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Logarithmic relaxation in glass-forming systems
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Within the mode-coupling theory for ideal glass transitions, an analysis of the correlation functions of
glass-forming systems for states near higher-order glass-transition singularities is presented. It is shown that the
solutions of the equations of motion can be asymptotically expanded in polynomials of the logarithm of time
t. In leading order, a Iff law is obtained, and the leading corrections are given by a fourth-order polynomial.
The correlators interpolate between three scenarios. First, there are surfaces in parameter space where the
dominant corrections to the In(law vanish, so that the logarithmic decay governs the structural relaxation
process. Second, the dynamics due to the higher-order singularity can describe the initial and intermediate part
of the a process thereby reducing the range of validity of von Schweidler’s law and leading to girong
relaxation stretching. Third, the i) (law can replace the critical decay law of tjgeprocess, leading to a
particularly large crossover interval between the end of the transient and the beginningxopitheess. This
may lead to susceptibility spectra below the band of microscopic excitations exhibiting two peaks. Typical
results of the theory are demonstrated for models dealing with one and two correlation functions.
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[. INTRODUCTION derstand these corrections if one intends to get an overview
of the relaxation scenarios for parameters near the higher-
Within the mode-coupling theoryMCT) for ideal glass order bifurcation points. It is the goal of this paper to provide
transitions, the dynamics of an amorphous system of stronglguch understanding by construction of a general theory for
interacting spherical particles is describedMyfunctions of  the logarithmic relaxation law and its leading corrections.
time t, ¢q(t), g=1,2,... M. These are autocorrelation  For parameters at a cusp singularity of schembtie 1
functions of density fluctuations with wave-vector modujus models, the leading-order long-time decay follows the law
chosen from a grid oM values. The theory is based on a4 (t)— ]« 1/In%. This law has been embedded in a leading-
closed set of coupled nonlinear equations of motion for theyrqer description of the dynamics near the singularities in

¢q(t). The coupling _co_efficients in these t_aquations are givearms of multiparameter scaling laWg]. It was shown by
in terms of the equilibrium structure functions. The latter aregiagren that dielectric-loss spectra for certain polymers

assumed to be known smooth functions of the control params: : : . .
eters of the system like, e.g., the packing fractipfil]. The could be interpreted by this scaling-law descripti&f and

MCT equations exhibit fold bifurcatiorf&] at certain critical further work extended his anglysﬁg—ll]. However, It was.
o also demonstrated that the cited decay laws at the critical
values of the control parameters, saypat ¢, describing a oints have to be complemented by their leading corrections
transition from ergodic liquid dynamics fas<<¢. to noner- pn order to describe thF:e N mer'caly olution ongCT caUA
godic glass dynamics fap= ¢.. The transition is accompa- : scrl umerical solutions qua-

nied by the evolution of a slow stretched dynamics that wad'ons W'th'n, a time regime releyant for data analyssi2). .
suggested as the explanation of structural relaxation opBut, so far |t.has not bgen possible to evaluate th_e corrections
served in glass-forming liquids. The Ieading-orderfor the mentloned scal!ng laws. The results of th.IS paper vylll
asymptotic solutions of the equations for parameters apbe obtained along a different route of a;ymptotlc expansion
proaching the transition provide predictions for the universaPf the MCT solutions than that followed in R€f].
properties of glassy dynamid8]. These predictions have  Logarithmic decay of correlations for glassy systems has
been tested extensively against experimental data arfeeen observed, for example, in Monte Carlo simulation re-
molecular-dynamics simulation resufé5]. The outcome of  sults for a spin-glass modgl 3], for photon-correlation data
these tests qualifies MCT as a candidate for a theory of strudrom a dense colloidal suspensifitd], and for optical Kerr-
tural relaxation in glass-forming systems. effect data for a van der Waals liquid5]. But the present

It was shown that schematic MCT models exhibit alsowork is motivated by three recent discoveries. First, density
higher-order bifurcation singularities like the cusp and swal-correlators¢,(t) measured by photon-correlation spectros-
lowtail bifurcations. The accompanying dynamics is utterly copy for colloids of micellar particles demonstrated logarith-
different from that for the fold bifurcation. For example, in mic decay within time windows of two orders of magnitude
certain parameter regions, the leading order result reads size[16]. Second, the MCT equations for a system whose
[#(t)—f]—In(t/7) [6]. This logarithmic decay is equiva- structure was described by Baxter's model for sticky hard
lent to a susceptibility spectrum that is independent of frespheres exhibit cusp bifurcatiorfd7,1§. These findings
quency w, x"(w)*w®, or to a 1f-noise fluctuation spec- have been corroborated by a comprehensive analysis of the
trum. There are corrections to this leading-order result whiclylass transitions of a square-well syst¢h®]. Third, loga-
alter qualitatively the straigh#(t) versus log lines or the rithmic decay extending over three decades in time was
plateaus of the”(w) versus logg) plots. One needs to un- found in a molecular-dynamics simulation for a system with
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an interaction given by a strong repulsion complemented byion of MCT is the application of Kawasaki’s factorization
a short-ranged attractiof20]. One concludes that higher- approximation in order to expresg,(t) as functionals?, of
order bifurcation singularities are not restricted to schematithe M correlators¢,(t) called mode-coupling functionals.
models and that there are reasons to suggest the search fasr simple systems, they are quadratic polynomials, whose
such singularities in colloids with short-ranged attraction. Itcoefficients are given in terms of the equilibrium structure
is the aim of this paper to provide a detailed discussion of théunctions[1,22]. The functionals depend smoothly on, sily,
qualitative features that are characteristic of the relaxation iwontrol parameters to be combined into a control parameter
systems near higher-order bifurcations. A set of general forvectorV=(V4, ... ,Vy). In conventional liquids, the pack-
mulas will be derived which could be used as a basis for ang fraction and the temperature may be the control param-
quantitative analysis of future experiments and simulatioreters. In colloids, one of the control parameters may be the
studies. attraction strength, which can be changed by modifying the
The paper is organized as follows. In Sec. Il A, the knownsg|yent. Let us denote the functionals H‘M[V,’fk]_ For O
general MCT equations for structural relaxation are formu—g |?k|$1,k= 1,2, ... M, they can be written as Taylor series

Iated'. Thgr(Sec. 8 th?se equations are rewritten in a form with non-negative coefficients. Thus, the second set of MCT
that is suited as a basis for an asymptotic solution near bi- : :

: . o : equations is
furcation singularities. Section Ill presents the theory for the
logarithmic relaxation for MCT models dealing with a single
correlator and in Sec. IV quantitative results are discussed
for a cusp singularity in aM =1 model. Section V presents e : re
the theory for the general case and in Sec. VI further result§peCIfyIng the functionals’y, the regular kerneld, A1),

are discussed for relaxation near a swallowtail singularity fo@?t?] tgg qu;ringlig?eq do:nV(tquEr?r.e(sls)ntoLfgér(lg)tg%%elggéally
anM=2 model. Section VIl summarizes the findings. stable singularity of Eqg1) and(2) will be discussed in full

generality. Therefore, microscopic details are not of concern.
It will be convenient to discuss dynamics in the domain of
A. The equations for structural relaxation complex frequenciegz,Imz>0. This can be achieved by
Laplace transformation of functions of time, s&t), to
Sunctions of z denoted by L[ F(t)]1(z) =i [sexplzt)F(t)dt.
Equationg1a) and(2) together with the initial conditions are
equivalent to a fraction representation @f(z) = L[ ¢4(t) ]
X(z) in terms of Mg%2)=L[MFY1)]1(z) and mg(2)
t = L[my(1)1(2),

o0+ 03040+ [ M=t gty =0
(12 bo(2)=—1{z= QY[+ M)+ Qimy(2)]}. (3

mq(t)zfq[vv¢k(t)]- (2

Il. BASIC EQUATIONS

MCT is based on two sets of equations. The first on
consists of the exact equations of motion for tedensity
correlators  ¢q(t),q=1,2,... M, derived within the
Zwanzig-Mori formalism

0

The initial conditions rea@(t=0)=1,0;¢4(t=0)=0. The ~ The analog for the colloid dynamics is derived from Eg.
positive ), are characteristic frequencies and the kernelg1b):
Mg(t) are fluctuating-force correlatof&1]. In colloidal sus-
pensions, there are contributions to the force due to interac-  ¢4(z)=—1/{z— Qé/[i vgt M[‘eg(z)Jngmq(z)]}.
tions of a colloid particle with the solvent particles. These (3b
fluctuate on a time scale much shorter than the one relevant
for the motion of the mesoscopic colloid particles. Therefore,There are two possibilities for the solutions of the preceding
one can approximate the corresponding contributions to thequations. First, all long-time limits of the correlators may
kernel by a white-noise term, and this leads to a friction forcevanish as expected for an ergodic system. States with such
vqdidqy(t),v4>0. Compared to this term, one can neglect thecontrol parameter¥ are referred to as liquids. Second, there
inertia term(?tzqsq(t). One arrives at the analog of EdLa) may be nonvanishing long-time limitg,= ¢(t—=),0<f,
for colloids, i.e., at an equation of motion where the under-<1, as expected for nonergodic systems. States with such
lying dynamics is Brownian rather than Newtonian: control parametery/ are referred to as glasses, afgis
called the glass form factor. Changikgit may happen that
2 t , N der there are value¥® where one changes from a liquid to a
vqdibq(t) T Lqdg(t) + fOMq(t_t )0 (1)U =0. glass—these are the ideal quuid—glgss transitiong discussed
(1b)  within MCT [1]. For glass statespq(z) exhibits a zero-
frequency pole ¢4(z—0)~—f,/z. Because of EQ.(2),

