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Fluctuation-dissipation ratio for compacting granular media
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In this paper we investigate the possibility of a dynamical definition of an effective temperature for com-
pacting granular media in the framework of the fluctuation-dissipation~FD! relations. We have studied two
paradigmatic models for the compaction of granular media, which consider particles diffusing on a lattice, with
either geometrical~tetris model! or dynamical~Kob-Andersen model! constraints. Idealized compaction with-
out gravity has been implemented for the tetris model, and compaction with a preferential direction imposed by
gravity has been studied for both models. In the ideal case of an homogeneous compaction, the obtained FD
ratio is clearly shown to be in agreement with the prediction of Edwards’ measure at various densities. Similar
results are obtained with gravity only when the homogeneity of the bulk is imposed. In this case the FD ratio
obtained dynamically for horizontal displacements and mobility and from Edwards’ measure coincide. Finally,
we propose experimental tests for the validity of the Edwards’ construction through the comparison of various
types of dynamical measurements.
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I. INTRODUCTION

Granular materials@1–3# play a very important role in
many fields of human life and industrial activities, such
agriculture, building, chemistry, etc. Their properties are
teresting not only for practical reasons, but also from
point of view of fundamental physics. In fact, in spite of the
apparent simplicity, they display a wide variety of behavio
that is only partially understood in terms of general physi
principles.

A. Typical problems to face in the study of compact
granular matter

The common wisdom about granular materials defi
them as nonthermal systems, since thermal energy ca
generally neglected if compared to mechanical energy du
gravity and other external energy sources usually acting
these systems. In addition, a fundamental role in the dyn
ics is played by the mechanical energy dissipation due
friction and collisions among the grains and with the co
tainer walls: motion can take place only by continuou
feeding energy into the system that otherwise would
stuck into some metastable state, no longer exploring sp
taneously the configuration space. Consequently, as a m
of fact, the dynamics of granular matter is always a respo
to an external perturbation and in general the response
depend in a nontrivial way on the rheological properties
the medium, on the boundaries, on the driving proced
and, last but not the least, on the past history of the syst

From the nonthermal character of these systems a lo
consequences can be drawn. The first one concerns the
of any ergodicity principles: a granular media is not able
freely explore its phase space and the dynamical equat
do not leave the microcanonical or any other known
1063-651X/2002/66~1!/011310~14!/$20.00 66 0113
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semble invariant. Moreover, just as in the case of ag
glasses, the compaction dynamics@4–6# does not approach
any stationary state on experimental time scales~at least at
small enough forcing! and these systems exhibit aging@7–9#
and memory@10–12#. A granular media lives then always i
nonequilibrium conditions. Even when one observes so
stationary state as the result of a specific dynamics~energy
injection! imposed to the system, one is never able to est
lish some sort of equipartition principle ruling how the e
ergy injected is redistributed among the different degrees
freedom of the system.

Despite all these difficulties, since granular systems
volve a large number of particles, one is always natura
inclined to treat them with methods of statistical mechani
In particular, one of the main questions concerns the v
possibility to construct a coherent thermodynamics and
this point the debate is wide open. The construction o
thermodynamics would imply the identification of a suitab
distribution that is left invariant by the dynamics~e.g. the
microcanonical ensemble!, and then the assumption that th
distribution will be reached by the system, under suita
conditions of ‘‘ergodicity.’’ As already mentioned since i
granular media energy is lost through internal friction, a
gained by a nonthermal source such as tapping or shea
this approach seems doomed from the outset. Neverthe
one could ask whether some elementary thermodyna
quantities are well defined and what is their meaning. It is
this spirit that in this paper we address the question of
definition of an effective temperature for compact granu
media. Before going in the details let us briefly review t
state of the art on these subjects.

