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Ordering transitions, biaxiality, and demixing in the symmetric binary mixture of rod and plate
molecules described with the Onsager theory
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The phase behavior of a liquid-crystal forming binary mixture of generic hard rodlike and platelike particles
is studied with the theory of Onsagr. Onsager, Ann. N. Y. Acad. Sch1, 627 (1949] for nematic ordering.
The mixture is chosen to be symmetric at the level of the second virial theory, so that the phase behavior of the
two pure components is identical. A paramedes used to quantify the effect of the unlike rod-plate excluded
volumes on the phase behavior; a valuegjofl indicates that the unlike excluded volume is greater than the
like excluded volume between the rods or plates, and a valge<df corresponds to a smaller unlike excluded
volume. Two methods are used to solve the excluded volume integrals: the approximate L2[Aodel
Stroobants and H. N. W. Lekkerkerker, J. Phys. Ch88).3669(1984], in which a second-order Legendre
polynomial is used; and a numerical method where the integrals are solved exactly. By varying the unlike
excluded volume interactioq, the isotropic phase is seen to be stabilizsahall g) or destabilizedlarge q)
with respect to the nematic phase for both models. Isotropic-isotropic demixing is also observed for the largest
values ofg due to the unfavorable contribution of the unlike excluded volume to the entropy of the system. A
second-order nematic—biaxial nematic phase transition is observed for small vatyestbé L2 approxima-
tion, and for allq in the exact calculation; in the latter case the stability of the biaxial phase is enhanced by
increasingq, while in the L2 approximation nematic-nematic phase separation is favored. This result is the
most striking difference between the two methods, and is in contrast with the results of previous studies. We
show that the accuracy of the L2 expansion is particularly poor for parallel and perpendicular particle orien-
tations.
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[. INTRODUCTION essary for the formation of liquid crystalline phases. Onsager
already showed in his seminal work that the isotropic-
One of the most striking developments in the field of lig- nematic phase transition can be described in terms of purely
uid crystals was the seminal work of Onsagjgf presented entropic considerations. In order to maximize the total en-
in the 1940s. He predicted a transition from an orientationiropy, a competition arises between the orientational entropy
ally disordered isotropic phase to an orientationally orderedWhich favors the orientationally disordered siatand the
uniaxial nematic phase in a fluid of infinitely thin rod par- available free voluméwhich increases the translational en-

ticles with purely repulsive interactions. Using computer(ropy and favors the orientationally ordered sfatethe sys-

simulations, Vieillard-Barori2] was the first to demonstrate €M- At high density the translational term becomes more

the isotropic-nematic transition in a fluid of hard ellipses of Mportant, favoring the formation of aligned phases in which

finite length. Positionally ordered phases, such as smecti he average excluded volume between particles is reduced.

columnar, and solid phases, were later also observed in sys-s the density is increased in a fluid of hard anisotropic

. articles, phase transitions from isotropic liquid to nematic
tems of hard spherocylindeds8] and hard platelet§4]. P ’ : '
L X . . and more ordered, phases can be observed. In this work we
Uniaxial nematic, smectic, columnar, and of course sohda b

. . . are particularly interested in investigating the stability of the
phases, are commonly observed experimen(&llyin addi- = ;5 ia| nematic phase, but instead of studying a fluid of hard-
tion to the common uniaxial nematic phase, a so-called bipjayia| particles, we consider a binary mixture of uniaxial
axial nematic phase has also been proposed. A biaxial nenpq particles.
atic phase is positionally disordere@ characteristic of In mixtures of anisotropic molecules, an interplay be-
nematic phasesbut exhibits orientational order in two, typi- tween the orientational and free volume entropic contribu-
cally normal, directions. Such a fluid has been observed ifions, and the ideal entropy of mixing, which is at a maxi-
computer simulations of hard biaxial particlgs], but has  mum for fully mixed states, gives rise to a very rich phase
not, as yet, been confirmed experimentally. Extreme anisosehavior; this is especially true when the components are of
tropic ordering can also result in cubatic phases, which havenarkedly different symmetr{such as rods and plaje&ven
been observed in fluids of hard platelike partidi@sand of  in mixtures of components of the same symmémjxtures
hard cylinderd8]. of thick and thin rods, for exampledemixing can be ob-

It is therefore clear that attractive interactions are not necserved if the gain in the free volume entropy overcomes the
loss in the mixing and orientational entropy.
A complete theoretical study of mixtures of fluids of dif-
*Corresponding author. Email address: s.varga@ic.ac.uk ferent symmetry is rather difficult due to the complex nature
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of the unlike interactions which give rise to computationalplate particles. These studies suggest that the ordered phases
difficulties. Lattice model$9—12 and Mayer-Saupe-type in- are destabilized on mixing. Yu and Say3&] have reported
teraction potential$13—15 are frequently used in order to the phase diagram of a mixture of potassium laurate,
simplify the numerical problem. The predictive ability of 1-decanol, and water, and have found a biaxial nematic phase
these approaches is rather limited, but they nevertheless prbetween two uniaxial phasga micellar phase of bilayer
vide a first insight of the qualitative phase behavior thatstructure, and a cylindrical micellar phasenfortunately, it
could be expected in the experimental systems. has not since been possible to confirm this phase behavior.

More recently, extensions of the original theory of On-Van der Kooij and Lekkerkerkef33,34] have used essen-
sager have also been used to study the phase behavior tially hard rod and plate colloidal particles to study the phase
liquid crystalline mixtures of hard particles. Nematic- behavior of the mixtures. In their work the rods have an
nematic phase separation has been obtained with extensioaspect ratio of about 10, and the plates of about 1/15; this
of the Onsager theory in mixtures of rods of different lengthmeans that the mixture is strongly asymmetric, as the ex-
[16-18, in mixtures of rods of different diamet¢t9], and  cluded volume of the plate is much larger than that of the
in the so-called symmetric mixture of ros mixture of rods  rod. Studying an extensive range of concentrations, they ob-
of different diameter and length but of the same like ex-gerve nematic-nematic demixing as well as nematic-
cluded volumg[20]. Surprisingly, isotropic-isotropic demix-  cojymnar demixing, but never encounter a biaxial phase.
ing is only. observeq in t'hese mixtures when the foc%'s are 0\f/\/ensink et al. [35] have also studied this mixture in the
different Q|ameter, i.e, ina .m|xture of thick and thin rods context of the theory of Onsager incorporating the higher
[21] and in the symmetric mixture of rods. In these cases Qirial terms with the scaling approach of Parsd36,37,

four-phase coexistence point may exist in the phase diagra . o ; . i
as calculated by Sear and Muldg0] for the symmetric rﬂ:glsng good qualitative agreement with the experimental re

mixture. In two recent studies, Hemmlg¥2,23 has studied . . . .
i 3 A limited number of simulation studies have also been

the regions representing the demixing transitions both in the " S . . .
g b g g arried out which involve mixtures of rodlike and platelike

isotropic and the nematic phases for this mixture in terms of ! .
the molecular diameter and length ratios. molecules. Camp and Allef38] studied mixtures of hard

Much attention has also been paid to mixtures of rodlike€llipsoidal particles of rqd and pIaFe shape with aspect ratiqs
and platelike molecules in recent years due to the combine@f 10 and 1/10, respectively. In this system nematic-nematic
interest in phase separation and phase biaxiality that may femixing appears to preempt the stable biaxial nematic
exhibited by these systems. Considering that most liquidPhase. In an extension of the work Caetgal. [39] used the
crystal-forming molecules are biaxial in shape, it may at firstGibbs ensemble simulation technique to study mixtures of
be surprising to realize that biaxial nematic phagesmatic ~ hard ellipsoidal particles of aspect ratios I®dlike) and
phases exhibiting alignment along the long molecular axis a/15 (platelike, and 20 and 1/20. In both mixtures, stable
well as in the direction of the molecular planare very biaxial nematic phases were found to be in coexistence with
rarely observed; it turns out that solidification preempts thea plate-rich nematic phase. A mixture of hard spherocylin-
existence of the biaxial phase in most cases. It may be morers of aspect ratio 6, and hard cut spheres of aspect ratio
fruitful to investigate biaxial nematic phases in the context 0f0.12 has also recently been studied udMgT Monte Carlo
mixtures of rod and plate molecules, as the composition ofsimulationg40]. In this case a demixing into a rod-rich nem-
fers an extra tunable variable and transitions to solid phasestic phase and plate-rich columnar phase is observed, to-
are normally destabilized in mixtures. Such a mixture wagyether with a marked stabilization of the isotropic phase
first studied by Alber[9] using a lattice mean-field model. [40]; a biaxial phase was not found.