The initial conditions arep,(t=0)=1. The kernels are split a similar statement holds for the kernein,(z—0)
into regular onesM {(t), and so-called mode-coupling ker- ~— F[V,f,]/z. Hence, for frequencies tending to zero, the
nels my(t) describing the cage effectMq(t)=Mg4t)  kernelm,(z) becomes arbitrarily large compared to the term
+Q§mq(t). The regular terms describe normal liquid effectsz+Mg{2) or the termivq+M{2), respectively. Because
like binary collisions in conventional liquids or hydrody- of continuity, for states with control parameters near the ones
namic interactions in colloids. The crucial step in the deriva-for glass stateﬂémq(z) is also very large compared to
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+M™®4z) or to ivg+M™Yz). Under the specified condi- Let V¢ denote some reference state. The long-time limits
q q q .
tions, Eqs.(3a) and(3b) simplify to [3] of the correlators for this state shall be denotedf@yThe

correlators will be written in terms of new functiorz?sq(t):
bq(2)=—1/[z—1/my(2)]. (4)

This equation exhibits most clearly the fraction representa-
tion of correlators, which is the essence of the Zwanzig-Mori . )
theory. It shows that there is a one-to-one correspondencE® functional [V, ¢(t)] can be rewritten as a Taylor
between density fluctuations and force fluctuations. There iseries ingy(t), using the coefficients

no separation between the time scales for the particle motion

ha(t) =T+ (1= (). )

within cages and for the particles forming the cage. There- n) 1 e ron 11 ec c

fore, the correlatorghy(t) and the kernelsny(t) have to be Al e, V) =0 (L= B F [V Bl a0}
calculated self-consistently—this is the essence of MCT.

Equation (4) is scale invariant. With ¢q(t), ¢5(1) X(L=Fi ) (1=1p). (93

= ¢4(x-1) is also a solution for anx>0. The scale for the
high-frequency dynamics is determined by the transient moThese will be split into the values for the reference state,
tion and this is governed byl 7(t) andQq or v. Butthese  p(Me  — A (v°) and the remainders:
.- . qky - kp qky- oKy ’
guantities do not occur anywhere in Ed). Thus, Eq.(4)
can fix the solution only up to some time scale. ) () A ()
Equationg2) and(4) are the MCT equations for structural Agky---k, (VD =Age .k T Agky- -k (V) (9b)
relaxation. In particular, they are the basis of the asymptotic
expansions for the long-time dynamics for control param- et us consider a path in control-parameter space given by
eters near bifurcation points. V(e)=(V4(€), ...Vn(€)). The N components ol/(e) are
smooth functions of the path parameterand the tangent
B. The equations for structural relaxation near glass-transition ~ vector dV(e)/de must not vanish. Let us chood4 e=0)
singularities =V?¢, so thate can be considered as a distance parameter
In this section, the concept of a glass-transition singularityc'pec"c%”ng the neighborhood of°. One getsV(e)=Te
will be reviewed. The equations of motion will be rewritten +0(e )’Cw'th T=dV(0)/de being the tangent vector of the
in a form where the small quantities that characterize thé;.’ath atVv®. The mode-coupling functional is a smooth func-

relaxation near such a singularity appear transparently. tion of V, i.e.,
To simplify the notation of the following equations, the R
Laplace transform will be modified by a factor of ¢): Aﬁﬂ()l 3 'kn(V): O(e). (90
S[F(t)](z)z(—iz)f exp(izt)F(t)dt. (5)  The details of thee dependence of the coefficients are not
0

important. The parameteris introduced mainly as a means

L ) i i . for bookkeeping in the following expansions Y- V¢. Ex-
This linear mapping of functions of time to functions of fre- panding the left hand side of Eq6) in powers of
guency leaves constants invariaR(t) = ¢ implies S[c](2)

=c. Let F(t)=(X*(t)X)/(kgT) denote a correlation func-
tion for variableX determined for temperature Then, the

S[fj)q](z), one can rewrite this equation in the form

dynamical susceptibility for frequency can be written as [ qk—AGCIS[ d(1)1(2) = J4(2), (109
x(0)=F(t=0)-8S[F(t)](w+i0) [21]. Thus, S[F(t)](2)
denotes the nontrivial part of a dynamical susceptibility. _A(0) A1) .
Equation(4) can be rewritten as Ja(2)=Ag (V) + AgVISLA(D](2)
S[%(t)](z)/{l—S[%(t)](z)}=S[fq[v,¢k<t>]]<z>.(6) + 2 AR (VSL (D) i (D](2)
The equationg,(t—=)="f, is equivalent toS[d(t)](z —S[$a(H]"(2)}. (100

—0)=f,. Similarly, one obtainsS[Fy[V,#(t)]](z—0) . ) ) )
= Fo[V.fi]. The z—0 limit of Eg. (6) yields a set ofV Here and in the following, summation over pairs of equal

implicit equations for thev glass form factord, [1]: labelsk is implied. These equations are equivalent to E2ps.
and (4) for the structural relaxation. The small quantities to
fol(1—fg)=F [V, fil. (7) be used for the asymptotic solution are the coefficients

Ag’f()l,,,kn and the functionsp,(t) or S[¢4(t)1(2), respec-
This equation may have other solutions, dgy The glass tively.
form factor is distinguished by the maximum theorefy: Specializing Eqgs(10) to the z—0 limit, one gets the
<fy.0=1,... M [22]. equation forf ;= ¢,(t—=):
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[ Sqk— Aélk)c]%szgO)(v)+Ag}2(v)fk The singularity exhibited by for e tending to zero depends
. on the number of successive vanishing coefficients A
- aa singularity of indexl,|=2, will be defined b

+r122 [Agr()l"'kn(v)fkl.”fkn_fg]' ? / Y
- M= po=- = pm-1=0, w#0. (14
11 .

The equation forf reads

This is a rewriting of Eq(7) so that small deviations df, A A .
from f¢ andV from VC are explicit. TheMxXM matrix [ g mf'=e_ (V)T "2+ (V)T 3+ + (V)
—Aglk)c] is the Jacobian of the set of implicit equatio(rs

for the reference solutioff; atV=\V°. This Jacobian consists e 14, (VT + [AM(V)—1]f"}.
of a unit matrixdq, and a matrixAglk)c of positive elements. n=l+1
The Frobenius theorems imply that, generically, this matrix (15)

has a nondegenerate maximum eigenvaitz 0. All other

eigenvalues have a modulus smaller tHgh[23]. It is a  The implicit-function theorem can be used to show that there
subtle property of MCT thaE®<1 [24]. If E°<1, the is a smooth invertible transformation of tHe variables
implicit-function theorem guarantees that all sta¥efer suf- (e, €5, . .., _1,f) Which eliminates the curly brackets in
ficiently small e are states whose long-time Iimif$1=fg Eq. (15). Thus, the singularities described by this equation
+(1_fg)fq depend smoothly ore. In the following, the @are topologically equivalent to the ones described by the first

reference stat®¥/® will be specialized so that line, i.e., by the zeros of a polynomial of degréeln
Arnol'd’s terminology[2], such a singularity is referred to as
EC=1. (120  As. Because of Eq90), thee,(V) are of ordere and will be
referred to as separation parameters.
In this caseV* is a bifurcation point of Eq(7). The f, are The simplest glass-transition singularity is thg. In this

singular functions ot for e—0, and therefor&/° is referred ~ case, there is only one relevant control parametgy). One
to as a glass-transition singularity. Sindg® is non- infers from Eq.(15) that there is a discontinuous changef of
degenerate, the possible bifurcations are from the so-callest the surface specified y(V)=0. The bifurcation dynam-
cuspoid familyA,1=2,3, . . .. Thebifurcation singularityh;  ics is characterized by power-law decay and there appear
is topologically equivalent to that for the zeros of a realpower-law dependencies of the relaxation scaleseg(V)|.
polynomial of degreé [2]. The A,, also called the fold bi- All exponents in these laws are to be calculated fiom1
furcation, is the generic singularity obtained by varying a— u,, which is called the exponent parameft22]. The tran-
single control parameter. The liquid-glass transition of MCTsition surface has a boundary that is determined\by1,
is of this type. In this paper, the dynamics near a higher-ordeire., by u,=0. These end points are the higher-order singu-
singularity A,| =3, will be analyzed. larities. TheA; andA, are also referred to as cusp and swal-
low tail singularities, respectively.
I1l. RELAXATION DESCRIBED BY ONE-COMPONENT
MODELS B. Equations for an asymptotic solution

It will be shown in Sec. V that each iteration step of the Let us specialize Eq¢10g and (10b for M=1. Let us
asymptotic solution of the equations of motion splits into twoalso express the coefficiens™ (V) in terms of u, and
parts. First, one has to reduce the problem of calculaing €n(V):
correlators to the one of calculating the projection of the . .
correlators on the dangerous eigenvector of the above d&@= €1(V)+(1—u)S[¢%(1)1(2)—S[S(1)]%(2)

fined Jacobian. Second, one has to solve the equation for the - ~3 - 3
projection. In this section, the second problem will be stud- T €2(V)S[$(1)]@+(1-ps)S[#*(1](2) = S[ (1) ](2)

ied, which is equivalent to a discussion lf=1 models. A A A
a +eVS[A*(1)]@+(1—-u)S[¢*()](2) — S[A(1)]*(2)
A. Classification of glass-transition singularities te-- (16)

