for the rod-rich (x&0.2) or plate-rich (x
*0.8) phases mixing destabilizes the isotropic phase rela
to the nematic phase~favoring ordering!, while for mixtures
close to the equimolar composition (x50.5) the ordered
phase is destabilized. As a result, two isotropic-nem
azeotropes at aboutx50.2 and 0.8 are observed in the pha
diagram. The isotropic-nematic phase transition is found
be weakly first order~except atx50.5 where the transition is
continuous! so that the boundaries depicted in Fig. 3~a! ac-
tually correspond to two curves, one for the isotropic co
positions and the other for the nematic compositions. In
case of the systems with largeq these two phase regions wi
become clearly visible@cf. Fig. 3~b!#. In the high-pressure
region, two nematic phases are observed~one rich in rods
and one rich in plates!, together with a stable biaxial nemat
phase for intermediate compositions, the extent of the bia
nematic phase is seen to decrease with decreasing pre
~as suggested by the bifurcation study!. The nematic-biaxial
nematic transition is found to be second order. Atx50.5,
four phases~isotropic, rod-rich nematic, plate-rich nemati
and biaxial phase! merge into one at a multicritical point
This point also corresponds to the lowest pressure at w
the biaxial nematic phase is observed.

The phase diagram obtained with the L2 approximat
for a mixture withq50.6 ~k58.5 andk854.5! presented in
Fig. 3~b! is very similar to that obtained by Stroobants a
Lekkerkerker@25# for q51. The only difference is that the
isotropic-nematic coexistence, as well as the biaxial nem
region are found to be less extensive forq50.6.

As was mentioned earlier, it is also important to check
stability of the biaxial nematic phase with respect to nema
nematic phase separation@using Eq.~41! and computing the
Gibbs free energy#. For values of the unlike excluded volum
parameter ofq50.5 andq50.6 the nematic-nematic demix
ing transition is always metastable for all of the pressu
studied@the dashed curves shown Figs. 3~a! and 3~b! denote
the demixing boundaries#. At higher pressures, the syste
may demix into a rod-rich and a plate-rich nematic phase~or
even into two more ordered smecticA and columnar phases!
due to the increasing importance of excluded volume effe
Indeed, nematic-nematic demixing is found to be stable
pressures above the biaxial nematic phase for a mixture
q51.4 ~corresponding to large aspect and diameter ratio
k5108.3 andk8524.6! as can be seen in Fig. 4.

The bifurcation curves for the isotropic-nematic transiti
@Eq. ~25!# together with the isotropic-isotropic demixin
spinodal curves@Eq. ~38!# are shown in Fig. 5 for mixtures
with q51.5 andq51.6. In the preceding section we pointe
out that isotropic-isotropic demixing is not stable forq,1,
and that a competition between the isotropic-isotropic
mixing spinodal line and the isotropic-nematic bifurcati
line determines the stability of the phase transition. Sin
both equations are symmetric in the mole fraction, it is e
dent that the two lines will first meet at the equimolar co
position. By simultaneously solving the quadratic expr
01170
d

s-

ve

ic

o

-
e

al
ure

h

n

ic

e
-

s

s.
at
th
of

-

e
-
-
-

sions given in Eqs.~25! and~38! at x50.5, it can be shown
that the bifurcation curves will meet whenq51.5 andc52
@see Figs. 5 and 6~a!#. For values ofq.1.5 ~see Fig. 5! the
spinodal demixing of the isotropic phase occurs at low
pressures~and densities! than the isotropic-nematic bifurca
tion for certain ranges of composition.

An examination of the phase diagram of the mixture w
q51.5 ~k5133.2 andk8528.3! @see Fig. 6~a!# indicates that

FIG. 4. Pressure-composition (P* x) representation of the phas
diagram for a symmetric mixture of rods and plates obtained w
the L2 approximation forq51.4. The continuous curves correspon
to the stable transitions, and the dashed curves to the metas
nematic–biaxial nematic phase boundary. The labelsI, Nr , Np , and
Nb denote isotropic, rod-rich nematic, plate-rich nematic, and bi
ial nematic phases, respectively.x corresponds to the mole fractio
of the plates.