B. State of the art

A lot of approaches@13–22# have been devised in the la
years to provide a coherent scenario but till now the situat
©2002 The American Physical Society10-1
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is quite uncertain mainly because at a fundamental le
there is no general argument showing that a particular c
struction should lead to the relevant distribution for the d
namics~as one does in the case of conservative dynam
leading to thermodynamics!.

Many models have been proposed in order to reprod
the rich phenomenology observed in granular compac
experiments @4,5#, but a general thermodynamical-lik
framework, based on the idea of describing a granular m
rial with a small number of parameters is, however, still lac
ing.

A very ambitious approach, aiming at such a descript
of dense granular matter has been put forward by Edwa
and co-workers@18,19#, by proposing an equivalent of th
microcanonical ensemble: macroscopic quantities in
jammed situation should be obtained by a flat average o
all blocked configurations~i.e., in which every grain is un-
able to move! of given volume, energy, etc. The strong a
sumption made here is that all blocked configurations
treated as equivalent and have the same weight in the m
sure.

Very recently, important progresses in this direction ha
been reported in various contexts: a tool to systematic
construct Edwards’ measure, defined as the set of bloc
configurations of a given model, was proposed in Re
@23,24#; it was used to show that the outcome of the ag
dynamics of the Kob-Andersen~KA ! @25# model ~a kineti-
cally constrained lattice-gas model! was correctly predicted
by Edwards’ measure. Moreover, the validity and releva
of Edwards’ measure have been demonstrated@26# for the
tetris model @21#, for one-dimensional phenomenologic
models@27#, for spin models with ‘‘tapping’’ dynamics@28#,
and for sheared hard spheres@29#.

At present, however, the correspondence between
wards’ distribution and long-time dynamics is at be
checked but does not follow from any principle. It is ther
fore important to continue to explore its range of validity a
therefore to test its applicability to various kinds of mode

Another important message emerging from these stu
concerns the link between Edwards’ approach and the
comes of the measurements of the fluctuation-dissipation
lations. In Refs.@23,24,26# it has been shown in the frame
work of two non-mean-field models, the Kob-Anders
model and the tetris model, that the so-called Edwards’ r
~see below for its precise definition! coincides on a wide
range of densities with the fluctuation-dissipation ra
~FDR! in homogeneous systems, i.e., in systems without
preferential direction. This paper extends those results
viding a series of evidences for the validity of Edwards’ a
proach in two main directions.

~i! First of all we focus on more realistic situations b
considering the case of granular packings subject to grav
this is an important example to test the role of large sc
inhomogeneities, such as the density profiles along the p
erential direction, whose treatment has to be performed v
carefully in order to avoid apparently nonphysical resu
@30#.

~ii ! We present results concerning the independence o
FD ratio of the observables used for its definition.
01131
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It should be noted that previous measurements of FDR
the presence of gravity~and thus heterogeneities! have been
attempted in Refs.@30,31#. However, the negative respons
functions observed in Ref.@30# was subsequently shown i
Refs.@8,11# to be linked to memory effects@10#, and not to
Edwards’ measure. Moreover, the measures of Refs.@30,31#
were flawed by an incorrect definition of the correlation p
of the fluctuation-dissipation ratio, due to the fact that on
time quantities are still evolving~see Sec. V for a detailed
discussion!. The conclusion of Ref.@31# about the existence
of a dynamical temperature was thus premature.

The link established between Edwards’ approach and
fluctuation-dissipation relations could open new perspecti
from two different points of view. First of all from the ex
perimental point of view where possibilities are open to~i!
check the Edwards’ measure by means of dynamical m
surements;~ii ! perform dynamical measurements~through
the fluctuation-dissipation relations! of a ‘‘temperature’’
which should only depend on the density. This could allo
for an at least partial equilibration of the disproportion exi
ing between the huge number of theoretical/numerical wo
~and this paper contributes to this number! and the few ex-
perimental results. Moreover, very focused experimental
sults could help in discriminating between the different mo
els proposed in literature. On the other hand, from
theoretical point of view one is left with several question
why Edwards’ measure seems to be correct in a wide ra
of situations? Is it possible to identify some first principl
justifications or derivations for it? Why the outcomes of t
Edwards’ approach seem to coincide with the results
fluctuation-dissipation measurements?