One-component models deal with a single correlatorrpis suggests an expansion of the solution in powers of
¢(t), a single glass form factdy etc. All matrix indices can |6|1/2. With GO (t) = O(|€|n/2), let us write
be dropped in the formulas of Sec. II. Thex1 matrix A{°
is identical with its maximum eigenvall€®. Because of Eq. d()=GD ) +GAt)+GO(t)+ - -. (17
(12), the left-hand side of Eq11) vanishes. The equation for
f readse, (V) + (V) F+ 2= o[ AM(V) — 1, ]T"=0, where The first line of Eq.(16) is of order|e| and it provides a
the following abbreviations are used: nonlinear integral equation fa(*)(t). The contributions to
this line which are of ordefe|*? together with the leading
un=1—-AMC e (V)=A"D(\), n=12 .... terms of the second line provide a linear integral equation for
(13 G@)(t), etc. This procedure will yield the desired asymptotic
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expansion provided the indicated integral equations defing[G(t)](z)=S[In(t)G(t)](z)— S[In(t)](2)S[G(1)](2),
meaningful solutions. This is indeed the case, as will be dem- (24)
onstrated below by explicit construction of ti&"(t). To _ _
proceed, the following discussion will be restricted to higher-and the inhomogeneity of E¢23) reads
order singularities by requiring

f(2)=—1 e2(V)S[GPD(1)1(2) — uaS[GM3(1)1(2)

u2=0. (18)
C. The leading contribution +2{S[GM3(1)]1(2) - S[GH (1) 3(2)} /(2B).
The equation for the leading contribution to the correlator (25)

at a glass transitioA, with |=3 reads

A factor of 2¢ has been introduced for later convenience. For

(V) +S[GM2(1)](2)-S[GM(1)]%(2)=0.  (19)  the study ofM =1 models, one has to substitufe: 1/2.
) The solution of Eg.(19) was built on the equations

The formulas for the Laplace transforms of the logarithm andr¢1(z) = 0,7 Int](2 = 7%6. These formulas are generalized
its square imply S[In®1@=In(/—y and S[IN* )12  in the Appendix by constructing polynomiats,(x) of de-
=In*(i/2)=2yin(i/2) + y*+(7/6), wherey=0.577 ... is Eu-  green=1 with the properties
ler's constan{cf. the Appendix, Eq(Al)]. Hence, Eq(19)

is solved by—BIn(t) if ;(V)+ (B?7?/6)=0. Since the cor- Pn(X) =0 X+ by X%+ - - +by o X" X", (2639
relators are monotonically decreasing functions [@4], one

must requireB>0. One concludes that a solution is given by Tp,(In(t)](z)=n(7?6)In""(i/z). (26b)

GO(t)=—BIn(t), B=\[—6e (V)/7], (20) Ihese polynomials are a convenient tool to solve the equa-
ion
provided the control parametevsobey T2 =f(2) (27
€,(V)<O0. (22) for inhomogeneitied (z), which are polynomials in lifz2),
A more general solution i6™)(t)=G™)(t) +c, wherec can m
be any real constant. Introducing=exp(—c/B), one gets f(z2)= 2>, ayIn"(i/z). (27b

GW(t)=GW(xt). Thus, the generalization is the one im- =0

plied by the scale invariance of the basic E4). It will not  Opviously,
be considered here. Rather, it will be accounted for at the end

of all calculations by rescalingto t/7. Ilgnoring corrections

of order|e|, one derives from Eqg8), (17), and (20) the g(t)= > [a,_1/(n7%6)]p,(In(1)). (279
leading approximation for the correlat]: =t

m+1

Using Eq.(20) and applying Egs(Al) and (A2) for the
evaluation of the transformations of the powers of)lngne
can write f?)(z) in the form of Eq.(27b for m=3. The
coefficients are linear functions ef (V) and e,(V):

B(t)=F—(1— B In(t/7). (22)

Let us anticipate that the smooth functiep(V) is ge-
neric forV nearV°® and has a nonvanishing gradient. Then,

€1(V)=0 defines a smooth surface througlf in the ap=[(6{/m)(T5—T3)— (3us/7m2)3s]es(V)
control-parameter space. It separates the neighborhood of the

glass-transition singularity/® into a strong-coupling side —(I'112)ex(V), (28a
wheree(V)>0 and a weak-coupling side whegg(V) <O0.
The results of this paper refer to the latter regime. a;=[34—(uz/ )T ;]er (V) —(1/2) ex(V),

(28b)

D. The leading correction
g ay=—(Qus/mIT1e(V),  ag=—(3ps/m)e(V).

In order to solve Eq(16) up to order| , one has to (280
incorporate  from the first line the contribution o
25[GOMGA(1)](2) - 25[GV(2)S[GA(1)](z), one Here, I',=d"T(1)/dx" denotes thekth derivative of the
gamma function at unity. One concludes tiP)(t) =g(t),
d/Ivhere Eq.(270 is to be used withm=3:

E|3/2

has to evaluate the second line withreplaced byG®)(t),
and one can ignore all other terms. Hence, the equation f
the leading correctios(®)(t) can be written in the form

4
@)(t)= 1n
TI6D(1)](2)=P(2). 23 GA()=2, Bjin(D). (299
Here, the linear integral operat@ris defined by The coefficients are derived with Eq#\7a)—(A7c¢):
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B,=(0.444 2% —0.065 38J3) €,(V) - - T T T
—0.22213,(V), (29b) 12}
B,=(0.91183+0.068 713:3)€,(V) T
—0.15198&,(V), (299 081 B?Ox
V1 5
By=—0.1350415€,(V), 0.6}
B,= —0.046 19715¢€,(V). (290 0.4 liquid
Dropping corrections of ordde|*?, the solution up to next- 02
to-leading order reads i |
0
0 1
d(t)—C=(1—f)[(—B+By)In(t/7)+B,In?(t/7) v

3 4
+BgIn®(t/7) + B4In™(t/7)]. (30 FIG. 1. Phase diagram for the one-component model defined in

. . . T . Sec. IV. The horizontal light full line marks the liquid-glass transi-

A S'ngma_”ty A'_ with 1=4 implies x3=0. In this case, the tion curve connected by a continuous variation of the glass form

formula S|mp!|f|es becausB;=B4=0. . factor. The heavy full line presents the setgfsingularities, which
The described pz)rocedure can be continued. To solve EQngs at thea, singularity marked by a circle. The dashed straight

(16) up to ordere”, one derives the analog to E@3):  |ine describes the points of vanishing separation paramgtand

T[GP(1)](2) = f®)(2). The functionf ®)(z) has the form of  the dash-dotted one the points of vanishing coefficigatsCrosses

Eq. (27b with m=6, where the coefficienta; depend on  with labelsn and triangles with labels’ denote states discussed in

the parameters;(V),e>(V),e3(V), 3, anduy. As a result,  Figs. 2—4 and Figs. 5 and 6, respectively.

one gets

as a heavy full line. It starts at{?°=0,0?)°=27/4,f(?¢

7
o =2/3. With decreasing?°, f(?)° decreases along the line.
G ,Zl Cjln'(i72), G eor v{?°=1,0{°=4 one getsf?°=1/2. Decreasing®°
further, the line reaches the end point that is marked by a
whereC;=0(|€|*?). circle. This is theA; singularity V¢ specified by
IV. RESULTS FOR A ONE-COMPONENT MODEL v$=9/8, v5=27/8, °=1/3, uy=1/3. (33

The simplest example for a generic cusp bifgrcation iSThe two separation parameters are obtained from ESs.
provided by anM =1 model with the mode-coupling func- and (13) as linear functions of the parameters differences
tional F[V,f]=v,f+v,f3 This model was derived origi-
nally within a microscopic theory of spin-glass transitions
[25]. It will be used here in order to demonstrate several e1(V)=(2/8D[90,+ 03], €x(V)=(412D[301+ 03],

S c .
Ul,3_ 0113—01,3.

implications of our theory. Let us use the model with a (34)
Brownian microscopic dynamics so that Eq&b) and (2)
specialize to These formulas determine the coeffici@in Eq. (20) and

B,—B,in Egs.(29). The scales for the results in Eq922),

rlat¢(t)+¢(t)+J'tm(t—t’)&t/qb(t’)dt’zo, (329  (30), and (31) are determined as the time where the cor-
0 relator crosses the critical form factap(7) = f°.

The dominant deviation of the correlators from the loga-
m(t)=v1p(t) +vzd(t). (82D rithmic decay law, Eq(22), is caused by the terf,In?(t/7)

in Eq. (30). Thus, the logarithmic decay law is exhibited best

The two coupling constants; =0 andv ;=0 are considered for statesV with B,=0. This line is shown dash-dotted in
as the components of the control-parameter vedtor Fig. 1. Figure 2 demonstrates the evolution of the dynamics
=(v1,03). upon shifting states on this line toward tig singularity.