Alben predicted the existence of a rod-plate biaxial nematic The range of stability of the biaxial nematic phase is still
phase between a rod-rich uniaxial nematic phase and a platanresolved, because only limited regions of the molecular
rich uniaxial nematiqdiscotig phase, and the phase transi- parameter space have been examined for each system. Even
tions from the uniaxial nematic to the biaxial nematic werefor a prescribed set of molecular parameters, a number of
found to be second ordédi.e., continuous The phase dia- approximations have to be taken in order to solve the free
gram predicted by Alben in 1973, was later confirmed for aenergy expressions within a given theoretical description;
lattice model including long-range isotropidispersion in-  these approximations can have a dramatic effect on the glo-
teractions[24], as well as in off-lattice models using the bal phase diagram and on the stability of the biaxial phase in
Onsagel[25] and Mayer-Saupe theori¢45,26. A number particular, as will be shown later in this work. Using the
of recent studies of the phase behavior in mixtures of biaxiatheory of Onsager to describe the continudof-lattice)

rod and plate molecules including associat[@7,28, and  rod-plate mixture, Stroobants and Lekkerkerk25] solved

van der Waals like attractive interactiof29], have also been the system of Euler-Lagrange integral equations with an ap-
presented. proximate expression for the excluded volunt®e spheri-

Discotic phases were observed experimentally a few yearsal harmonic expansion of the excluded volume was trun-
after the theoretical work of Alben, but the biaxial nematic cated at second order; see Seg. They observed a stable
phase still eludes experimental observation. Goozner and Ldirst-order isotropic-nematic transition and a second-order
bes[30] have studied a mixture of plate molecules “doped” uniaxial—biaxial nematic transition. The two transitions meet
with a small amount of rod molecules, and Hardoetrel.  at an equimolar composition, where the isotropic, uniaxial
[31] a mixture of rod particles doped with a small amount of nematic, and biaxial nematic phases are in coexistence. It
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should be noted that their study was restricted to the case imtegrals are solved numerically, i.e., without approxima-
which the rod-rod and plate-plate isotropic virial coefficients,tions.

as well as the unlike rod-plate isotropic virial coefficient are  This paper is organized as follows. A short description of
the same. More recently, Chrzanowgkd] has performed a Onsager's theory for ordering phase transitions in the spe-
more systematic study of the phase behavior in a mixture ofific case of binary mixtures of rod and plate molecules is
hard rod and plate molecules considering two unlike exgiven in the following section. The expressions for the equi-
cluded volumes that are taken to be different from those ofibrium orientational distribution functions within the L2 de-
the pure components. The study was limited, however, to écription and for the full numerical description.are presented
bifurcation analysis, which gives the upper bound for thel® S€c- IlA and 1IB. In Sec. IIC a generdbinodal and
stability of the less ordered phase, but which does not givePinedal demixing analysis is presented, and a simple ana-
conclusive information about the nature of the phase coextical equation is derived for the isotropic-isotropic demix-
istence. The possibility of isotropic-isotropic or nematic-'Ng transition curve. The phase diagrams for a number of
nematic demixing was not investigated, both of which could™ixtures with different length and diameter ratios, which are
preempt the isotropic-nematic transition or the uniaxial—duantified through_a parar_nekqethat characterlz_es the unlike
biaxial nematic transition: thus it is possible that the biaxial€Xcluded volume interaction, are presented in Sec. IV, and

nematic phase is not stable in this system. One should ald§€ Make some general conclusions in Sec. V.
point out that the existing theoretical studies correspond only

to a small portion of the global phase diagram within the Il. THEORY

Onsager approach for such mixtures; as indicated by Chrza-

nowska, different unlike excluded volume contributions give In this work we consider a binary mixture of hard uniaxial

; : . rodlike and platelike molecules, and study the fluid phase
rise to very different types of phase behavior. behavior of the system. We take into account isotropic, and

Van Roij and Muldef10] used the Zwanzig mod@#2] to . s : "
study the phase behavior of a mixture of rectangular rod“keonentanonally _orderednematm) phases, bUI. not pogmonally
and platelike blocks, examining a range of molecular paramE)rdeer(Smectlc and solidphases. In a binary mixture of

eters. For moderate aspect ratios they find strikingly differenymaxIal partlc_les,_whlch could b_e orientationally mhomoge-_
results from those of Stroobants and Lekkerkel@s], and neous but which is always spatially homogeneous, the posi-

of Chrzanowskd41] as to the existence of a stable biaxial tionally averaged density(w) is determined by an orienta-

nematic phase. They were able to show that the stability O?onal distribution function f(w) and the total number

the biaxial nematic phase and its extent are very sensitive ggensityp, so that it can be written a8(w) = pf(w), where
is the orientational unit vector. In turn, the free eneFy

the choice of the molecular aspect ratios. For moderatel n be written m of ideal and residual contribution
long and flat particles, no biaxial nematic phase is observe an be €n as a sum of ideal and residual co utions

while for longer and flatter particles this phase becomeéjiven by

more stable. A drawback of this study is that the orientational 2

- BF
entropy term and the second virial term are rather poorly =Inp—1+ > x(Inx+o[f])+pB,, (1)
represented by the Zwanzig model. The aim of our work is to 3T '

carry out a similar global investigation, concentrating on the

effect of the unlike excluded volume on the phase behaviowhere 8=1/KkT (T is the temperature anklis Boltzmann’s

using the more accurate continuous theory of Onsager fatonstant, p=N/V is the number density; is the mole frac-

rod-plate mixtures. tion of component, and w is the orientational unit vector
We undertake a comprehensive study of the phase coexiefined by a polar angle Q6< =) and an azimuthal angle

istence in a symmetric mixturéequal pure component ex- (0<¢<2s). The last term in Eq(1) is the residual contri-

cluded volumesof hard rod and plate patrticles, in order to bution to the free energy due to the repulsive interactions

give some insight into the phase behavior of rod-plate binaryreated at the level of Onsager’s second virial thgdily The

mixtures by studying different unlike excluded volume inter- second virial coefficienB, is a mole fraction weighted sum

actions between the rods and plates. We use the Gibbs frexd the like B;;, By, and unlikeB,, terms, so that

energy to confirm the stability of the phases relative to each

other, including the possibility of demixing transitions in the BQZX§B]_1+ 2X1XoB o+ Xngz- 2

isotropic and nematic phases. The isotropic, uniaxial nematic

and the biaxial nematic phases are considered in detail. AdFhe other terms in Eq(l) are the ideal gas term, the ideal

ditionally, particular attention is paid to the commonly usedentropy of mixing, and a term proportional to the orienta-

approximation for the description of the excluded volumetional entropy, which is defined in terms of the orientational

interactions in which a second-order Legendre polynomiaHistribution function of each component as

expansion is usetthe L2 approximation This approxima-

tion substantially reduces the computational burden, but re-

sults in a considerable error in the description of the ex- U[f‘]ZJ filw)nf4mfi(e)]de. 3)

cluded volumes especially for the parallel and perpendicular

configurations. We study the effect of this inadequacy byFor hard body fluids, the virial coefficie;; corresponds to

comparing the phase behavior obtained using the L2 aphalf the orientationally averaged excluded volume between

proximation with calculations in which the excluded volume componeni andj [43]
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1 . ‘ _ iso
Bijzif Vgxc(wl1w2)fi(wl)fj(w2)dw1dw2- (4) B'ff= 'ZS§ and q:ﬁ. (7)
11