This paper, far from being able to address all these qu
tions, tries to make the link between Edwards’ approach
the fluctuation-dissipation measurements firmer in severa
alistic situations and propose some possible experime
paths for its checking. The outline of the paper is as follow
We first recall in Sec. II the definition of the models und
consideration, and in Sec. III how to construct Edwar
measure. The case of homogeneous compaction for the t
model is described in Sec. IV, while fluctuation-dissipati
ratios during a gravity-driven compaction are measured
both KA and tetris models in Sec. V. Finally, possible expe
ments are proposed in Sec. VI, and conclusions are draw

II. MODEL DEFINITION

The models we consider are lattice models, and in t
sense are not realistic microscopic models of granular m
rials. However, they are worth investigating: on the o
hand, they have been shown to reproduce the complex
nomenology of granular media~see Refs.@7,8,11,21# and
Refs. @33,35#!; on the other hand, the validity of Edward
measure for some observables has already been shown
ideal case of homogeneous compaction@23,24#, making
these finite-dimensional models good candidates for furt
investigations in more realistic situations, i.e., with hetero
neities induced by gravity and the existence of a preferen
direction.
0-2
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A. Tetris model

Under the denomination of ‘‘tetris’’ falls a class of lattic
@21# models whose basic ingredient is the geometrical fr
tration. The models are defined on a two-dimensional squ
lattice with particles of randomly chosen shapes and si
The only constraint in the system is that particles can
overlap: for two nearest-neighbor particles, the sum of
arms oriented along the bond connecting the two partic
has to be smaller than the bond length. The interactions
hence not spatially quenched but determined in a s
consistent way by local particle configurations.

In the version we use~see Ref.@24#!, the particles have a
‘‘ T’’ shape ~three arms of length34 d, whered sets the bond
size on the square lattice!. The maximum density allowed i
thenrmax52/3.

B. Kob-Andersen model

The other model we consider is the so-called KA mo
@25#, first studied in the context of mode-coupling theori
@32# as a finite dimensional model exhibiting a divergence
the relaxation time at a finite value of the control parame
~here the density!; this divergence is due to the presence
this model of the formation of ‘‘cages’’ around particles
high density~the model was indeed devised to reproduce
cage effect existing in supercooled liquids!.

Though very schematic, it has then been shown to rep
duce rather well several aspects of glasses@33#, like the ag-
ing behavior with violation of FDT@34#, and of granular
compaction@35#.

The successful comparison of aging dynamics and pre
tions of Edwards’ measure was moreover shown for the
time for this model, in Refs.@23,24#, in the idealized case o
homogeneous compaction. On the other hand, a study o
violation of the FDT during the compaction process~under
gravity! was undertaken in Ref.@31#, and the existence of a
dynamical temperature was advocated@45#.

The model is defined as a lattice gas on a thr
dimensional lattice, with at most one particle per site. T
dynamical rule is as follows: a particle can move to a nei
boring empty site, only if it has strictly less thann neighbors
in the initial and in the final position.

Following @25#, we taken55: this ensures that the syste
is still ergodic at low densities, while displaying a sha
increase in relaxation times at a density well below 1. T
dynamic rule guarantees that the equilibrium distribution
trivially simple since all the configurations of a given dens
are equally probable: the Hamiltonian is just 0 since no st
interactions exist.

Moreover, it is also easy to consider a mixture of tw
types of particles, by considering particles of type 1 with
certain valuen1 for the dynamical constraint, and particles
type 2 withn2Þn1 @35#.