Figure 1 reproduces the phase diagrei22]. It is ob-  The In¢/7) interval, where Eq(22) or (30) describes the
tained from the largest of the solutions fisrof Eq. (7), i.e.,  correlators within an error margin of 5%, is marked by
vife+u§fe=1%(1-1°), and Eq.(12), i.e., vi+3v5f®  closed or open symbols, respectively. For 2, these inter-
=1/(1- )2, 0<f°<1. There are two transition lines. The vals increase with decreasing— V°.
first one is the straight horizontal line of degeneratebi- There are two peculiarities concerning the range of appli-
furcations:iv{=1,0<v$=<4,f°=0. On crossing this line by cability of the asymptotic expansions. First, it can happen
increasing 1, f= ¢(t—x) increases continuously. The sec- that for sufficiently larges the range shrinks if one proceeds
ond one is the smooth curve 8% singularitiesV(?¢ shown  from the leading approximation to the next-to-leading one as
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o(©

log, ;¢ log, ¢t

FIG. 2. Correlatorsp(t) for the one-component model defined FIG. 3. The heavy full curve with lab@lis the solution of Egs.
in Sec. IV. The states are located on the IBwe=0 with coupling (329 and (32b at the A; singularity, V=V°¢, called the critical
constantsv{—v,=0.9298/4, v§5—v3=3.3750/4, n=1,...,4, correlator. The thin full curves with labels=1 and 4,e;,<0 re-
marked by crosses in Fig. 1. The full lines are the solutions of Eqsproduce two of the solutions discussed in Fig. 2. The dashed lines
(329 and(32b) with 7;=1 as the unit of time, as also in the fol- reproduce from Fig. 2 the corresponding approximations at next-to-
lowing figures. The dotted straight lines exhibit the leading approxi-leading order, Eq.(30). The dash-dotted curves extend the
mation, Eq.(22), the dashed lines the leading correction, E3{). asymptotic expansion by including the second-order corrections,
The filled and open symbols, respectively, mark the times wherdeq. (31). The horizontal line marks the critical form factdf
these approximations deviate from the solution by 5%. The dotted=1/3. The full curve marked wittn=4, ¢,>0 refers to a state,
line marked byD is the Debye law eXp-t/7;]. The horizontal line  —v$=0.9298/4, v;—v$=3.3750/4. The circles mark the times
shows the critical form factof®=1/3. where the correlatore=4, €,=0 deviate by 2% from the critical

one.

is demonstrated in Fig. 2 for the=1,2 results. This is
caused by a cancellation of errors due to neglectingBthe the leading correction Eq30) is control-parameter insensi-
correction in the prefactor of the Itif) term in Eq.(30) and  tive, as is shown by the open symbols on the short-time part
due to neglecting the terms proportionalBg andB,. This  of the decay curves.
peculiarity would disappear if the tolerated error margin The explanation of the findings in the preceding para-
were decreased sufficiently below the 5% used. Second, fagraph is based on the fact that, for every fixed finite time
smallV—V¢, the interval of decay fop(t) below the critical interval, the MCT solutions are smooth functions of the con-
form factor € that is described by the asymptotic expansiontrol parameterg24]. Therefore, fore tending to zero, the
shrinks with decreasing separation. This is inferred by comeorrelator for stat&/ has to approach the correlator for state
paring then=3 with the n=4 results. The reason is the V¢, the so-called critical correlator. The latter is shown as the
following. The correlator ¢(t) decreases monotonically heavy full line with labelc in Fig. 3. Thus, for every time

toward its long-time limitf [24]. But the intervalf®—f= interval O<t=<t,,,, and every error margin, there exists an
—f shrinks for e—0, since Eq. (15 implies —f €* so that¢(t) agrees with the critical correlator within the
=[— &(V)/ s ¥ 1+ O(¥3)]. error margin for allle|<e* and all Ost<t,,. This feature

Figure 2 demonstrates that the transient regime extends #§ demonstrated in Fig. 3 by the two curves with labels
aboutt/7,= 1. For vanishing mode-coupling functional, the =4 and €;=0. They refer to states withv,—vi=
correlator describes a Debye process(t)=exp(-t/m).  *0.9298/4 andv;—v§=+3.3750/4. These correlators are
Mode-coupling effects cause a slower decaytfe=1. But  very close to the critical one far<t,,.; tma=325 is indi-
for V close toV¢, the transient dynamics is rather insensitive cated by open circles in Fig. 3. The critical correlator does
to changes of the coupling constants. There is a crossoveot exhibit a Inf/7) part. Thus, the time™ for the onset of
interval, sayr;<t<r*, before the decay of(t) towardf®  the description by Eq20) has to increase beyond any bound
can be described by the thf) law. The beginning™* of the if e tends to zero. The asymptotic expansion in Sec. lll was
range of validity of Eq.(22) is indicated by the filled sym- based or ¢(t)—f¢| being small. This condition is satisfied
bols. There are two subtleties demonstratednfer2. First,  for the critical correlator if the time is sufficiently large,
the time 7* increases upon approaching tAg singularity,  since ¢(V¢,t) decreases monotonically #&. Hence, fore
and therefore the decay interval(7*)—f¢ which is de- —0 there must appear an increasing time intervgdt
scribed by the logarithmic law shrinks with decreasing sepa<7* where the asymptotic expansion describes the critical
ration parameters. The control-parameter sensitive structurabrrelator. Thee dependence due to the separation param-
relaxation is governed by the two time scat€sand . Both  eterse (V) and thee dependence due to the time scale
times become large, but/ 7* becomes large as well far  cancel to produce the critical correlator outside the transient
—0. Second, the beginning of the range of applicability ofregime and prior to the onset of theti{ law. This is shown
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0.15 skewed shape of the spectral peaks. The leading approxima-
tion Eg. (22) implies constant-loss plateaug’(w)/(1—f°)
=B/2. However, this formula describes the plateau only

0.1 for n=3 and then for a frequency interval that is consider-
ably smaller than the time interval for which E@®2) de-
X (@) scribes the correlators in Fig. 2. The leading corrections in

0.05 Eqg. (30) are much more important for an adequate descrip-

: tion of the spectra than for the approximation of the correla-
tors. The second correction E@1) is necessary to describe
the plateau for the=2 state within a 5% error margin. It is

0 also necessary to describe the crossover of the spectrum from
- the plateau toward the critical one for=3,4.
08 e, —] To understand the range of validity of E2) and its
— ] Fourier transform, one has to compare it with E2) and its
’(0)())'6 Fourier transform, respectively. This amounts to comparing
X 0.4 polynomials in Inf/7) and In{/w7). Let us restrict ourselves
’ to the dominant terms for the model to grasp the essence.
0.2 Then one can write (¢(t)—f%)/(1—f°=—-BIn(t/7)[1
L ) i —(B4/B)In®(t/7)]. Thus, within the error margi@, the lead-
R N e | ing linear-in-In¢/7) approximation holds for
0 9 8 -7 6 -5-4 32101 2 lIn(t/7)|<3/8(B/B,). For the spectrum one gets from

Eg. (Al) in leading order x"(w)/(1—f%=B(#/2)[1
—4(B,/B)In®(1/w7)]. Hence, the spectrum is at the plateau
FIG. 4. Susceptibility spectrg”(w) and reactive parts of the Withina deviation_& for |.In(1/w 7)|<¥ 5( 5/454)-_A3 a result,
dynamical susceptibility’(w) for the one-component model de- the range of applicability on a logarithmic axis shrinks by a
fined in Sec. IV. The full lines with labels andc correspond to the ~ factor /4 if one transforms from the time domain to the

correlators with the same labels shown in Figs. 2 and 3. The dottetfrequency domain.
straight lines, the dashed lines, and the dash-dotted lines are the Because of Eq. (Al), S[In"t/7)](@=In"(i/z7)
leading approximation E422), the leading correction E¢30), and ~ —nyIn""%(i/zn)+- - -. In leading approximation far— o and
the second correction E@31), respectively. The filled, open, and z—0, one findsy'(w)x1— ¢(1/w) whenever ¢(t) is a
half-filled symbols mark the frequencies where the correspondingolynomial in In¢/7). This explains the lower panel of Fig. 4
approximation deviates from the spectrum by 5%. The dotted lingys 5 different representation of Figs. 2 and 3. In particular,
with label D exhibits a Debye spectrup(wp)/[1+(w0)?]  the linear-In) parts in Fig. 4 are of a similar size to the
wi_th Cp=0.2503 aner/r_1=O.67_O fittgd to the maximum of t_he linear-Int/7) parts in Fig. 2.
crltlt_:al spectru_m_._Th(,a horizontal lines in the lower pa_nel exhibitthe | o+ \\s consider the states labeled=1—3 and shown by
static susceptibilityy’(«—0)=1~f for the states with labela - h 0165 in Fig. 1 in order to analyze the implications of the
=2, 3, 4, and:, respectively. correction term in Eq(30) proportional toB,. These states
are chosen on the line;=—0.0182 and the state’=2 is
most clearly by the dash-dotted lines in Fig. 3. They exhibitidentical with staten=2 considered in Fig. 2 as an example
the result of the asymptotic expansion up to the second cofor B,=0. Figure 5 exhibits the correlators together with
rection given by Eq(31). They describe the complete decay their approximations. FoB,>0, the ¢(t) versus logl) dia-
for t/7;=1 except for the final exponential approach towardgram is concave for all times outside the transient, since a
f=¢(t—c); and this is for states as far from the critical parabola with positive curvature is added to the leading lin-
point as given by the one with labek=1 (cf. Fig. 1). ear variation described by E@22). The formula with the
Figure 4 exhibits the dynamical susceptibilities leading correction describes the complete structural relax-
X(w)=1-S[¢(t)(w+i0)=x"(w)—ix"(w) for the states ation, except for the very last piece for the approach to the
discussed above. Without interaction effects, the susceptibilong-time limit f, as shown by the curve’ =1. This obser-
ity spectrum shows a Debye peak,=Cpwrp/[1l vation also holds for cases wiB,<<0 as is demonstrated for
+(w7p)?] with Cp=1, 5= 7;. Such a Lorentzian spectrum the staten’=3. However, for negativé,, the ¢(t) versus
is added to the upper panel as a dotted line with ldbel log;y(t) curve exhibits two inflection points becaugst)
whereCp and 7 are fitted to the maximum of the critical crosses the critical form factdi® with negative curvature.
susceptibility spectrum. This shows that the spectral peakSince theg(t) versus logf) curve is convex forp(t)~ fC, it
nearo=1, in particular their high-frequency wings, are due has to have an inflection point fas(t)<f¢ in order to ap-
to the transient dynamics. However, the low-frequency winggproach the exponential, i.e., concave, long-time asymptote. It
of the peaks are enhanced relative to the Debye spectrum ah@s to exhibit an inflection point also fgi(t) > ¢ in order to
they are stretched to lower frequencies due to the criticahpproach the concave critical correlator for short times. The
relaxation within the interval * <w<1/7. It is the struc- described alternation of convex and concave parts is identi-
tural relaxation near theA; singularity that causes the cal to the behavior discussed earlier for the MCT correlators