The calculation of the excluded volume between two hard ] ) ) )
spheres of different diameter or between two spherocylinder$ iS important to note that this relation of the isotropic rod-
is reasonably straightforward, and an analytical expressiofPd and plate-plate second virial coefficients also means that
has also been presented for the excluded volume betwedhe like second virial coefficients are equal in the nematic
two cylinders of differing length and diametgt]. For other ~ Phases. As is customary, a reduced density also defined
nonspherical hard bodies, such as ellipsoids or cut spherei terms of the rod-rod isotropic virial coefficient as
the calculation of the excluded volume is not straightfor-=Bzip. In this way, the mixture is fully defined by the three
ward. parameterg, candg, since a given value af corresponds to

In this work we study a binary mixture of rodlike mol- a fixed aspect ratio of the rod& {/D;) and diameters ratio
ecules(component 1, characterized by a lengithto diam-  (D2/D;) (see Sec. lll. Using the new variables, the residual
eterD; ratioL,/D;), and platelike molecule&omponent 2, free energy can be written as
characterized by a length, to diameterD, ratio L,/D,)
using the theory proposed by Onsager. Onsager’s theory is 4
exact in the limit of rodlike particles of infinite aspect ratio, szzc_f [x3 sinyf1(@y)f1(@,) + X Xq|cOSY| f1(€0y)
but it quickly becomes inaccurate for less anisotropic mol- ™
ecules; this means that in our study the rodlike molecules are
assumed to be very elongated with>D,, while the plate-
like molecules are assumed to be very flat With<D, and

that D,>D;. It is important to mention at this stage that |t may be clear at this stage that in order for the free
while the second virial approach can be justified for fluids ofenergy [Eq. (1)] to be fully determined, the equilibrium
rodlike molecules since thig; /B3<1, this is not the case for  single particle orientational distribution functiohg ) must
fluids of platelike molecules, and the approximation is morebe known. This can be done by taking the functional deriva-
severe in this casiel]. For long and flat molecules, the lead- tives of Eq.(1) while maintaining the normalization condi-
ing terms of the excluded volumes are given by tions [ fi(w)dw=1,

X () + X5 sinyf (@) o) |dwyde, . €)

Ve 2L1D; siny,

S[BFIN+\i(1— [fi(w)dw)] 0

12 T 2 ofi(w) ’ ©
Vexc™ 74 L1D2| COS‘y| ) 5
where\; are Lagrange undetermined multipliers. The result-
yy T g ing integral equations in our system are
Ve~ 5 D3 Siny,
2
. . 8 .

where y=arcos; - ;) is the angle between particlesnd IN[47f(w)]=N;—cC —Xi| sin Y(w- w,)f i (w,)dw,
j- It is interesting to note that neither the cross rod-plate, or
the plate-plate excluded volumes depend on the thickness of
the platel,; this is only true at the level of the second virial +4X2Qf |cosy(@: w,)|f(w,)de,
coefficient, as the free energy is a function of this parameter
when the higher virial terms are taken into account. (10

In order to be consistent with the earlier work of
Stroobants and Lekkerkerkg25], we use the virial coeffi-
cients of the isotropic phase to characterize the intermolecu-
lar parameters,

8
T T ? |n[477f2(¢0)]:)\2_c(;x2f siny( - @) fo(w;)dw,

Bif=7LiD:, BEF=1gLiD3 BF¥=1:D3. (6

These can be obtained by inserting the excluded volumes +4x1qf [cosy(@-wp)lfa(wo)de, .

given by Eq.(5) into Eq. (4), and using the isotropic distri- (11)
bution functionsf;=1/(4=). The molecular parameters are

determined by ensuring the virial coefficients are equal for

the like rod-rod and plate-plate interactions, and a parametérhe Lagrange multipliers can be eliminated by using the
g is introduced which determines the contribution of the un-normalization conditions of the orientational distribution
like excluded volume in the isotropic phase, so that functions to give the following integral equations:
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8
EX[{ - C(;le Sin y(w wz)fl(wz)dw2+ 4X2qJ |COS’)/((U‘ w2)|f2(w2)dw2) }

fi(ew)= 12

8
J EX[{—C(;le S'n'y(wlwz)fl(wz)dw2+4X2qJ |COS')’((U1w2)|f2(w2)dw2):|dwl

and

eXF{ - C(%XzJ' sin 'y(w wz)fz(wz)dw2+ 4X1qf |COS‘y(w- w2)|f1(w2)dw2) :|

fo(w)= (13

8
f eX[{—C(;XZI Sin'y(wl-wz)fz(wl)dwl+4xqu |COS’y(w1-w2)|f1(w1)dw1”dwz

These two equations constitute the starting expressions fdhe orientational distribution function€gs. (12) and (13)]

the calculation of the phase equilibria in this work, and wecan be expressed as functions of the uniaxial order param-
discuss different approximations for their solution in the fol- eters of the two components, given now by

lowing section. Together with this, the natural thermody-

namic function to consider phase stability and equilibria in exfd 3¢(X1S;—2%,0S,) Po(cos6) |

binary mixtures is the Gibbs free ener¢ip reduced form f1(0)=

g* = BG/N), which is derived from the Helmholtz free en- J exf 3¢(x1S;— 2x,S,)P,(cos6;) |dw,

ergy by performing the Laplace transformation (18)

g*:f*+P*/C, (14) and
where the reduced pressuR¥ = BPBS° can be obtained exfd 3¢(X,S,—2%,0S;) Po(cosé) ]
from the reduced Helmholtz free energfy/= BF/N as fo(0)= .
e f exd 5c(X2S,—2x,0S;) P,(cosby) Jdw;

Pr=cio—. (15 (19

] . ] In the derivation of these equations we have assumed that the
By calculating the Gibbs free energy as a function of com-grientational ordering is symmetrical around the nematic di-
position at a given pressure, the phase diagram of the binapactor taken in the direction of axis (as expected for a
mixture can be determined by simply taking the commonypjaxial phasg Moreover, we have used the L2 approxima-

tangent between the coexisting phapé4]. We follow this  tjon [Eq. (16)] and the addition theorem of spherical harmon-
method to construct the phase diagram of the present systefas [45], such that

A. L2 solution 2 (2—i)!
P,(COSY) = P,(C0S0;) P(COSH,) +22, ——
1. Isotropic-nematic bifurcation =1 (2+1)!

The coupled integral equatiorid2) and (13) are quite X P(cos;)PL(cosh,)codi(¢e;— )]
difficult to solve analytically, but they simplify substantially 2
by expanding the kernels of the integrals in terms of Leg- (20
endre polynomials. In the so-called L2 approximation they; is important to note that the terms proportional to the as-

expansion is truncated at second order, so that sociated Legendre polynomial®\() will vanish in this case
since the nematic phase is uniaxial and does not depend on
T 5w . . . .
siny~ —— —= P,(cosy), the azimuthal angle. In the following section, where the bi-
4 32 axial nematic phase is considered, one of the terms of the
two associated Legendre polynomiaB§§ has a finite con-
(16) tribution. Equationg18) and(19) were derived by Stoobants
and Lekkerkerkef25] in the context of mixtures of rodlike
and platelike particles; earlier, Flapper and Vertoy&s] had
If we define the uniaxial order parameters as the orientationallso used the L2 approximation in a pure rod system.
averages of the second Legendre polynomials After multiplying by the second Legendre polynomials on
both sides of Eq9.18) and(19), and integrating both sides, a
set of self-consistent equations can be obtained for the order
parameters in the mixture, which can then be solved numeri-

1 5
|cosy|~ >5tg P,(cosy).