III. EDWARDS’ MEASURE

Edwards’ approach is based on a flat sampling over all
blocked configurations, i.e., configurations with all partic
unable to move. This definition therefore depends on
01131
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model and the type of dynamics. For example, a particle
more easily blocked in presence of an imposed drift, e
gravity.

This approach, based on the idea of describing gran
material with a small number of parameters, leads to the
introduction of an entropySEdw , given by the logarithm of
the number of blocked configurations of given volume, e
ergy, etc., and its corresponding densitysEdw[SEdw /N. As-
sociated with this entropy are the state variables such
‘‘compactivity’’ XEdw

21 5(]/]V)SEdw(V) and ‘‘temperature’’
TEdw

21 5(]/]E)SEdw(E).
The explicit construction of Edwards’ measure, as well

of the equilibrium measure, has been described in deta
Refs.@23,24# for the tetris and the KA models. In particula
Edwards’ measure is obtained with an annealing procedur
fixed density. In order to select only the subset of configu
tions contributing to the Edwards’ measure we introduce
auxiliary temperatureTaux ~and the correspondingbaux
51/Taux) and, associated with it, an auxiliary energyEaux
which, for each configuration, is equal to the number of m
bile particles. A particle is defined as mobile if it can b
moved according to the dynamic rules of the original mod

In particular, one measuresEaux(baux ,r), i.e., the de-
crease of the auxiliary energy at fixed density, performing
annealing procedure increasing progressivelybaux . From
this measure one can compute the Edwards’ entropy den
defined by

sEdw~r![saux~baux5`,r!

5sequil~r!2E
0

`

eaux~baux ,r!dbaux , ~1!

whereeaux(baux ,r) is the auxiliary Edwards’ energy densit
andsaux(baux50,r)5sequil(r) is the equilibrium entropy of
the model.

For the KA model, the equilibrium entropy is simply th
entropy of a lattice gas. It is worth, however, recalling th
for the tetris model~and in general when the equilibrium
measure is not known analytically!, the equilibrium measure
can also be obtained with an annealing procedure: als
this case one introduces an auxiliary temperatureTaux8
51/baux8 associated with an auxiliary energyEaux8 defined as
the total particle overlaps existing in a certain configuratio
For each value ofTaux8 one allows the configurations with

probability given bye(2baux8 Eaux8 ). Starting with a large tem-
peratureTaux8 one samples the allowed configurations by p
gressively decreasingTaux8 . As Taux8 is reducedEaux8 de-
creases and only atTaux8 50 ~no violation of constraints
allowed! the auxiliary energy is precisely zero. The explor
tion of the configuration space can be performed working
constant density by interchanging the positions of couple
particles. This procedure is used to computeEaux8 (baux8 ,r)
and eaux8 (baux8 ,r) ~energy per particle!, from which one
can compute the equilibrium entropy per particle by t
expression
0-3



r

in

nc
I
d

-
lib

n
re

e

e

ad
-
i

his
os-
ial

al-

o-

ed

en
al
m

r
r of

ain-
uce

l

g-
on/
dy-

-
ts
t of

a
be

unt
o-

em
ras-

les

ALAIN BARRAT, VITTORIA COLIZZA, AND VITTORIO LORETO PHYSICAL REVIEW E 66, 011310 ~2002!
sequil~r![sequil~baux8 5`,r!

5sequil~baux8 50,r!2E
0

`

eaux8 ~baux8 ,r!dbaux8 ,

whereeaux8 (baux8 ,r) is the auxiliary energy per particle. Fo
the choice made for the particles one has

sequil~baux8 50,r!52r ln r2~12r!ln~12r!1r ln 4,
~2!

which is easily obtained by counting the number of ways
which one can arrangerL2 particles of four different types
on L2 sites.

Edwards’ and equilibrium entropies, computed as a fu
tion of density, are reported in Fig. 1 for the tetris model.
is also possible to compute the so-called Edwards’ ratio,
fined as

XEdw5
dsEdw~r!

dr Y dsequil~r!

dr
. ~3!