log, @
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f(2)¢ to about 0.45, i.e., for about 15% of the relaxation.
The analytical description of the process can be expanded
by using the extension of von Schweidler's law(t)
—f@¢o —(t/7)2+B(t/7)?® [26], as shown by the dash-
dotted line. Asymptotically, thex process obeys the super-
position principle: ¢(t)= ¢(t/7,), whered is the control-
parameter-independent shape function. Téhét) versus
log(t) curves for thea process can be superimposed by res-
caling the time, i.e., by shifts parallel to the logéxis. The
reader can check that the curves=4—7 have the same
shape forg(t) < f(?)°. Outside the transient fop(t) > f(?)°,
the correlator follows the critical decay law for the fold bi-
furcationg(t) — f P 142, as is also demonstrated for curve
7. The results for states 4—7 exemplify the well understood
log, ¢t scenario for the evolution of structural relaxation near a
liquid-glass transition. The formul@0) provides an accurate
FIG. 5. Correlatorsp(t) for the one-component model defined description of 60% of thex process.
in Sec. IV for states located on the line,=—0.0182. The Comparison of the results for states=1—3 with the

states V‘ft;'mg'azb?l; n’1=016 gg 3 12‘2"61 Otlréeg 3 g(l)zrldinate; second-correction formula based on E2fl) yields the same
(v1,05)=(1, , 27141 (1. , 3164 (1. ' ), an .conclusions as discussed above in connection with Fig. 3.

(0.9669,4.0641), respectively, and they are marked by triangles "he second-correction formula does not alter seriously the fit

Fig. 1. The state labeled’ =2 is identical with the state discussed . . - R
in Figs. 1, 2, 4 with labeh=2. The states with labels 5, 6, and 7 quality for the long-time part of the curves =46 in Fig.

have the coordinates (0.9599,4.170.9569,4.1541), and D However, forg(t)~f(®, the extended formula yields
(0.9549, 4.1721), respectively. The straight line through the state§|'ghtly \/2v0rse results _thar_l E¢30). This is so bgcause_ for
1—7 crosses the liquid-glass transition curve at the stéfe H(1)=F@° the dynamics is governed by ti#g singularity
=(0.954 66, 4.174 07), where the critical glass form factor has the/?°, whose existence is ignored in the expansions near the
value f®°=0.520. The exponent parameter for the glass- higher-order singularity/°. The numberf(*— f¢ marks the
transition singularity is\=0.719, implying a critical exponera  limit where the expansion in the small paramet) —f°
=0.318 and a von Schweidler expondnt 0.608. The critical de- Mmakes sense. The opposite conclusion holds for the descrip-
cay law ¢(t) — f(?°xt~2 and von Schweidler’s lawp(t)— @« tion of the a process forg(t)~fC. von Schweidler’s law
—t° are shown by dotted lines labeledand b, respectively; the results from an expansion for statésiearV(®)° in terms of
constants of proportionality are fitted to curve 7. The dash-dottedhe small parametef(z)c— ¢(t). This number becomes too
curve extends the von Schweidler expansion for curve (D large if ¢(t)~fC. It is the dynamics dominated by the
=f(°—(t/7)°+1.48(/7)®. The horizontal lines mark the critical higher-order glass-transition singularl that ruins the rel-
glass form factorsf®° and ¢, respectively. The dotted straight evance of the expansion resulting in the von Schweidler law.
lines and the dashed curves are the leading asymptotic lan@2q. The stretching of ther process connected with the transition
and the leading correction E¢B0), respectively. of V(2 s larger than estimated by von Schweidler’s law,

for states near aA, bifurcation[22,26. But, contrary to the ~Pecause of the logarithmic decay effects.
characteristic decay pattern found for the MCT liquid-glass, F19ure 6 exhibits the susceptibility spectra calculated
transition, the curve’ =3 does not show a two-step relax- from the correlators discussed in Fig. 5. The results for the

ation scenario, even though there is a huge stretching of th%tatesn’ =12, and 3_ exhibit_ the evqution_ of am peak_ i
dynamics. For the decay from 0.80 to 0.05 a dynamical win{"€ States cross the liri =0 in the phase diagram of Fig. 1.
dow of five orders of magnitude is required. Within this large Th€ leading-correction formula E¢30) describes this sce-
window, the correlator follows closely the lawb(t) nario qualitatively. The spectra for states=4,5, and 6 ex-
o In(t/ 7o) hibit the superposition principle for the peak of the sus-
er/ - T . .

The qualitative features described above for the gtate CEPUbility spectra. Thé\; dynamics causes a high-frequency

—3 are more pronounced for the staté=4, sinceB, is wing of the o peak closely following a linear variation with

decreased to larger negative values. The relaxation curve @€ l0garithm of the frequency”(w) < —In(w7). This phe-

has the form expected for states near a liquid-glass transitiofomenon is described well by E0) and it causes a strong

To corroborate this statement, further states 5-7 are Consiﬁ_-procgss stretching. The-peak width at_half ,Of theu-peak
ered on the lines,= —0.0182 between the state 4 and the eight is about 2.5 decades. von Schweidler’s asymptotic law

e > :
intersectionv(®° of this line with the liquid-glass transition 1S irrelevant for the description of the peak for states

curve. The transition poin¢(?)° is characterized by a critical =4-6.
glass form factorf ?)°>f¢. The decay of the correlator from
the valuef(®¢ to zero is the corresponding process. Its
initial part is described by von Schweidler’'s power law, as
indicated in Fig. 5 for the curva’ =7 by the dotted line. In In this section, the generalizations of E¢22) and (30)
this case, von Schweidler’s law accounts for the decay fronwill be derived for the asymptotic expansion of the solutions

o)

V. RELAXATION FORMULAS FOR STATES NEAR
HIGHER-ORDER GLASS-TRANSITION SINGULARITIES
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FIG. 6. Susceptibility spectrg”(w) for the correlators in Fig. 5
for the labelsn’=1—-6. The dashed lines are obtained from the
leading-correction formula Eq30). The dotted line with labeh is
the critical spectrum proportional te?® and the dotted line with
labelb is the von Schweidler law” ()< w ~° for the staten’ =6.

The dotted horizontal line corresponds to the spectrum of the lead-

ing approximation Eqs(20), (22), x"(w)=(1—f¢)—6€;, which
is shared by all states'=1-6.

dealing with an arbitrary numb&i of correlators. In particu-

lar, the general formulas fqi,, w3, and{ and for the sepa-

ration parameterg,(V) and €,(V) will be obtained. The

starting formulas are Eq$10a and (10b). The subtlety of

the problem is the treatment of the singuMr< M matrix
_ Al

[5qk Aqk ]

A. Asymptotic expansion of the equations of motion

The left and right eigenvectors of the matA))° for the
maximum eigenvalueE°=1 will be denoted bya; and
a,,.k=1,... M, respectively. According to the Frobenius
theoremg 23], one can requir@f =0 anda,=0. It will be

PHYSICAL REVIEW E66, 011405 (2002

(=GP +GP )+ -,

GM(1)=0(|€e["?), (363

J(O=320+IP W)+ - -,

IP®)=0( ). (36b)

Here, for example,
IP @) =AD (V) + AR a2, S[GDAD)](2)

—azS[GM(1)]%(2), (373

I (2)=2{ALS

qklkzaklakzs[G(l)(t)G(z)(t)](z)

~a;S[GM(1)](2)S[GA(1)](2)}
+ARV)aS[GM(1)](2)

+2{Al2)e

R, SIGIMGAM](2)

—a,S[GI(1)](20S[GP(1)](2)}

+A3S

Siicks %, Bk, S[GM3(1)1(2)

—azS[GM (1) 13(2). (37b

The justification of the preceding expansions will be given
by demonstrating how the equations can be solved recur-
sively.

B. The leading-order contribution

The leading-order contribution to the solubility condition
is obtained by substituting Eq379 into Eqg. (353. One
arrives  at €,(V)+AS[GM2(t)](2) — S[GM(1)]%(2) =0.

— * A(2)c . .
Here A=Zga, Aqklk2aklak2 is the expression for the expo-

convenient to fix the eigenvectors uniguely by the conditiond'ent paramete22,26 and

Sqaraq=1 andqaf a;=1. The solubility condition of Eg.
(109 reads

> a}d (=0, (353
q
and its general solution can be written as
bq(t)=aqd(t) + dq(t). (35h)

The splitting ongbq(t) into two terms is unique if one im-
poses the conditioEqaa‘ &Sq(t):fﬁ(t). The part?ﬁq(t) can
be expressed by means of the reduced resoRgpof A°:

S[dq(1)1(2) =Ryd(2).

It is an elementary task to evaluate from matﬁlglk)c the
vectorsay ,ay and the matrixRg [23].

Equations10b) and(35) suggest an expansion ¢{t) as
Eqg. (17) and

(350

e(V)=2 afAd(v). (38)
q

The z=0 limit leads toe; (V) + (A —1)f")2=0. Compari-
son with Eq.(15) yields the conclusion that

wo=1— % ay AR av A, (39)
This parameter has to be zero according to @8§) in order
for V¢ to be a higher-order singularity. Fa,=0, =1, and
the equation found foiG*)(t) is identical with Eq.(19).
Thus, €,(V) is the first separation parameter and E@€)
and(21) remain valid.
Introducing the critical amplitude, by the same formula

as in the theory for thé\,-singularity[22,26|

hg=(1—-fHay, (40

the leading approximation for the correlators is
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do(t)=Tg+hg[—BIn(t/7)]. (47
Here,B=\—6¢,(V)/ 7= (] €|*?. Equation(41) describes
the dynamics up to errors of order it is the generalization
of the logarithmic decay lay6] to arbitrary MCT models.