Szf P,(cosH)f(w)dw, (17
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cally [47]. However, an important insight can also be gainedsults in slightly more complex coupled equations for the or-
from Eqgs. (18) and (19) when a weakly ordered nematic der parameters; in this case, the density dependence of the
phase is considered. Wh& andS,— 0 the exponentials in order parameters including the bifurcation point is obtained,
Egs.(18) and(19) can be expanded using the familiar Taylor together with the correct order of the phase transition. Un-

series up to second order (expl+X) giving fortunately, this expansion underestimates the order param-
eters for dense nematic phases and so we do not present
1+ 2(X;S;,— 20%,S,) c P,(cosh) these equations hefd8]. Equations(23) and(24) also pro-
f1(0)= Z (21)  vide the order parameters of the two components in such a
a

way that they are interdependent. It can be seen from the
expressions that if the order parameter of one component is
positive (determining the nematic direciothe order param-

1+ 2(%,S,— 20%,S;)c P,(c0s6) eter of the second component must be negative; .this' means

. (22)  that the symmetry axes of the two components align in per-

pendicular directions with respect to each other. One should
also note, however, that the second component is randomly
oriented within the perpendicular plarigso-called planar

and

fo(0)=

4

The corresponding equations for the order parameters are

S,=X,CSy/4— qX,CSy/2 (23)  phase. A large average excluded volume is associated with
such planar ordering, and as a consequence, the possibility of
and biaxial order(additional ordering in the plane perpendicular
to the uniaxial directgrcannot be excluded in this system, as
S;=X6S/4—qx,CS,/2. (24 this will increase the free voluméranslational entropy.
The elimination of the order parameters results in a quadratic 2. Nematic-biaxial nematic bifurcation

equation for the reduced density In a rod-rich uniaxial nematic phase, the rods pack very

0=(1—4g?)X X,c2—4c+ 16. (25  effectively, maximizing the packing entropy, but the plates in
this planar configuration do not significantly increase the
In this way, it is possible to determine the density atfree-volume entropy with respect to the isotropic phase. The
which the nematic phase bifurcates from the isotropic phasé&ee-volume entropy is increased by additional ordering in
without solving the coupled integral equations. However, itthe direction perpendicular to the alignment of r¢dixial
must be noted that this equation gives only an upper limit forordering; this gives rise to azimuthal anisotropy in the ori-
the isotropic phase stability without determining the natureentational distribution functions.
of the isotropic-nematic phase transition; the isotropic- In considering the possibility of biaxial ordering, Egs.
nematic phase transition may take place at lower densitiedl8) and(19) have to be expressed in a more general form; in
than indicated by Eq(25). The incorporation of an addi- the case of the L2 approximati¢Eg. (16)] together with Eq.
tional term in the Taylor expansion of the exponentials re{20) the corresponding expressions are

exl 3¢(X;S;— 2%,0S;) Po(cosh) + 5 (X341~ 2X,04,)D (6, 0)]

f1(0,0)= (26)

f exfl 3¢(X1S1— 2X,0S;) P2(€0s6;) + 5 C(X1A 1~ 2X,0A ) D (61, 1) 1dewy
and
exl 3¢(X2S,— 2%1GS;) P2(cosh) + 5 (XA~ 2X,0A1)D(6,¢)]

f exl 3¢(X2S,— 2X1GS;) P2(€0sh;) + (XA, — 2X1GA1)D (01, ¢1) Jdewy

f2(0,0)= ; (27)

where the biaxial order parameters V3
D(6,¢) = —sir’ 6 cos2¢).

As before, it is possible to expand the exponential func-
tions in Egs.(26) and (27) in the vicinity of the nematic—
have been introduced using a functiDi{é, ¢) defined from  biaxial nematic bifurcation point, i.eA;—0 andA,—0. It
the second associated Legendre polynorRigl can be seen that the orientational distribution functions bifur-

011707-6



ORDERING TRANSITIONS, BIAXIALITY, AND . .. PHYSICAL REVIEW E66, 011707 (2002

cate from the uniaxial nematic distributiorfgy with the In the present model the accurate solution of the Euler-
D(6,¢) function, since Lagrange equations is even more important, because of the

subtle competition between the entropy of mixing and the

f100,0)=F1n(O[1+F(x141—20%A,)cD(6,¢)] unlike excluded volume which determines the stability of the

(29 piaxial nematic phase. The shortcomings of the series expan-
sion methods can be demonstrated by calculating the abso-

and lute difference between an orientationally dependent function
£2(0,0)=Fan(O)[ 1+ 2 (XpA,— 2% A;)CD(6,0)]. I'(y) and its Legendre polynomial representation
(30 n
Integrating both sides of Eq$29) and (30) with D(6,¢), xXn(7)= F(Y)—izo 3;Pi(cosy)| (34)

and using the orthogonal property of this function, expres-
sions for the biaxial order parameters are obtained for each

of the components, where @; is the corresponding coefficient of the Legendre
. expansion of the function. We have evaluated the function
_2 2 for the integral kernelgi.e., siny and |cosy|] up to 18th
Ar=gc XlAlf D(8,¢)f1n(0)dw order[note that Eq(16) presents the expansion only up to

second orddr and the results are depicted in Fig. 1. It is
_quzAzj D2(0,(p)le(t9)dw) (31) clear from the figure that the expansion converges very
’ slowly, and that the error is particularly large for the parallel
and perpendicular directions. Hence, it is rather questionable
whether the second-order approximati®&2 mode) or even
high-order expansions are adequate for a reliable quantitative
X2A2f D2(6,¢)fon(0)de (and even qualitativedescription of the phase equilibria.
' In order to test the accuracy and reliability of the L2 so-
lution presented in the preceding section we solve the
—2qx1Alf D?( 0,<p)f2N(0)dw). (320  coupled integral equatiori42) and(13) entirely numerically
' (i.e., without approximations The integration over the ori-

On eliminating the biaxial order parameters the bifurcationntational unit vector(e) is carried out by Simpson's

equation for the L2 approximation is obtained as quadrature. We ensure that the poldr and azimut_haKg_o)
parts of w are treated at the same level by considering an

interval[0, 7| for # and an interval0,2s] for ¢, and both are
2502(1—4q2)xlng szl,Nde' D?f,nde divided into subintervals of the same grid size. In order to
maximize the accuracy of the numerical approach, while
) ) B minimizing the computational burden, the optimal grid size
le Dfindert XZJ D*f;ndeo | +16=0. is determined by solving integral equatiofi) and(13) in
the uniaxial nematic phase, where the calculation of the ori-
(33 entational distribution function depends only on the polar
angle (). We find that the minimum number of intervals
between[0,7] must be at least 40. Using the grid size ob-
tained for the uniaxial nematic phase, E(2) and(13) are
solved iteratively: guesses are made fetw) and f,(w),
which are substituted into the right-hand side of the equa-
ions to obtain a new pair of;(w) and f,(w); in each
iterative step the new solution is mixed with the previous one
so that the old function is 90% of the new oftbis ensures
the convergence of the methodnd the procedure is re-
peated until the mak e (@) — f; oo(@)| <1079 (i=1,2).
The director defining the nematic phase is not unique in
The use of simple approximations to obtain the equilib-these systems. In the case of a uniaxial nematic phase the
rium orientational distribution functions in ordered phases,ntegration over the second azimuthal angle means that the
such as trial function method43] or the L2 mode[25,41]  director lies along the axis in order to be consistent with
discussed earlier have the obvious advantage of relativeniaxial ordering. In the case of a biaxial nematic phase this
mathematical simplicity. It is clear that in each case thesés no longer possible because the solution also depends on
approximations introduce some degree of error. For exampldéhe azimuthal angles. In order to fix the main nematic direc-
it has already been pointed out in previous wéitig] that  tor along thez axis (as beforg a biaxial initial guess of the
these approximations may result in a qualitatively incorrecborientational distribution function is made such that the di-
conclusion about the existence of a critical point in nematictector is oriented along this axis; this is equivalent to the
nematic phase boundaries of rod-rod binary mixtures. pinning of the main nematic director. Finally, the coexistence

and

AZZZC

—20c

The nematic—biaxial nematic bifurcation density is deter-
mined from this equation by using the uniaxial orientational
distribution functions given in Eqg18) and (19). An inter-
esting feature of Eq(393) is that it reduces to the isotropic-
nematic bifurcatiodEqg. (25)] if the orientational distribution
functions are isotropic, meaning that there is no direc
isotropic—biaxial nematic transition in the L2 approximation.
This will become apparent in the discussion of our results.