XEdw approaches 1 asr→rmax, since at the maximum den
sity all configurations become blocked and therefore equi
rium and Edwards’ entropies become equivalent.

IV. FLUCTUATION-DISSIPATION RATIO FOR THE CASE
WITHOUT GRAVITY

A. Tetris model: Dynamics without gravity

It is worth to recall that for the KA model, the compactio
dynamics was obtained by means of a‘‘piston,’’ i.e. by c
ating and destroying particles only on the topmost layer~of a
cubic lattice of linear sizeL! with a chemical potentialm
@33#. The validity of Edwards’ measure in this case has be
described in Refs.@23,24#. We will therefore focus here on
the tetris model. In Refs.@24,26#, compaction dynamics
without gravity has been implemented for this model in ord
to avoid generating a preferential direction.

The system is initialized through a random sequential
sorption of ‘‘T’’-shaped particles on an initially empty lat
tice. The grains must satisfy the geometrical constraints w

FIG. 1. sEdw(r) andsequil(r) for the tetris model.
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their nearest neighbors and cannot diffuse on the lattice. T
filling procedure stops when no other particles can be dep
ited on the system anymore, yielding a reproducible init
density ofr'0.547.

The irreversible compaction dynamics is then realized
ternating attempted random diffusions~in which a particle is
chosen with uniform probability and allowed to move t
wards one of its nearest neighbors with probabilityp5 1

4 ,
only if all the possible geometrical constraints are satisfi!
and attempted random depositions on the lattice~an empty
site is chosen with uniform probability and a grain is th
adsorbed on the lattice only if no violation of the geometric
constraints occurs!. The global density increases, the syste
remaining homogeneous during the process.

The Monte Carlo~MC! time unit is defined as the numbe
of elementary dynamical steps normalized to the numbe
sites of the lattice,L2. In order to overcome the problem
related to the simulation of very slow processes and obt
ing a reasonable number of different realizations to prod
clean data, we have devised a fast algorithm~in the spirit of
Bortz-Kalos-Lebowitz algorithm@36#!, where the essentia
ingredient is the updating of a list of mobile particles~whose
number isnmob). In order to reduce the number of less si
nificant events, such as failed attempts of depositi
diffusion, this algorithm is essentially based on a guided
namics where only mobile particles~i.e., grains that could
diffuse toward a neighboring site! are considered. At each
time step onemobile particle is chosen with uniform prob
ability and allowed to move if all the geometrical constrain
are satisfied. If the attempt has been successful, the lis
mobile particles is then updated, performing alocal control
of grains’ mobility. This procedure therefore introduces
temporal bias in the evolution of the system, which has to
taken into account by incrementing the time of an amo
Dt51/nmob, after each guided elementary step. This alg
rithm becomes very efficient as the density of the syst
increases, since the number of mobile particles reduces d
tically.

During the compaction, we measure the densityr(t) of
particles, the densityrmob(t) of mobile particles, the mobil-
ity

x~ tw ,tw1t !5
1

dN (
a

(
k51

N d^@r k
a~ tw1t !2r k

a~ tw!#&
d f

obtained by the application of a random force to the partic
betweentw and tw1t, and the mean square displacement

B~ tw ,tw1t !5
1

dN (
a

(
k51

N

^@r k
a~ tw1t !2r k

a~ tw!#2&

(N is the number of particles;a51, . . . ,d runs over the
spatial dimensions:d52 for tetris,d53 for KA; r k

a is mea-
sured in units of the bond sized of the square lattice!. In-
deed, the quantitiesx(tw ,tw1t) andB(tw ,tw1t), at equilib-
rium, are linearly related~and actually depend only ont since
time-translation invariance holds! by
0-4
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2x~ t !5
X

Td
eq

B~ t !, ~4!