Equation (41) is the factorization theorem of MCT. In
leading order,qbq(t)—fg factorizes into two terms. The fac-

PHYSICAL REVIEW E56, 011405 (2002

(=2 ai[agXq+ad2], (45)
q

3 2
p3=2{~ ; 2 [AS ey, B, T 2AGG au, X, ]

(46)

tor hy is time and control-parameter independent and it charAS a result, Eqs(29) for the functionG®)(t) remain valid.

acterizes the specific correlator via iisdependence. The

other factor is the functios*)(t)= — B In(t/7). This factor

is shared by all correlators. It describes the control—paramete;r
dependence vid and r and the complete time dependence

via In(t). Within the range of validity of Eq41), the rescaled
correlatorsgzsq(l)=[(ﬁq(t)—fg]/haI are the same for alg.

Let us emphasize that EG41) is an exact limit result for the

solutions of Eqs(1) and(2):

lim[ po(t7) = f51/V =€ (V)=—\Blm?hgIn(t). (42)

e—0

The interval of rescaled times=t/r, where [ ¢q(t)
- fg]/\/— €,(V) becomes close to the right-hand sitRHS)
of Eq. (42), expands beyond any bound\ifapproached/®

Combining the results foG™(t),G3)(t), and G{P(t)
with Eq. (363, and this with Eq.(8), one obtains the main
esult of this paper. It describes the correlators up to errors of
order|e|%2

ba(t)=(fe+Tg) +Ng[(—B+By)In(t/7)+ (B, +K4B?)
X In?(t/ 7) + BIn3(t/ 7) + B,In*(t/ 7)]. (47)

Here
fo=(1-19)Y, (48)

is a renormalization of the glass form factor of ordeto be
calculated from Eq(430. The critical amplitudeh, is de-

arbitrarily close. It will be shown below, how the leading fined by Eq.(40). The parameteB; from Eqg. (29b) is a
corrections forg,(t) describe violations of the factorization renormalization of ordee of the prefactor of the logarithmic

theorem.

Substitution of Eq(373 into Eq. (350 yields the leading-
order contribution tap,(t), i.e., the functionG{?)(t) in Eq.
(36a. Equation(19) is used to expres§[G(ﬁ(t)]2(z) in
terms of S[GM(1)](z) so that

GP(1) =XGW2(t) + Yo(V). (433
The amplitudeX, is independent o€,
Xq=Rad AR ax,ax, — agl- (43h)
\A(q(V) =(0(€) and reads
Yo(V)=RgdALD(V) — €4(V)ag]. (430

C. The leading correction

If one substitutes Eq(439 into Eq. (37b), one gets an

expression fod{¥(z) in terms of the knowrG)(t) and the

unknown G@)(t). Therefore, the solubility condition Eq.

(358 evaluated up to ordee®? yields an equation for
G®)(t). The latter has the form of E423), where also the
inhomogeneity is given by Eq25). This holds with the for-
mula

ez(V)=; arAld(V)a,+ 261(V)§ akagXq

ay, Yi,(V)—agYq(V)] (44)

+ 2% a;;[AgZka2

for the second separation parameter, and the constants

decay law. The three terms proportionalBg,B3, andB,,
respectively, describe leading deviations from the logarith-
mic decay. They are of order and follow from Eqs.(290
and (29d). The relative size of these deviations is the same
for all correlators. This means that these terms imply a modi-

fication of the factorization theoremgq(t)— (fg+fq)

=hyG(1), in the sense tha(t) = —BIn(t/7) in Eq.(41) is to

be generalized by the factor in square brackets on the RHS of

Eq. (30). It is solely the contribution proportional tB?=

—6¢€,/m?=0O(€) that describes a violation of the factoriza-

tion theorem. It enters with the correction amplitude
Kq=Xq/aq- (49

Its q dependence expresses the fact that the size of the lead-

ing corrections depends on the chosen correlator. Thus, the

range of validity of the universal Ed41) is not universal.

The correction amplitude is to be calculated from Eth).

The formula forkK is the same as discussed in the theory for

the A, singularity[26].

VI. RESULTS FOR A TWO-COMPONENT MODEL

The simplest example exhibiting a generic swallowtail bi-
furcation is given by anM=2 model with the mode-
coupling  functionals F[V,fi]=vfs+v,f5,F [V, T,]
=v3f4f,. This model was motivated originally as a trunca-
tion of the microscopic equations of motion for a symmetric
molten salt[27]. The model will be used here in order to
demonstrate implications of our theory that could not be
demonstrated for th#l =1 model studied in Sec. IV. Using
Brownian microscopic dynamics, the equations of motion
(1b) and(2) read for¢4(t),q=1,2:
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t 0.4 T T T T T T
Tqdhdq(t) + dg(t) + fo My(t—t")dy pg(t’)dt’ =0, lass
(509
0.3 ]
my(t) =v1h3(1) +va3(1), U _
My(t) =v3¢b1(t) bo(t). (500 oz .

The three coupling constanig=0 will be considered as the
components of the control-parameter vediet (v1,v5,v3).

Let us note convenient equations for the discussion of the 9.1
phase diagranh6,22], restricting ourselves to;>4. Equa-
tion (7) for the second form factor implies,=[vsf;
—1]/(vsfy), and this result can be used to elimindtein 0
the following expressions. Thus, E(7) for the first form
factor f,/(1—f;)=v,f2+v,f3 is a linear equation for
(v1,v,) with coefficients that are nonlinear fa andv ;. The FIG. 7. Phase diagram for the two-component model defined in
same statement holds for Eq12) for a singularity Sec. VI. The full lines are cuts through the bifurcation surface for
that is equivalent to f{P¢/(1—f{2°)2=2y{2°F(2)2 =20, vy=v%, and vz=45, respectively. The valuev}
+2v (22)°2f(22)°(1_ f(22)°)_ These equations can be used to ex-=24.7 ... denotes a coordinate of ti#g singularity indicated by a
pr(_3530(12)C andv(zz)c in terms ofvgz)c andf(lz)c. To ease the Star. Forvz>v3, there occurA; glass-transition singularities as

notation, variables andy will be introduced as indicate_d forv?,:45 by an open circle._The transition lines gxhibit
a crossing point shown as an open diamond. The dotted lines that
0(32)°=X, f(lZ)C:y_ (51a join at the cusp singularity marked by a shaded circle complete the
bifurcation diagram of Eq(7), but they have no relevance for the
One gets discussion of the MCT solutior(see text The dashed line denotes
the v3=45 cut through the surface of vanishing first separation
5 3—(2+x)y parametere;. The dash-dotted lines are the cutg=45 through
p{Pe= 5 , (51b  surfaces of the vanishing leading correction teBn(q)=B,
2(1-y)“y(2—xy) +KyB? in Eq. (47), q=1,2. The crosses labelet=1,2, ... and
triangles labeledn’=1,2,3 mark states whose dynamics is dis-
@2 x2y(y2—2y?) (510 cussed in Figs. 8 and 9,10, respectively.
- 2/4,2,,2 : . - .
2(1-y)“(xy —3xy+2) 1/2=y>y,(x), is shown in Fig. 7 as a heavy full line. It

starts atv(?°=4,v{2°=0 and ends at thé\; singularity

'I_'hese equatipns define thg S“”‘?CG of bifurcation Singularlr'narked by a circle. The second piece describes bifurcations
ties of Eq.(7) in theT three-dimensional parameter space. Thg, i, 1< 0 for y,(x)>y>y,(x). It connects the mentioned
variablesx andy with 4<x and 1/2<y<3/(2+x) serve as s _singularity with a seconéy singularity of Eq.(7) that is
surface parameters. The exponent parametell —u, IS ghown as a shaded circle. This piece of the line is shown
determined by dotted. Decreasing further, one gets a curve witp,>0
, s, ) that joins the second\; singularity with the pointy{?°
(3X“+6xX)y”— (X" + 18+ 8)y”+ (6x+18)y— 6 =0, v$?)°=3/(2+x). This line exhibits a crossing point with
(2x2+4x)y3—12xy?+ (2x+4)y ' the first line piece mentioned above, which is shown as a
(510 diamond. The part between the seca@agdsingularity and the
crossing point is shown dotted, and the final piece is shown
The maximum theorem, mentioned above in connection witfys a light full line. The dotted bifurcation lines and the sec-
Eg. (7), has to be used to identify among the pointsond A, singularity are excluded from the set of glass-
(P°,08° v those that are glass-transition singulari- transition singularities because of the maximum theorem.
ties. These items have been added to the figure merely in order to
Figure 7 exhibits three cuts through the parameter spacellow the reader to recognize the familiar swallowtail sce-
The cutv;=20 is typical for sufficiently small values of  nario [2]. The crossing point organizes three lines of fold
The cut through the bifurcation surface yields a smoothsingularities. Between thé; singularity and the crossing
curve of A, glass-transition singularities. The bifurcation point, there is a line of glass-glass transitions. The continua-
surface for suchz(32)° deals solely with the generic scenario tion of the line to the boundary of the admissible parameter
for liquid-glass transitions. rangev,=0 deals with liquid-glass transitions. The third line
The cut shown fov ;=45 is representative for sufficiently between the crossing point and the parameter boundary at
large values ok. In this case, the cubic numerator polyno- v;=0 also deals with liquid-glass transitions. Both lines are
mial in Eq. (51d has two zerog/1(x)<y,(x) above some characterized by a discontinuous increase of the correlators’
Yo; they can be evaluated elementariB8]. The transition long-time limits from zero to the positive critical glass form
line consists of several pieces. The first one, obtained fofactorsfff)°>0.