B. Numerical solution
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a) 0.5 Y Pg*
I 077— P>0, (35)
0.4 + L

where we use the notationfor the mole fraction of one of
i the components. Written as a function of the reduced free
energyf*=BF/N, the second derivative of the Gibbs free

0.3 .
, energy is given by
0.2 - . n &Zf* 2
1 I Pgr\ [ Pf* (axac) a6
o1 4 O ax* |\ ax? C( g gz 89
: 5 AN ST ¢ 2—+C——
. B VS ; ac ac |
0.0 where we have taken advantage of the fact ftfatlepends
0.0 0.2 0.4y 0.6 0.8 1.0 only onx andc, and have used the Euler chain relations. The
. . . | spinodal boundarydemixing limit) is obtained when this
b) 0.8 ' ' ' ' expression is equal to zefd4], so that substituting Eq1)
| into Eq. (36) gives the general equation for the spinodal
i curve of the phases studied in this work,
0.6 L
8 :
| 1+C;Xf (X1f1f1+X2f2f2)S|n 'ydwldw2
X, 04 1 | 2
—4¢%x1%,| 024 J' |cosy|f,f,dw,dew,
16 _ .
0.2 - “‘ ," L - ? flfl Sln'ydwldwz f2f2 S|n’ydw1d0)2 =0.
\‘\ /’I i (37)
0.0 = = In particular, the isotropic-isotropic demixing spinodal line is
0.0 0.2 0.4 y/p 0.6 0.8 Lo obtained from Eq(37) by inserting the isotropic distribution

functionsf;=1/(47), which gives a simple quadratic equa-
FIG. 1. Error of the Legendre polynomial expansion method fortjgn
(@) |cosy| and(b) (siny) as a function of the angle. The error is
calculated as indicated in E¢34). The values ofn presented are
(from top to bottom in both parts0, 2 (dashed curve 4, 6, 8, 10,
12, 14, 16, and 18.

1+2c—4x;%X,(g%—1)c?=0. (38

conditions(equality of pressure and chemical potenjials The boundary can be seen to .be symmetricaj i.n com_position
volving phases of different symmetry are solved using the(about?(=1/2). The deFermlnatlon. of the dem_|X|ng S-medal
downhill simplex method47]; the accuracy in the coexist- curve is very useful in suqh mn;tures, as .'t. provides thg
’ . ; boundary of phase separation without requiring an explicit
ence pre_ssureP= —dF/oV and Chem'c"’." pptentla_lsui solution of the phase coexistence. In the particular case in-
=dF/JN; is chosen to be of at least six significant figures. volving symmetric mixtures, the compositions of the rod-
. .y rich and plate-rich coexisting phases coincide with the
C. Demixing transitions minima of the Gibbs function in demixing transitions involv-
In addition to the isotropic-nematic and nematic-biaxialing phases of the same symmetiiye., isotropic-isotropic
phase transitions which have already been discussed, a mignd nematic-nematic transitionshis is due to the fact that
ture of rodlike and platelike hard particles of differing size the Gibbs surface is symmetric with respecixte 0.5 since
may exhibit demixing in phases of the same symméte;, the rod-rod and plate-plate excluded volumes are equal.
isotropic-isotropic or nematic-nematic demix)n¢n the case  Hence, in terms of derivatives of the reduced Gibbs function,
of our mixture of purely repulsive particles there is no vapor-a relation
liquid phase transition. A given phase is stable if the second

derivative of the Gibbs free energy with respect to the mole ag*
fraction is positive, which in our reduced units is expressed ( o ) =0 (39
as P
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In| 22| + o f,]— o f,]+4c

can be used to determine the phase equilibria in the speci&lle investigate the global phase behavior of the mixture in
cases mentioned above. This relation can be rewritten in ®rms of the molecular parameters, studying the effect of
more convenient way as a function of the reduced Helmholtaifferent rod-plate unlike excluded volume contributions,
free energy as characterized by the parame®fEg. (7)]. A change of the
" . unlike excluded volume does not of course give rise to a
((?g ) - (i . (40) different phase behavior of the pure components, even
X b X | though this would correspond to different molecular aspect
) ] i .. ratios in each case and to different transition densities; this is
In this way, the solution of the phase coexistence conditions, girect result of the theory of Onsager, in which the concen-
is avoided by simply taking the derivative bt with respect i a4ion has been written in terms of the rod dimensions. It
to the.mole fraction, SO ?hat using H40) a relatively simple should be noted that, due to the fact that the approach of
%c?)t:&ljtrlgr:sforivthe éiemlxmg phase boundary of the rOOl'pl"’t[?)nsager is a second virial theory, it is accurate only in the
given by case of very long and thin rods, and care needs to be taken
) 2 _ not to change the value of the unlike excluded volugne a
X, J' (;Xz sinyfofo+ (X1 —X2) way that the aspect ratio of the rods becomes too small mak-
ing the theory inaccurate. In this work we present the phase
2 . behavior of rod-plate mixtures for values gfranging from
><q|cos;z|f1f2—;xl smyflfl)dwldwz] 0.51t0 1.6.
The aspect ratioK=L,/D;) and the diameter ratiox(
=0. (41) =D,/D,) are determined from the value gfthrough the
: : R 243 r_— 2
It is important to note that this equation cannot be solve g:?v;/gwcgiiéﬁlaw)ensrg;;:qhg ;sr;)((jegt ;s’; %ié;ggru%ggg; for
analytically for the uniaxial or the biaxial nematic phases’correspondihg values of thgparameter and denote the mole
bec_ause of the density dependence of the orientational di.Strffaction of the plates as. The results obtained using the L2
bution functions. In these cases we use the r]um(:“ncaapproximation are presented before those of the full numeri-
Newton-Raphson method!7]. For the isotropic phase, the cal solution
solution is much simpler, and the reduced density can be '
expressed as a function gfandx as

X, A. Phase behavior in the L2 approximation
In( )