where X is the so-called FDR which is unitary in equilib
rium. Any deviations from this linear law signals a violatio
of the Fluctuation-Dissipation Theorem~FDT!. Nevertheless,
it has been shown, first in mean-field models@37#, then in
various numerical simulations of finite dimensional mod
@38,39# how in several aging systems violations from Eq.~4!
reduce to the occurrence of two regimes: a quasiequilibr
regime with X51 ~and time-translation invariance! for
‘‘short’’ time separations (t!tw), and the aging regime with
a constantX<1 for large time separations. This second slo
is typically referred to as a dynamical temperatureTdyn

>Td
eq such thatX5Xdyn5Td

eq/Tdyn @40#.
We have simulated lattices of linear sizeL550, 100, 200,

in order to ensure that finite-size effects were irrelevant.
have chosen periodic boundary conditions on the lattice, h
ing checked that other types of boundary conditions~e.g.,
closed ones! gave the same results. We have investigated
irreversible compaction dynamics of the system up to tim
of 23105 MC steps, realizing a large number of differe
runs (Nruns.8000–9000), in order to obtain clean data. T
random perturbation is realized by varying the diffusi
probability of each particle from the initial valuep5 1

4 to the
valuepe5 1

4 1 f i
re, wheref i

r561 is a random variable asso
ciated with each grain independently for each possible di
tion (r 5x,y), ande represents the perturbation strength. T
results presented here are obtained with a perturba
strengthe50.005, having checked that for 0.002,e,0.01
nonlinear effects are absent.

B. Interrupted aging regime

When the compaction process is stopped at a certain
tw , the system relaxes towards equilibrium: the mean-squ
displacement and the integrated response function satisfy
TTI, as Fig. 2 shows. This is the so-called regime of int

FIG. 2. Einstein relation in the tetris model with interrupte
aging, at various densities. Insets, density of mobile particlest
for tw5104, andB(tw1t,tw) vs t for two differenttw ~illustration of
TTI!.
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rupted aging, characterized by an increase ofrmob(t) toward
its equilibrium value~inset of Fig. 2! and a single linear
relation for the x vs B parametric plot. Fluctuation-
Dissipation Theorem is then recovered, and the value of
equilibrium fluctuation-dissipation ratio,Td

eq , is obtained
from the measures of those quantities; its value actually d
not depend on the density of the system.

It is interesting to mention that the behavior described
this subsection can actually also be observed for the
model, which was studied in Refs.@23,24# only under con-
tinuous compaction.

C. Aging dynamics

If the compaction is not stopped at timetw , the density
increases, and a typical aging behavior is observed, as sh
in Fig. 3 where different curves ofB(t1tw ,tw), for different
values of tw , are reported: the mean-square displacem
depends explicitly not only on the observation timet but also
on tw . The system remains out of equilibrium on all th
observed time scale, with the violation of TTI. The inset
Fig. 3 shows the collapse of the curves ofB(t1tw ,tw) for
different values of the age of the system, obtained with
following scaling function:

B~ t1tw ,tw!5cF lnS t1tw1ts

t D
lnS tw1ts

t D 21G , ~5!

where c, ts , and t are fit parameters. Our results show
linear dependence of the parametersts and t on the age of
the system, while the coefficientc is nearly constant.

Moreover, we observe the density of mobile particl
rmob(t) getting smaller than the corresponding value at eq
librium @24#, as another evidence of the out of equilibriu
behavior of the system during the compaction process.

The system also features a violation of the fluctuatio
dissipation theorem. More precisely, thex vs B parametric

FIG. 3. Evolution ofB(t1tw ,tw) for varioustw ~from bottom to
top, 53103, 104, 33104, and 53104). Inset, collapse ofB; for the
collapse, we have not taken into account the final portion of e
curve, because of a saturation ofB due to finite-size effects.
0-5
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plot, reported in Fig. 4, shows two different linear behavio
for times t smaller thantw we observe a first quasiequilib
rium regime where FDT holds~i.e., Xdyn51), followed by a
second regime in which FDT breaks down and a dynam
temperatureTdyn arises which is independent of the observ
tion time t. This quantity actually depends on the age of t
system,tw , and therefore on the density. We have inves
gated this behavior in a large range of waiting times, cor
sponding to several values of the density, obtaining the
lowing results: Xdyn

1 50.64660.002, Xdyn
2 50.76760.005,

Xdyn
3 50.78460.005 at tw

1 5104, tw
2 533104, and tw

3 55
3104.