FIG. 5. Stability of the isotropic-nematic bifurcation~continu-
ous curves! with respect to the isotropic-isotropic spinodal deco
position~dashed curves! for q51.5 and 1.6. The curves meeting
the equimolar composition correspond to a mixture withq51.5,
while the other two curves correspond toq51.6.
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the biaxial phase is entirely preempted by demixing into t
nematic phases, but no demixing of the isotropic phas
seen. A stable isotropic-isotropic demixing region can
seen in Fig. 6~b!, which corresponds to a mixture withq
51.6 ~k5161.7 andk8532.2!. The isotropic-isotropic de-
mixing curve is calculated using Eq.~42! while the nematic-
nematic demixing curve is obtained from Eq.~41!. At high
pressure nematic-nematic demixing is observed in this m
ture, while in the intermediate pressure range isotrop
isotropic demixing is seen. The magnitude of this immis
bility is quite remarkable, it is very extensive in compositio
and pressure, and ends at a critical pressure minimum
which the two isotropic phases merge. The nematic-nem
coexistence region meets the isotropic-isotropic region

FIG. 6. Pressure-composition (P* x) representation of the phas
diagram for a symmetric mixture of rods and plates obtained w
the L2 approximation for~a! q51.5 and~b! q51.6. The continuous
curves represent the stable coexistence curves of the isotr
nematic and nematic-nematic transitions, while the dashed cu
indicate the metastable nematic-biaxial nematic transition. The
ditional labelsI r and I p denote a rod-rich isotropic phase and
plate-rich isotropic phase, respectively.
01170
o
is
e

-
-

-

at
tic
a

four-phase coexistence line close toP* 511.
Before we conclude our discussion of the results obtai

with the L2 approximation it is also useful to consider t
Gibbs free energy of each of the phases studied for the m
ture with q51.5. It can be seen in Fig. 7 that at a reduc
pressure ofP* 516, the Gibbs free energy of the biaxia
nematic phase is always higher than the Gibbs free energ
the coexisting nematic rod-rich and plate-rich phases. T
isotropic free energy curve would correspond to a demix
phase, but it is clearly metastable with respect to the nem
phases.

B. Phase behavior using the numerical solution

At this stage it is useful to note that the L2 approximati
overpredicts the isotropic-nematic transition pressures of
pure components; in the L2 approximation the reduced p
sure of the isotropic-nematic transition isPI-N* 515.79, while
a pressurePI-N* 514.12 is obtained when the full numerica
solution is used@49#. However, in the case whenq50.5, the
equimolar isotropic-nematic bifurcation pressure isP* 516
for both solutions, so that it is clear that the isotropic pha
must be stabilized and orientational ordering is less favora
close tox50.5 both in the L2 model and with the numeric
procedure. The large difference in pressure atx50 and x
50.5 suggests that the stabilization of the isotropic ph
must start close to the pure component axes~x→0 and x
→1!. In order to resolve this question, we investigate t
phase diagrams of the rod-plate mixture forq50.5 andq
50.6 @Figs. 8~a! and 8~b!# with the numerical solution. In the
case whenq50.5 the isotropic phase is seen to become m
stable for most of the composition range; close tox50 and
x51 a slight minimum in pressure is observed. Compa
to the L2 calculations with the same value ofq, both

h

ic-
es
d-

FIG. 7. Gibbs free energy density versus composition for a sy
metric mixture of rods and plates obtained with the L2 approxim
tion for q51.5 andP* 516. The continuous curves indicate th
stable rod-rich and plate-rich nematic solutions, while the long- a
short-dashed curves are the metastable isotropic and biaxial nem
solutions, respectively.
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the isotropic-nematic coexistence region, and the region
stability of the biaxial phase are found to be more extens
when determined with the numerical solution. Again o
should bear in mind that for these small values ofq the
Onsager second virial theory will not provide a quantitat
description of the system.

The phase diagram obtained with the full numerical a
proach forq50.6 is very similar to the one obtained usin
the L2 approximation with the slightly smaller value ofq
50.5 @see Figs. 3~a! and 8~b!#. The isotropic-nematic first-
order transition is very weak in terms of composition diffe
ence, but not in density, and two azeotropic points are see
aboutx50.2 and 0.8; a stabilization of the isotropic pha