X, The L2 approximation of the excluded volume is rather
:2[x v e (42)  crude as we have seen in the comparisons shown in Fig. 1.
27 X1 (X2 X4 The advantage of the L2 approach is, however, that it is
which is again found to be symmetrical about compositionP0SSible to get an indication of the phase behavior of the
If x,=x,=1/2 this equation is even simpler giving, _mlxture without thg need for a fu_II solu_tlon. Instead of solv-
ing the system of integral equations given by Ed®) and
1 (19), we start by examining the isotropic-nematic bifurcation
C"':ﬁ' (43 [Eq. (25)] and the isotropic-isotropic spinod@Eq. (38)]
boundaries. Equatiof25) is quadratic in the reduced density
This clearly indicates that isotropic-isotropitl) demixing ¢ and can easily be solved, giving the known pure fluid bi-
does not take place fog<1, but that it is possible for furcation limit of c=4 [49]; it is clearly symmetric in mole
isotropic-isotropic demixing to occur in mixtures witp  fraction (the same blfurc_:atlon densr['y' is founc! f_or both pure
>1. Of course, this does not mean that the system will demi0mponents since their second virial coefficients are the
into a rod-rich and a plate-rich isotropic phase forquit1,  SameBi;=Bo). Itis interesting to note that when the unlike
as a favorable ordering into a nematic phase may preemjgxcluded volume parameter ¢s=0.5 the isotropic-nematic
this transition. The delicate balance between the orientationdlifurcation density is independent of the mole fraction with a
free volume and mixing entropies gives rise to a wealth ofconstant value o€=4, while for lower or highem, the bi-

phase behavior as will become clear in the following sectionfurcation densities of the mixture increase or decrease, re-
spectively(see Fig. 2 The bifurcation curves give an indi-

cation of the relative stability of nematic and isotropic phases
with respect to each other, suggesting that for our model with

We study the phase behavior for our symmetric mixture ofqg<<0.5 a destabilization of the nematic phase with respect to
rod and plate molecules taking into account isotropic, nemthe isotropic phase is predicted. In contrast with this, the
atic, and biaxial nematic phases. We carry out a bifurcatiortonclusions of previous theoreticf25,41 and simulation
analysis, and determine the phase coexistence boundaries ss4ddies[38,39 suggest that there is a tendency to stabilize
ing the second virial theory of Onsager; two approaches arthe nematic phase on mixing. A more recent Monte Carlo
used to solve kernels of the integrals, an expansion in Legsimulation study of a near-symmetric binary mixture of hard
endre polynomials up to second ordé&2 approximation, spherocylinders and hard cut spheres indicates that there is a
and a numerical solution that involves no approximationsdestabilization of the nematic phase in such mixtyed.

Cia

Ill. RESULTS
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7 | L a) 20.0
6 — - <
c5 P*17.5
Nr N L
4 -~ ~ = I -
; L
3 +—r—r—"-—r—r—T——1—— 150 +———F—— 77—
0.0 0.2 04 x 06 0.8 1.0
FIG. 2. Bifurcation phase diagram of the symmetric mixture of b) 20
rods and plates fog=0.49 (short dashed curvis0.5 (continuous
curves, and 0.6 (long dashed curvesin the reduced density-
composition plane. The labelsN, , Ny, andN, denote isotropic,
rod-rich nematic, plate-rich nematic, and biaxial nematic phases,
respectivelyx corresponds to the mole fraction of the plates. 18
The rod aspect ratio and plate-rod diameter ratio of the p+
model simulated in Ref[40] (k=5, k' =3.62) are very
close to those corresponding tp=0.5 (k=4.93 and «’
=3.14 in our present work. It is not useful, however, to 16
attempt a quantitative comparison of the theoretical results
presented in our current work with the simulation dgtf]
as the aspect ratios involved are too small for the Onsager
theory to be accurate. Furthermore, the simulations were car-
ried out for a mixture of hard spherocylinders and hard cut- 14 —— 77—
spheres, while in our theoretical model the particles are cy- 0.0 0.2 04 x 06 0.8 1.0

lindrical in shape as the end effects in the excluded volume
have been neglected. It should also be noted that the liquid- FIG. 3. Pressure-compositio*{x) representation of the phase
crystalline phase obtained for the cut-sphere fluid in thediagram for a symmetric mixture of rods and plates obtained with
simulation exhibits columnar positional order instead of justthe L2 approximation fofa) g=0.5 and(b) q=0.6. The continuous
nematic orientational order. Having acknowledged the im-curves represent the stable coexistence curves of the isotropic-
portant point that our theoretical predictions for the smallnematic and nematic—biaxial nematic transitions, while the dashed
values ofq yield quantitatively inaccurate results, we use theCurves indicate the metastable nemati_c-nemf':uic demixing trans_ition.
low q results as a starting point in our examination of the The labelsl, N, Ny, andNy denote isotropic, rod-rich nematic,
phase behavior for larger values gfwhere the Onsager plate-rich nematic, and bla_X|aI nematic phases, respectivedgr-
theory is known to be much more accurate. responds to the mole fraction of the plates.

The nematic-biaxial nematic bifurcation line can be lo-
cated using Eq(33) together with the orientational distribu-  The full phase diagrams of the rod-plate binary mixture
tion functions given in Eqs(18) and (19), which are ob- have been calculated foy=0.5 to 1.6. As has already been
tained by iteration. It can be seen from the bifurcationmentioned, the theory of Onsager at the level of the second
expression that an increase in the unlike interactiooro-  virial coefficient becomes very inaccurate for smaller aspect
motes the biaxial nematic phase; a larger value of the parantatios. It significantly overestimates the transition densiies
eterq extends the stability of the biaxial phase to lower den-value ofq=0.63 corresponds to rods with an aspect ratio of
sities (and lower pressurgsand to wider ranges of about 10, for which the Onsager approach starts providing a
composition (see Fig. 2 It is also apparent that the more quantitative descriptiofd3]). Furthermore, the ap-
isotropic-nematic and nematic—biaxial nematic bifurcationproach does not take into account the positionally ordered
boundaries always meet at an equimolar composition, whicphases such as smecticand columnar phases that are fa-
suggests that the isotropic-nematic transition is second ordeored for smaller aspect ratios. In Fig(aB the pressure-
at this point, as the bifurcation equatio(®5) and (33) are ~ composition phase diagram obtained with the L2 approxima-
identical for isotropic distributions of the particles. tion for a mixture withg= 0.5 (corresponding to a rod aspect
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ratio of k=4.93 and a plate-rod diameter ratio ©f=3.14)
is shown. The isotropic-nematic bifurcation curve was found
to be independent of composition for=0.5 (see Fig. 2
When the coexistence boundaries are examined for this sys-
tem one finds that for the rod-rickx£0.2) or plate-rich
=0.8) phases mixing destabilizes the isotropic phase relative
to the nematic phasg@avoring ordering, while for mixtures
close to the equimolar compositionx€0.5) the ordered
phase is destabilized. As a result, two isotropic-nematic
azeotropes at abowt=0.2 and 0.8 are observed in the phase
diagram. The isotropic-nematic phase transition is found to
be weakly first ordefexcept ax= 0.5 where the transition is
continuous so that the boundaries depicted in Figa)3ac-
tually correspond to two curves, one for the isotropic com-
positions and the other for the nematic compositions. In the 1 I -
case of the systems with largehese two phase regions will 6 —— T
become clearly visiblgcf. Fig. 3b)]. In the high-pressure 0.0 0.2 04 x 06
region, two nematic phases are obseryede rich in rods
and one rich in platgstogether with a stable biaxial nematic ~ FIG. 4. Pressure-compositiof{ x) representation of the phase
phase for intermediate compositions, the extent of the biaxisdiagram for a symmetric mixture of rods and plates obtained with
nematic phase is seen to decrease with decreasing presstfte L2 approximation fog=1.4. The continuous curves correspond
(as suggested by the bifurcation studyhe nematic-biaxial t© the stable transitions, and the dashed curves to the metastable
nematic transition is found to be second order.xat0.5, ~ nematic—biaxial nematic phase boundary. The lahéds, N, and
four phasegisotropic, rod-rich nematic, plate-rich nematic, .Nb denotg isotropic, rod-rich nematic, plate-rich nematic, and .biax-
and biaxial phasemerge into one at a multicritical point. ial nematic phases, respectivekycorresponds to the mole fraction
This point also corresponds to the lowest pressure at whicff e plates.
the biaxial nematic phase is observed.