D. Results for a bidisperse system

In order to investigate the dependence of the dynam
temperature on the observables considered for its definit
we have introduced two different types of particles. Besid
the ‘‘T’’-shaped particles, already seen at the beginning
the section, we have considered ‘‘L’’-shaped particles. S
grains are characterized by a different degree of disorde
we expect these particles, the ‘‘smaller’’ ones, to move m

FIG. 4. Einstein relation in the tetris model: plot of the mobili
2Td

eqx(tw ,tw1t) vs the mean-square displacementB(tw ,tw1t) for
~a! tw

1 5104 and~b! tw
2 533104. The value ofTd

eq is taken from Fig.
2, and the slope of the full straight line is one. The dashed lines
linear of the FDT violation whose slope gives a measure ofXdyn .
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easily, being less constrained. Although we have two diff
ent types of particles, the system remains homogeneous
ing compaction.

We have therefore measured FDR for the two differe
types of particles. The results obtained show that the
dynamical temperatures are equal within the error bars, e
though the related diffusivities are different~see Fig. 5 for an
example with equal fractions of T-shaped and L-shaped p
ticles!. This result has several important consequences. F
of all the coincidence of the results for the dynamical te
perature obtained with different observables is a crucial s
for the establishment of a thermodynamical interpretati
Another important consequence arises from the experime
point of view: since the value of FDR is independent of t
shape of the particles, it could be possible to measure
dynamical temperature of a granular material using a tra
particle different from the particles composing the syste
This dynamical temperature should not depend on the sh
of the tracer particle. The extension of this result to the c
of compaction with gravity will be discussed in the followin
section.

re

FIG. 5. Plot of the mobility 2Td
eqx(tw ,tw1t) vs the mean-

square displacementB(tw ,tw1t) for different types of particles
~with equal concentrations!. ~a! ‘‘T’’-shaped particles and~b!
‘‘L’’-shaped particles,tw553104. The dynamical temperatures a
sociated with the two different types of particles~i.e., the slopes of
the dashed straight lines! are equal to within the error bars.
0-6
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E. Comparison with Edwards’ measure

We are now in a position to compare the results for
fluctuation-dissipation ratioXdyn5Td

eq/Tdyn , measured dur-
ing the compaction dynamics, with the outcomes of E
wards’ approach at the corresponding densities. In Fig. 6
report the values ofXEdw vs r ~as obtained with the Ed
wards’ measure! andXdyn ~obtained by the FDR in dynami
cal measurements! at three different values oftw . In order to
check the matching betweenXEdw andXdyn it is enough to
compare the densities obtained from Fig. 6 by impos
XEdw5Xdyn with the corresponding dynamical densities o
tained at the correspondingtw . From Fig. 6 one gets:r1

'0.596 for tw
1 5104, r2'0.603 for tw

2 533104, r3'0.605
for tw

3 553104. On the other hand, the evolution of the de
sity of the system during the measurements of the FDR
reported in Fig. 7. Since the measurements are perfor
during the compaction, the density is evolving, going fro
r(tw) to r(tw1tmax). In each case, we obtain that inde
r iP@r(tw

i ),r(tw
i 1tmax)#, where we have denoted withr i the

FIG. 6. Static ratioXEdw as a function of density. The horizonta
lines correspond to the dynamical ratiosXdyn measured attw

5104, 33104, and 105 and determine the valuesr1'0.596, r2

'0.603, andr3'0.605, to be compared with Fig. 7.