FIG. 8. Pressure-composition (P* x) representation of the phas
diagram of a symmetric rod-plate mixture obtained using a num
cal solution for~a! q50.5 and~b! q50.6. The continuous curve
represent the stable coexistence curves of the isotropic-nematic
nematic–biaxial nematic transitions, while the dashed curves i
cate the metastable nematic-nematic demixing transition. The la
I, Nr , Np , and Nb denote isotropic, rod-rich nematic, plate-ric
nematic, and biaxial nematic phases, respectively.x corresponds to
the mole fraction of the plates.
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relative to the nematic phase is found for compositions
tween 0.2 and 0.8, while a destabilization is found close
the pure component axes. Note that the phase diagram
tained forq50.6 with the L2 approximation@Fig. 3~b!# is
considerably different from that obtained numerically@Fig.
8~b!#, the former exhibiting a destabilization of the isotrop
phase for the entire composition range. These quantita
differences are the result of the approximation introduced
the solution of the excluded volume integrals in the
model ~see Fig. 1!.

We now turn our attention to systems with larger values
the unlike excluded volume parameterq, which correspond
to larger aspect ratios for which the Onsager theory is kno
to be more accurate. The first study of the rod-plate mixt
phase diagram using the approach of Onsager was ca
out with the L2 approach by Stroobants and Lekkerkerker
the system withq51 @25# ~k539.5 andk8512.6!. Later,
Vanakaras and Photinos@26# reexamined the phase behavi
of rod-plate mixtures using a variational approach at
level of the second virial coefficient. For a given choice
molecular parameters, Vanakaras and Photinos reproduc
phase diagram presented by Stroobants and Lekkerke
with an additional analysis of nematic-nematic demixin
Vanakaras and Photinos concluded that the system does
demix in this case, but demixing of the nematic phase co
be found when the form of the unlike excluded volume w
changed. It is important to note, however, that in the work
Vanakaras and Photinos, the unlike excluded volume is
given by aucosgu function, and is instead determined arb
trarily. For the system withq51, our results~see Fig. 9! are
qualitatively similar to those of Stroobants and Lekkerkerk
@25# and of Vanakaras and Photinos@26#; different transition

i-

nd
i-
ls

FIG. 9. Pressure-composition (P* x) representation of the phas
diagram of a symmetric rod-plate mixture obtained using a num
cal solution forq51.0. The continuous curves represent the sta
coexistence curves of isotropic-nematic and nematic–biaxial n
atic transitions, while the dashed curves indicate the metast
nematic-nematic demixing transition. The additional labelsI r and
I p denote a rod-rich isotropic phase and a plate-rich isotropic ph
respectively.
7-13



se
a
ue

L2
n
n

at
fo
m

e
na
c-
in
ic
n

d
d

m
d

n
e
er
e

ob
lu

ic

dif-
ap-

m

f a
l-
fo-

un-

2
t-
his
ase
on.

in

the
un-
nd
trial

red
not
er-
re-
ses
ery

ely
e

pa-

g
he
xi
s

ha

r a
ical
e
ort-
table

SZABOLCS VARGA, AMPARO GALINDO, AND GEORGE JACKSON PHYSICAL REVIEW E66, 011707 ~2002!
pressures are obtained when the numerical solution is u
as was mentioned earlier, and the range of biaxial nem
phase is wider in our work, as observed for the lower val
of q.

The more interesting mixture with the large valueq
51.6, for which the biaxial phase was not found in the
model @see Fig. 6~b!#, is depicted in Fig. 10. It can be see
that the numerical method provides a qualitatively differe
phase diagram, with an extensive region of biaxial nem
stability, and no nematic-nematic demixing is observed
the pressure range studied. Nematic-nematic demixing
be possible at very high pressures but in this case the num
cal solution becomes difficult due to the sharply peaked
ture of the orientational distribution functions. Isotropi
isotropic demixing is observed at lower pressures, and
narrow range of intermediate pressures a region of isotrop
biaxial nematic coexistence is also found, limited above a
below by two pressures at which three phases are foun
coexistence~biaxial nematic–isotropic–isotropic below, an
isotropic–nematic–biaxial nematic above!. As before, the re-
gion of isotropic-isotropic demixing ends at a minimu
pressure critical point. These results are further illustrate
Fig. 11, where the Gibbs free energy atP* 510 is shown. A
first-order isotropic-nematic phase transition and a seco
order nematic–biaxial nematic transition can be clearly se
The demixed nematic phases have higher Gibbs free en
than the biaxial nematic phase for all the compositions wh
they are found.