The phase diagram obtained with the L2 approximatiorSions given in Eqs(25) and(38) atx=0.5, it can be shown
for a mixture withq=0.6 (x=8.5 andx’ =4.5) presented in  that the bifurcation curves will meet whep=1.5 andc=2
Fig. 3b) is very similar to that obtained by Stroobants and[see Figs. 5 and(€)]. For values ofg>1.5 (see Fig. % the
Lekkerkerker[25] for g=1. The only difference is that the Spinodal demixing of the isotropic phase occurs at lower
isotropic-nematic coexistence, as well as the biaxial nematigressuresand densitigsthan the isotropic-nematic bifurca-
region are found to be less extensive €pr 0.6. tion for certain ranges of composition.

As was mentioned earlier, it is also important to check the An examination of the phase diagram of the mixture with
stability of the biaxial nematic phase with respect to nematicd=1.5(x=133.2 andk’ = 28.3 [see Fig. 63)] indicates that
nematic phase separatipusing Eq.(41) and computing the

Gibbs free energly For values of the unlike excluded volume
parameter ofj=0.5 andgq=0.6 the nematic-nematic demix-
ing transition is always metastable for all of the pressures
studied[the dashed curves shown Fig$a)3and 3b) denote
the demixing boundarig¢sAt higher pressures, the system
may demix into a rod-rich and a plate-rich nematic ph@ase
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even into two more ordered smechcand columnar phasgs
due to the increasing importance of excluded volume effects.
Indeed, nematic-nematic demixing is found to be stable at
pressures above the biaxial nematic phase for a mixture with
g=1.4 (corresponding to large aspect and diameter ratios of
k=108.3 andk’' =24.6 as can be seen in Fig. 4.

The bifurcation curves for the isotropic-nematic transition
[Eq. (25)] together with the isotropic-isotropic demixing
spinodal curve$Eqg. (38)] are shown in Fig. 5 for mixtures N .
with q=1.5 andg=1.6. In the preceding section we pointed 5 — ‘I\ - —']’ —
out that isotropic-isotropic demixing is not stable fip1, 0.2
and that a competition between the isotropic-isotropic de- '
mixing spinodal line and the isotropic-nematic bifurcation  FiG. 5. Stability of the isotropic-nematic bifurcatidoontinu-
line determines the stability of the phase transition. SinC&us curveswith respect to the isotropic-isotropic spinodal decom-
both equations are Symmetric in the mole fraction, it is eVi-position (dashed curvedor g=1.5 and 1.6. The curves meeting at
dent that the two lines will first meet at the equimolar com-the equimolar composition correspond to a mixture wjth 1.5,
position. By simultaneously solving the quadratic expres-while the other two curves correspondde- 1.6.
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FIG. 7. Gibbs free energy density versus composition for a sym-
metric mixture of rods and plates obtained with the L2 approxima-
tion for q=1.5 andP* =16. The continuous curves indicate the
stable rod-rich and plate-rich nematic solutions, while the long- and
short-dashed curves are the metastable isotropic and biaxial nematic
solutions, respectively.

four-phase coexistence line closeR$ =11.

Before we conclude our discussion of the results obtained
with the L2 approximation it is also useful to consider the
Gibbs free energy of each of the phases studied for the mix-
ture withg=1.5. It can be seen in Fig. 7 that at a reduced
pressure ofP* =16, the Gibbs free energy of the biaxial
nematic phase is always higher than the Gibbs free energy of
r the coexisting nematic rod-rich and plate-rich phases. The
4 — T T T T T isotropic free energy curve would correspond to a demixed

0.0 0.2 04 X 06 0.8 1.0 phase, but it is clearly metastable with respect to the nematic
phases.

FIG. 6. Pressure-compositiofP{ x) representation of the phase
diagram for a symmetric mixture of rods and plates obtained with
the L2 approximation fofa) q=1.5 and(b) g=1.6. The continuous
curves represent the stable coexistence curves of the isotropic- At this stage it is useful to note that the L2 approximation
nematic and nematic-nematic transitions, while the dashed curvesverpredicts the isotropic-nematic transition pressures of the
indicate the metastable nematic-biaxial nematic transition. The adsure components; in the L2 approximation the reduced pres-
ditional labels|, and I, denote a rod-rich isotropic phase and a gyre of the isotropic-nematic transitionR§ = 15.79, while
plate-rich isotropic phase, respectively. a pressureP},=14.12 is obtained when the full numerical

solution is used49]. However, in the case whean=0.5, the
the biaxial phase is entirely preempted by demixing into twoequimolar isotropic-nematic bifurcation pressurePis=16
nematic phases, but no demixing of the isotropic phase ifr both solutions, so that it is clear that the isotropic phase
seen. A stable isotropic-isotropic demixing region can bemnust be stabilized and orientational ordering is less favorable
seen in Fig. ), which corresponds to a mixture witly  close tox=0.5 both in the L2 model and with the numerical
=1.6 (k=161.7 andx’ =32.2). The isotropic-isotropic de- procedure. The large difference in pressurexat0 andx
mixing curve is calculated using EG2) while the nematic- =0.5 suggests that the stabilization of the isotropic phase
nematic demixing curve is obtained from Egl). At high ~ must start close to the pure component ages:0 andx
pressure nematic-nematic demixing is observed in this mix—1). In order to resolve this question, we investigate the
ture, while in the intermediate pressure range isotropicphase diagrams of the rod-plate mixture fpr0.5 andq
isotropic demixing is seen. The magnitude of this immisci-=0.6[Figs. 8a) and &b)] with the numerical solution. In the
bility is quite remarkable, it is very extensive in composition case whem= 0.5 the isotropic phase is seen to become more
and pressure, and ends at a critical pressure minimum atable for most of the composition range; closecte0 and
which the two isotropic phases merge. The nematic-nematig=1 a slight minimum in pressure is observed. Compared
coexistence region meets the isotropic-isotropic region at ¢ the L2 calculations with the same value qf both

B. Phase behavior using the numerical solution
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b) 20 FIG. 9. Pressure-compositioR{ x) representation of the phase
diagram of a symmetric rod-plate mixture obtained using a numeri-
cal solution forg=1.0. The continuous curves represent the stable
coexistence curves of isotropic-nematic and nematic—biaxial nem-
atic transitions, while the dashed curves indicate the metastable
nematic-nematic demixing transition. The additional ladeland

I, denote a rod-rich isotropic phase and a plate-rich isotropic phase,
respectively.