M2=
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Decreasingx from large values to smaller ones, the two
cusp values/,(x) andy,(x) approach each other. The cor-
responding parameter vector¥°= (v{(x),v5(x),v5(x))
form curves that approach each other with decreasiagd
join at a certain value*: y,(x*)=y,(x*)=y*. The pair
(x*,y*) defines the, singularity for the model. The param-
eters for this singularity are obtained if the derivative of the
numerator polynomial in Eq51d) is zero foru,=0. This
leads to &* —2)(x* —4)(x**—30x* 3+ 136¢* 2— 16&*
+88)=0. The elementary solution for the zeros of the
quartic polynomial [28] determines the coordinates
of the swallowtail singularity x*=24.77932 ... y*
=0.2426638 ... . The cutthrough the transition surface
for v3=x* is shown in Fig. 7 as a pair of light full lines
joining at theA, singularity which is indicated by a star.

Figure 8 demonstrates the validity of the factorization
theorem for states close enough to a cusp singul&fitgnd
its violation for states sufficiently away from it. For tiig
singularity withv§= 45, the correction amplitudes calculated
from Eq. (49) are quite different for the two correlator;
=0.06857K,=—2.049. Therefore, the lines for vanishing
dominant correction, i.e., the cut of the surfa@<€q) =B,
+Kq82=0,q=1,2, with the planey;=45, are quite differ-
ent as well, as shown by the dash-dotted lines in Fig. 7. Th
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four states discussed in Fig. 8 are chosen on the surfagged in Sec. VI. The states labeled-1, . . . 4 arelocated on the

B,(1)=0. Thus, the scenario for the evolution of thetlry
law shown fore4(t) is in qualitative agreement with the one
discussed in Fig. 2. The states with labets 3 and 4 are so
close to the singularity, that the correction term in E4j)
proportional toB,(2)=O(e€) is not important. As a result,
the rescaled function5¢q(t)—fg]/hq,q=1 and 2, agree
for the statesi=3 and 4, and the same holds for the corre-
sponding approximations. However, for the states with label
n=1 and 2, the negative coefficieB,(2) is so large that
the ¢,(t) versus logy(t) curve does not exhibit the straight
line obtained for¢,(t) versus log) diagram. Rather, the
correlatorg,(t) exhibits changes of curvature and inflection
points as explained above in Fig. 5 for the state=3.

Figure 8 also exemplifies a problem concerning the choic
of the time scaler. The complete solution of Eq&) and(4)

is unique up to the choice of a control-parameter independent

time scale. The nonlinear coupling of the correlators of dif-
ferent indexq requires scale universality. However, if a time
scale like 7 is deduced from some approximation to the
equation of motion, the error of the approximation will result
in violations of the scale universality for the approximate

solutions. In constructing the approximate solutions in Fig.

8—and also in the upper panel of Fig. 9—the timevas
fixed for the leading approximation froma,(7) = f; and for
the leading correction fr0n¢1(r)=f§+f1. The errors ex-
plained lead to offsets for the second correlaips( ) # f5
and ¢,(7) # f5+ T, respectively, for the two approximations
studied. This explains, e.g., why the dashed linedg(t) for
the staten=1 does not coincide with the full one. One could
also chooser differently, e.g., by requesting’z(r):ngrf2

as was done in the lower panel of Fig. 9.

cutv ;=45 through the surface of vanishing dominant correction for
the first correlatorB,(1)=B,+K;B?=0. The coupling constants
arevi—v,=2/4"v5-v,=0.14907/4 and the states fon=1,2,

and 3 are shown in Fig. 7 by crosses. The full lines are the solution
of Egs. (609—(50¢. The dotted straight lines show the leading
approximation Eq(41) and the dashed ones the leading correction
Eq. (47). The long horizontal lines show the critical glass form
factors f§=0.312507f5=0.928 89 and the short horizontal lines

Shown for the statea=1,2 denote the renormalized form factors

f§‘2+f12 according to Eq(48). Here and in the following figures,
the model is used with;=7,=1.

The transition line which is shown in Fig. 7 by the light
ull and almost horizontal curve for the cug=45 intersects
he lineB,(1)=0 at some glass-transition singularkf?)°
(2.94...,0.13...,45.0). For states on the linB,(1)
0 that are close enough to this singularity, one gets the
standard liquid-glass transition scenario, i.e., the evolution of
a plateau of thepy(t) versus logl) diagram at the critical
glass form factorfg )¢ and ana process for the decay below
this plateau. The universal bifurcation results forfAansin-
gularity require that the plateau values are below the critical
form factors of the nearbg, singularity: f(2°< S . For the
example under discussion, one get§)°=0.0747f2°
=0.7027 andf{=0.3125,{=0.9289. The precursor of the
liquid-glass transition a¥(?¢ explains the stretched tail ex-
hibited in Fig. 8 for the decay of4(t) below 0.1 for the
staten=1.

To corroborate the discussion of the preceding paragraph,
the correlators with labei=1 are reproduced as curves with
labeln’=1 in Fig. 9. Two further curves with labels =2
and 3 are added. They refer to states between state 1 and the
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Fig. 9. Rather, the ™2 law becomes irrelevant for the de-
- scription of the dynamics below times around 1@here the

A, critical curve crosses the curves describing the logarith-
mic laws for theA; singularity. As a result, there appears a
window between the end of the transient and the beginning
of the description by thé\, singularity results where the

§ correlators are described by E@7). This window deals
with an increase in time over about two orders of magnitude.
In this window, the logarithmic decay processes destroy the
- manifestation of the ™2 law.

The lower panel of Fig. 9 demonstrates a further implica-
tion of V¢ dynamics on the precursors of the liquid-glass
transition dynamics. Even though the time scale for éghe
process for the states’=1 or 2 exceeds the one for the
transient by factors foand 16, respectively, the correlator
$,(t) does not exhibit the two-step scenario for these states.
7 Rather, there is a large time interval where the approach
\ | toward the plateau$’° follows closely the law[ ¢(t)

- \ 1 —fP%«In(t/7g). This is due to cancellation of two effects:

0.2 b - The asymptotes for th¥¢ dynamics and for th&/(?)¢ dy-
L A namics yield a positive curvature, while the onset of the
0 L L L 1 L L I process causes a negative one. The resulting nearly linear-
1 2 3 4 5 6 7 8 9 log(t) variation must not be mistaken as the true asymptotic
1°g1ot logarithmic law given by Eq(41).

The destruction of the critical decay law of the liquid-
FIG. 9. Correlators for the two-component model defined inglass transition dynamics by the presence of a higher-order
Sec. VI. The states with labets =1,2, and 3 are located on the glass-transition singularity nearby alters the familiar pattern
line defined byv,=45,B,(1)=0 and have coordinates {,v,) of the susceptibility spectra, as shown in Fig. 10. The Debye
=(2.7799, 0.1188(2.9254, 0.1292), and (2.9391, 0.1302), respec-peak for the transient dynamics deals with the spectra for
tively. They are indicated in Fig. 7 by triangles and approach thew>0.1, as shown by the peak arouae-1 for x7(w). This
liquid-glass transition point V(?° with coordinates v{?°  peak is strongly suppressed and shifted to higher frequencies
=2.941029p{°=0.130 326. The state’ =1 is identical to state for y4(w). There is the large frequency regime 4
n=1 discussed in Fig. 8. The horizontal lines show the Cl'itica|g|oglowg_1' where thew? law is irrelevant for the de-
glass form factordg and f(*°,q=1,2, for the cusp singularity®  scription of the structural relaxation spectrum. Rather, the
and the fold singularit/®, respectively. The liquid-glass transi- cyitical relaxation spectrum of the cusp singularity leads to a
fuon point is connected with an exponent paramatelo_.503, lead- high spectral enhancement gf(w) relative to thew® spec-
ing to the exegnenta(;? 363 aandb=0.807. The crlt!cal decay trum; it leads to a second structural relaxation peak mear
laws[ ¢4(t) — fg'c]=hg"(t, /t)? are shown as dotted lines labeled ~0.01 in addition to the low-frequen eak. It was dis-
a. The von Schweidler lawgg(t) — f{Pc]/h{P% —t° with a time o . . quenay peak. ft wa:
cussed in connection with the states=3 and 4 in Figs. 5

scale fitted for the curva’=3 are shown as dotted lines with the o
label b. The straight dotted line in the upper panel exhibits theand 6, that the winding of thej(t) versus log() curve

leading asymptotic law Eqf41) for ¢:(t) and the state’=3; the ~ around an effective I} law for states withB,<0 is a pre-
dashed line shows the result of E@7). The dashed lines in the Cursor phenomenon of a nearBy transition singularity. In-
lower panel exhibit the leading-correction formulas E47) for ~ deed, the spectrung;(w) exhibits thea peak of the men-
¢,(t) and statem’ =1 and 3, respectively. tioned transition with a maximum for lggo~ —3. Thus,
because 0B,(2)<0, the susceptibility for the second cor-
transition pointV(?¢ as denoted in Fig. 7 by triangles. The relator exhibits twor peaks, referring to the two parts of the
diagrams for¢,(t) for states 2 and 3 exhibit the two-step- liquid-glass transition lines discussed in Fig. 7. The low-
relaxation scenario characteristic for An bifurcation. The frequencya peaks shift strongly with changes of =1,2,
decay for¢q(t)<fgz)° demonstrates the superposition prin- and 3, since the states are shifted toward the transition sin-
ciple for thea process, and its initial part can be describedgularity V¢ on one of the lines. The high-frequenaypeak
by von Schweidler’'s power law. The decay toward the pla-does not change significantly since the distance of the states
teausf®° for t>1000 follows the critical law for theA, from thg other trqnsitio_n Iine is almost gnaltered. As ex-
singularityV®®. The universal laws for the dynamics near aPlained in connection with Fig. 6, the leading correction for-
fold bifurcation imply that the correlators follow the asymp- Mula Ed.(47) describes the high-frequency wing of the sec-
tote of the critical law] ¢q(t) — f?°1/hq=(t/t;) 2 for short ond a peak.
times down to about one decade above the end of the tran-
sient dynamics, i.e., until aboti= 10. In particular, for small
times, the correlator for staté =2 should approach the one  Describing the states of a system by a vestaf control
for staten’ =3. However, these features are not exhibited inparameters, the neighborhood of a glass transition singularity