In summary, we show that, while the phase diagrams
tained using the L2 approximation and the numerical so
tion are qualitatively equivalent for values ofq close to 1, a
rather different phase behavior is obtained forq.1. The pos-
sibility of nematic-nematic phase separation in the numer

FIG. 10. Pressure-composition (P* x) representation of the
phase diagram of a symmetric rod-plate mixture obtained usin
numerical solution forq51.6. The continuous curves represent t
stable coexistence curves of isotropic-nematic, nematic–bia
nematic, isotropic–biaxial nematic, and isotropic-isotropic tran
tions. The dashed lines indicate the pressures at which three p
are found in coexistence.
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approach cannot, however, be excluded. The numerical
ficulties encountered at high pressures, together with the
pearance of more ordered~smectic and columnar! phases,
which are not incorporated in the theory, prevent us fro
studying higher pressures.

IV. CONCLUSION

In this paper we have studied the phase behavior o
symmetric binary mixture of hard rodlike and platelike mo
ecules using Onsager’s second virial theory. We have
cused on two important issues: the effect of varying the
like excluded-volume interaction~characterized by the
parameterq!, and the accuracy of the commonly used L
approximation. The simplicity of the L2 method is indispu
able, but the poor description of the excluded volume in t
case means that it can give rise to a very different ph
behavior from that predicted by an exact numerical soluti
We show that even after expanding the excluded volume
terms of Legendre polynomials up to 18th order~L18 model!
there are inherent errors due to the slow convergence of
series for the parallel and perpendicular configurations;
fortunately, these are particularly important in the biaxial a
nematic phases. Other methods, such as those involving
orientational distribution functions@43#, are also reasonably
easy to implement but cannot be applied to weakly orde
liquid crystalline phases. The numerical method does
suffer from any of these problems. It is, however, consid
ably more demanding in terms of computational requi
ments, and it becomes prohibitive for very aligned pha
when the grid of the angle integrals would have to be v
small @18#.

The richness in phase behavior exhibited by this relativ
simple hard-core mixture is highlighted. The stability of th
isotropic-nematic transition depends on the value of the

a

al
i-
ses

FIG. 11. Gibbs free energy density versus composition fo
symmetric mixture of rods and plates obtained using a numer
solution for q51.6 andP* 510. The continuous curves show th
rod-rich and plate-rich nematic solutions, while the long- and sh
dashed curves correspond to the metastable isotropic and the s
biaxial nematic solutions, respectively.
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rameterq, which results in a stabilization of either the is
tropic ~q,0.5 in the L2 approximation orq,0.6 for the
numerical solution! or the nematic~q.0.5 in the L2 approxi-
mation orq.0.6 for the numerical solution! phase. The use
of the L2 approximation indicates the possibility of stab
regions of the biaxial nematic phase forq,1.5. Nematic-
nematic phase separation occurs at high pressures~densities!,
eventually preempting the stable biaxial phase altoget
When the numerical solution is employed, no nematic
mixing was observed in any of the mixtures studied with
the pressure range investigated. This conclusion is in con
with the results obtained with the L2 solution, and the resu
of the Mayer-Saupe models@13–15#. Demixing of the iso-
tropic phase is also found~for q.1.5 for both the L2 and the
numerical solutions!, which has not been reported previous
for mixtures of rod and plate particles. In addition, an u
usual isotropic-biaxial nematic first-order transition is o
served with the numerical solution. This transition has be
suggested in systems of biaxial particles@50#, but here it is
observed in a system of uniaxial particles.

Before finishing our discussion, it is important to a
knowledge the shortcomings of our approach. The appro
of Onsager is accurate only for long rods (k.20), and it is
always approximate for plates. Extending the approach
shorter and more realistic aspect ratios of the rod parti
~taking into account the shape of the particle and end effe!
. J

l.

J.

A

.
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can be achieved by appropriate resummation of higher v
terms @36,37#. An improvement of the predictions for th
phase behavior of platelike molecules is, however, more
manding. It has been shown that the inclusion of higher vi
terms~up to the fifth virial coefficient! does not improve the
results substantially for infinitely thin plates@4#. However, a
recent comparison of the resummed Onsager theory~using
the scaling of Parsons! with simulation data for platelike
cutspheres@51# indicates that the theory can give accura
results for moderate aspect ratios. In future work we plan
examine the phase diagram of a rod-plate mixture usin
Parsons resummation of the Onsager theory to compa
with the simulation data, and to examine the effect of t
lower order terms~end effects! of the excluded volumes on
the competition of nematic-nematic and nematic–biax
nematic transitions.
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