19
18

17
P*

16 relative to the nematic phase is found for compositions be-

tween 0.2 and 0.8, while a destabilization is found close to
the pure component axes. Note that the phase diagram ob-
tained forq=0.6 with the L2 approximatiofiFig. 3b)] is
considerably different from that obtained numericdlBig.
8(b)], the former exhibiting a destabilization of the isotropic
13 —— phase for the entire composition range. These quantitative
0.0 0.2 04 x 06 0.8 1.0 differences are the result of the approximation introduced in
the solution of the excluded volume integrals in the L2
FIG. 8. Pressure-compositioR{ x) representation of the phase model(see Fig. L
diagram of a symmetric rod-plate mixture obtained using a numeri- \We now turn our attention to systems with larger values of
cal solution for(a) g=0.5 and(b) g=0.6. The continuous curves the unlike excluded volume parametgrwhich correspond
represent the stable coexistence curves of the isotropic-nematic apg larger aspect ratios for which the Onsager theory is known
nematic—biaxial nematic transitions, while the dashed curves inditg he more accurate. The first study of the rod-plate mixture
cate the metastable nematic_:-nema_tic demi_xing transi_tion. The '_abeﬁhase diagram using the approach of Onsager was carried
I, N, Ny, andN, denote isotropic, rod-rich nematic, plate-rich ot with the L2 approach by Stroobants and Lekkerkerker for
nematic, and plaX|aI nematic phases, respectivegorresponds to the system withq=1 [25] (x=39.5 andx’=12.6). Later,
the mole fraction of the plates. Vanakaras and Photing26] reexamined the phase behavior
of rod-plate mixtures using a variational approach at the
the isotropic-nematic coexistence region, and the region devel of the second virial coefficient. For a given choice of
stability of the biaxial phase are found to be more extensivenolecular parameters, Vanakaras and Photinos reproduce the
when determined with the numerical solution. Again onephase diagram presented by Stroobants and Lekkerkerker
should bear in mind that for these small valuesgothe  with an additional analysis of nematic-nematic demixing.
Onsager second virial theory will not provide a quantitativeVanakaras and Photinos concluded that the system does not
description of the system. demix in this case, but demixing of the nematic phase could
The phase diagram obtained with the full numerical ap-be found when the form of the unlike excluded volume was
proach forq=0.6 is very similar to the one obtained using changed. It is important to note, however, that in the work of
the L2 approximation with the slightly smaller value @f Vanakaras and Photinos, the unlike excluded volume is not
=0.5[see Figs. @) and 8b)]. The isotropic-nematic first- given by a|cosy| function, and is instead determined arbri-
order transition is very weak in terms of composition differ- trarily. For the system witly= 1, our resultgsee Fig. 9 are
ence, but not in density, and two azeotropic points are seen gualitatively similar to those of Stroobants and Lekkerkerker
aboutx=0.2 and 0.8; a stabilization of the isotropic phase[25] and of Vanakaras and Photin@5]; different transition

15

14

011707-13



SZABOLCS VARGA, AMPARO GALINDO, AND GEORGE JACKSON

PHYSICAL REVIEW E6, 011707 (2002

16 | | L 1 { 6.5
e - ~
J L L
7/
12 6.4 — / \ -
/7 N
AY

P* g

8 6.3 —
4 T T T T { 6.2 ] T T T

0.0 0.2 04 x 06 0.8 1.0 0.0 0.2 04 x 06 0.8 1.0

FIG. 10. Pressure-compositiorPt{x) representation of the FIG. 11. Gibbs free energy density versus composition for a
phase diagram of a symmetric rod-plate mixture obtained using aymmetric mixture of rods and plates obtained using a numerical
numerical solution folg=1.6. The continuous curves represent the solution forq=1.6 andP* =10. The continuous curves show the
stable coexistence curves of isotropic-nematic, nematic—biaxialod-rich and plate-rich nematic solutions, while the long- and short-
nematic, isotropic—biaxial nematic, and isotropic-isotropic transi-dashed curves correspond to the metastable isotropic and the stable
tions. The dashed lines indicate the pressures at which three phadgiaxial nematic solutions, respectively.

are found in coexistence. _ _
approach cannot, however, be excluded. The numerical dif-

btained when th ical solution i ficulties encountered at high pressures, together with the ap-
pressures are obtained when the numerical solution is useéearance of more orderggmectic and columnamhases,

as was mentioned earlier, and the range of biaxial nematighich are not incorporated in the theory, prevent us from
phase is wider in our work, as observed for the lower Va'“e§tudying higher pressures.

of g.

The more interesting mixture with the large valge
=1.6, for which the biaxial phase was not found in the L2
model[see Fig. )], is depicted in Fig. 10. It can be seen  In this paper we have studied the phase behavior of a
that the numerical method provides a qualitatively differentsymmetric binary mixture of hard rodlike and platelike mol-
phase diagram, with an extensive region of biaxial nematiecules using Onsager’'s second virial theory. We have fo-
stability, and no nematic-nematic demixing is observed forcused on two important issues: the effect of varying the un-
the pressure range studied. Nematic-nematic demixing maljke excluded-volume interaction(characterized by the
be possible at very high pressures but in this case the numefparameterg), and the accuracy of the commonly used L2
cal solution becomes difficult due to the sharply peaked naapproximation. The simplicity of the L2 method is indisput-
ture of the orientational distribution functions. Isotropic- able, but the poor description of the excluded volume in this
isotropic demixing is observed at lower pressures, and in @ase means that it can give rise to a very different phase
narrow range of intermediate pressures a region of isotropicbkehavior from that predicted by an exact numerical solution.
biaxial nematic coexistence is also found, limited above and\Ve show that even after expanding the excluded volume in
below by two pressures at which three phases are found iterms of Legendre polynomials up to 18th ordet8 mode)
coexistencebiaxial nematic—isotropic—isotropic below, and there are inherent errors due to the slow convergence of the
isotropic—nematic—biaxial nematic abgvAs before, the re- series for the parallel and perpendicular configurations; un-
gion of isotropic-isotropic demixing ends at a minimum fortunately, these are particularly important in the biaxial and
pressure critical point. These results are further illustrated imematic phases. Other methods, such as those involving trial
Fig. 11, where the Gibbs free energyRit=10 is shown. A  orientational distribution functiong43], are also reasonably
first-order isotropic-nematic phase transition and a seconcdekasy to implement but cannot be applied to weakly ordered
order nematic—biaxial nematic transition can be clearly seerliquid crystalline phases. The numerical method does not
The demixed nematic phases have higher Gibbs free energyffer from any of these problems. It is, however, consider-
than the biaxial nematic phase for all the compositions wherably more demanding in terms of computational require-
they are found. ments, and it becomes prohibitive for very aligned phases

In summary, we show that, while the phase diagrams obwhen the grid of the angle integrals would have to be very
tained using the L2 approximation and the numerical solusmall[18].
tion are qualitatively equivalent for values gfclose to 1, a The richness in phase behavior exhibited by this relatively
rather different phase behavior is obtaineddor1. The pos-  simple hard-core mixture is highlighted. The stability of the
sibility of nematic-nematic phase separation in the numericaisotropic-nematic transition depends on the value of the pa-

IV. CONCLUSION
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rameterq, which results in a stabilization of either the iso- can be achieved by appropriate resummation of higher virial
tropic (q<<0.5 in the L2 approximation og<0.6 for the terms[36,37. An improvement of the predictions for the
numerical solutiohor the nemati¢q>0.5 in the L2 approxi- phase behavior of platelike molecules is, however, more de-
mation org>0.6 for the numerical solutiorphase. The use manding. It has been shown that the inclusion of higher virial
of the L2 approximation indicates the possibility of stableterms(up to the fifth virial coefficientdoes not improve the
regions of the biaxial nematic phase fqr1.5. Nematic-  results substantially for infinitely thin plat¢4]. However, a
nematic phase separation occurs at high pressdessities, recent comparison of the resummed Onsager théasing
eventually preempting the stable biaxial phase altogethethe scaling of Parsopswith simulation data for platelike
When the numerical solution is employed, no nematic decutsphereg51] indicates that the theory can give accurate
mixing was observed in any of the mixtures studied withinresults for moderate aspect ratios. In future work we plan to
the pressure range investigated. This conclusion is in contraskamine the phase diagram of a rod-plate mixture using a
with the results obtained with the L2 solution, and the resultdarsons resummation of the Onsager theory to compare it
of the Mayer-Saupe mode[d43—-15. Demixing of the iso- with the simulation data, and to examine the effect of the
tropic phase is also foundor q> 1.5 for both the L2 and the lower order termgend effect$ of the excluded volumes on
numerical solutions which has not been reported previously the competition of nematic-nematic and nematic—biaxial
for mixtures of rod and plate particles. In addition, an un-nematic transitions.

usual isotropic-biaxial nematic first-order transition is ob-

served With_ the numerical §o|_ution. This transition hqs_been ACKNOWLEDGMENTS
suggested in systems of biaxial partic[&®], but here it is
observed in a system of uniaxial particles. S.V. would like to thank the ROPA prograf@K/N03358
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