VII. CONCLUSIONS
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ing around the straight line with alternating convex and con-
............................... cave parts on the other side, as shown for the statesl

0.15 n —3 in Fig. 5. The corrections to the leading-order
X "(@) ’ . asymptotic results depend on the correlator under consider-
0.1 - ation. The surfaces of dominant ih{) behavior are different
| ] for different correlation functions, as explained in connection
b iioa with Fig. 8.
005 = 2 1 T Every higher-order glass-transition singularky is an

i 1 end point of a surface of fold-bifurcation point§2)¢ with

fo(VO) =< f{P°=1,(V()). For states sufficiently close to

V)¢ one finds the standard transition scenario with two-

0.3 step relaxation described by the interplay ef and
%" (@) B-scaling laws. The correlators fjSq(t)wf; are a part of
2 02 the a process. Therefore, the logarithmic decay laws as for-

mulated by Eq(47) describe thex-relaxation master func-
tions. They reduce the range of validity of von Schweidler’s
power law and cause anomalies of therelaxation shape
functions as shown for the state§=4—6 in Figs. 5 and 6.
Generically, near a higher-order singularity, there is a
further surface of fold bifurcations that crosses the transition
surface discussed in the preceding paragraph, Fig. 7. As a
result, there is the scenario for transition singularities of type
FIG. 10. Susceptibility spectra for the correlators shown inAZ’ E)Ut (nz?cw Wclth critical form factors smgller _than the ones
Fig. 9. atVve: fi7"<f,. Consequently, the logarithmic decay laws
are a part of the relaxation toward the plateidi®. They

V¢ was characterized by a sequence of separation parametdfduce the range of applicability of the critical decay and
€1(V),e(V), .. ..These are smooth functions \dtthat van- introduce a large crossover interval for structural relaxation

ish atV¢, and they are considered as small of ordefThe between the end of the transient and the beginning of the
L oy . 2 . .

glass-transition singularitieg® are the bifurcation points of fransition dynamics caused by?)°, as is demonstrated in

the glass form factor$,(V) = p4(t—), i.e., of the long- Figs. 9 and 10 for the correlatab,(t). In particular, there

time limits of the correlatorg(t). These bifurcations are of 3N be a crossover from the transient to a simplédnlaw
the cuspoid familyd,,1=2,3 ... . Thee,, ... &, are the followed by a crossover to a von Schweidler power law. This

relevant small coefficients specifying the polynomial of de-SCenario was demonstrated by the experiments reported in
greel whose largest zero determinggV) for small e. The Ref.[16] and by .nume_rlcal solutions of MCT equations for
major result is the proof that the solution of the MCT equa-t€ Square-well liquid in Re{.19]. There can also be a sus-
tions can be asymptotically expanded in polynomial(x) ceptibility spectrum for structural relaxation consisting of
of the logarithm of timex=In(t/7), for states close to an WO Peaks, as shown for;(w) in Fig. 10. .

A, 1=3, and €,(V)<0. The leading term of ordefe|Y2 The asymptotic expansion also describes the critical cor-

yields the Inf/7) law Eq.(41). The prefactor for this polyno- relator of the higher-order glass-transition singularity outside

mial of degree 1 is given solely by the first separation pa_the tranfient, Fig. 3. These correlators deal with the decay

rametere, (V). The leading correction adds a polynomial of to_vvardfq for control parameter_s_at the singula_rity. For st_ates
degree 4. The coefficients are of orde}, and they are de- with €,>0, ¢q(t) follows the critical decay until close to its
termined bye; (V) and e;(V), Egs.(29) and (47). The sec- Intersection with the long-time asymptoig,(t—)=",
ond correction adds a polynomial of order 7; the coefficients™ fo - Here it crosses over rapidly to the glass form fadtpr

are of Order|6|3/2 and determined b)&'l(V),Ez(V),€3(V), SUmmariZing, the formulas of this paper prOVide a qua”ta'
and so on. Several relaxation scenarios have been identifidtye understanding of the decay of the correlations provided
that are utterly different from the MCT scenario for the the stateV of the system is close to a higher-order glass-

liquid-glass transition. The latter is described bynsin-  transition singularity and the correlatgr(t) is close to the
gularity. glass form factorf; at this singularity.

There are distinct surfaces in parameter space, where the Let L, denote the length of the log(interval where an
prefactor of thex? monomial in the polynomiaP(x) van-  approximation by one of the polynomiaB(In(t/7)) de-
ishes. For this case, the thf) law dominates the dynamics scribes the solution for the correlater,(t). Let L, denote
for such times wherep,(t)~f,(V°). This law may describe the length of the logf) interval where the Fourier cosine
the complete decay except for the transient and for the findransform ofP(In(t/7)) leads to a description of comparable
exponential approach op,(t) toward its long-time limit, —accuracy for the susceptibility spectruy(a(w). It was ex-
Fig. 2. States near the mentioned surface exhibit slight deplained in connection with Fig. 4 thdt, is considerably
formations of the straigh#(t) versus logg(t) curve. There smaller tharlL;. This phenomenon for glassy dynamics was
is a concave behavior on one side of the surface and a windliscussed earlier for the liquid-glass transit[@6], but it is

0.1

log, @
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more pronounced for the higher-order singularities. This fea-  S[In"1*"2(t)](z) — S[IN"(t)](2)S[In"2(t)](2)
ture of stretched relaxation is the reason why it is more dif-

ficult to test asymptotic MCT formulas with data for spectra ) a2 Mg+,
than it is with data for correlators in the time domain. =(m/6)n n,In™T"27%(i/z) + 23 K k

If there is a higher-order glass-transition singularity in a
disordered system, there is no generic path for the evolution ny \ /N,
of the structural relaxation. Only a parameter surface can be —2 (k—l)( | )Fkﬁ} In"2* 27 K(j/z). (A3)
generic for the description of the dynamics near a cusp sin- !
gularity. One has to vary two independent parameters to
identify anA; singularity, three parameters to identify Ap
bifurcation, and so on. We hope that the demonstration of all ) )
basic scenarios for the dynamics nearfansingularity wil Tgese formulas are needed for the evaluation of the function
be of use to identify such singularities in colloids, if there aref( /(2) in Eq. (29).
any. In this case, the derived formulas are elementary enough Specializing Eq(A3) to n;=n andn,=1 and using the
for data fitting. Such fitting might lead to a judgment on the definition of the linear operatdr from Eq. (24), one gets
relevance of the subtle implications of mode-coupling theory

for the discussion of glass-forming systems.
n

TTInN"(t)](2) = (72/6) n|n”—1(i/z)+k22 (n—k+1)
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: (A4)

where the coefficients are

APPENDIX: LAPLACE TRANSFORMS OF LOGARITHMS

. . . n
The modification of the Laplace transform, introduced in Fn,k:( )[Fk+1—FkF1]/[(772/6)(n—k+ 1)]. (A5)
Eq. (5), will be used to map invertibly functioris(t) of time k

to functions of the complex frequenay The functions are

defined fort>0 and Inz>0, respectively. Euler’s second

integral for the gamma functiod'(y) implies S[t*](z)

=(i/2)*T'(1+x) if x>—1. Differentiating this identityn Let us construct polynomialp,(x) of degreen=1,2, ...
times forx=0,n=0,1,2. . ., onearrives at the formula obeying Eqs(26). Specializing Eq(A4) to n=1 shows that
one can choosp;(x) =X. Assuming that the polynomials for
degreel <n are known, Eq(A4) provides the formula for
degreen

n
3[|n”(t)](z):2k (k)FkIn”k(i/z). (A1)

n

Here §)=n!/[k!(n—k)!] and I',=d“T'(x=1)/dx*. One I0n(><)=><“—k§=l2 Ln kP 1-k(X).
gets in particulal’y=1 andI';=—v, where y is Euler’s

constant. If¢(y) denotes the digamma function, one can

write I'' (y) =T (y) #(y). Iterating this formula, one can ex-

pressl’ in terms of the firstK—1) derivatives ofy(y) for 11,5 the sequence gf (x) can be constructed recursively

y=1. The latter are given by the tabulated values of the zetd, arms of the coefficientE, . To derive Eqs(29b—(29d),
function Z(k) [28]; for example,I',— 2= {(2)=m?/6. Im- ’

(A6)

one needs
plications of Eq.(Al) read withn=1,n;=1,n,=1
2 i Po(X)=2.616+ X2, (A7a)
S[In”(t)](z)—S[In(t)]”(z)=—n(n—1)In”‘2(—)
12 z
e —l P3(X)=—2.148%+3.923%°+ %3, (A7Db)
_ n=K|f _
+k§3 k)[rk T']in (Z)
(A2) Pa(X)=—12.81%—4.2964&>+5.2319%3+ x*. (A7c)
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