FIG. 7. Evolution of the density during the measurements ox
andB for tw5104, 33104, and 105. The evolution during the qua
siequilibrium part is plotted with lines, and during the violation
FDT with symbols. The horizontal lines correspond to the densi
r1 , r2, andr3 from Fig. 6.
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densities obtained from Fig. 6 for different values oftw
i ( i

51,2,3). More precisely,r i is very close tor(tw
i 1tmax).

This is to be expected since the measure of the FDT viola
is made for times much larger thantw

i and, since the com-
paction is logarithmic, the system actually spends more t
at densities close tor(tw

i 1tmax) than tor(tw
i ).

V. FLUCTUATION-DISSIPATION RATIO FOR THE CASE
WITH GRAVITY

A. Compaction dynamics

While the use of a compaction without gravity is useful
study an idealized context, real compaction due to shak
occurs because of gravity.

The standard way of simulating the effect of gravity in
lattice model is to let the particles diffuse on a tilted~square
or cubic! lattice, with probabilitiespup (pdown512pup) to
go up ~down!, respecting the geometrical or kinetic co
straints. A closed boundary is situated at the bottom of
simulation box, of horizontal linear sizeL and vertical size
Lz@L ~lateral boundary conditions can be closed or op
and various aspect ratios can be used, without changing
results qualitatively!. The control parameter is the ratiox
5pup /pdown,1.

This corresponds, in fact, to the dynamics at tempera
T521/ln(x) for the Hamiltonian

H5(
i

zi , ~6!

where thezi are the heights of the particles~of either of the
models under consideration! above the bottom. Indeed, a
tempted diffusion moves which respect the constraints
accepted with probability min(1,xDH).

As a result, particles tend to diffuse more easily towa
the bottom. A nonzero value ofx is, however, needed in
order to allow for rearrangements.

A simple lattice gas~with the only constraint of single
occupancy! diffusing with the above rule displays an equ
librium behavior, with the known density profile

r~z!5
1

11exp@b~z2z0!#
, ~7!

~with b51/T andz0 depends on the number of particles! and
time translation invariance, and FDT is obeyed. The sys
is therefore stationary and no evolution of the density occu

On the other hand, systems of constrained particles
the tetris or Kob-Andersen models are unable to reach
stationary state and are stuck at lower densities~larger po-
tential energies!, with slow compaction and aging, reprodu
ing the phenomenology of granular compaction@8,11,21,35#.
In particular, it has been shown, both experimentally a
numerically, that, due to heterogeneities, the value of
potential energy~or of the bulk density! is not the only rel-
evant parameter@10,11#, and that, in order to explain fo
instance memory phenomenon, it is necessary to take
account the whole density profile along the vertical directio
For example, various density profiles can be obtained at
s

0-7
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proximately the same potential energy, by varying the e
lution of the forcingT with time.

A first order treatment consists in separating a slow
compacting bulk part and an interface@8#. Because the inter
face is much more dilute than the bulk, the particles f
much less the constraints, and it turns out that the den
profile at the interface is exactly the same as the den
profile of a lattice gas without constraints~see the inset of
Fig. 8!, with Hamiltonian~6! and forcingT. This part of the
system can thereforea priori be considered as ‘‘in equilib
rium,’’ i.e., its shape and dynamics are simply linked to t
forcing.

At this level of treatment, the system is therefore cons
ered to be homogeneous in the horizontal directions,
heterogeneities are taken into account only in the vert
direction.

Compaction data, under the effect of gravity, for vario
types of tetris model can be found in Refs.@8,11,21# and for
the KA model in Ref.@35#. Although we have monitored th
usual quantities describing the compaction, we will theref
not repeat this analysis, but concentrate on the violation
FDT during compaction, showingen passantthat the few
existing data can be misleading or misinterpreted.

The existence of heterogeneities along the vertical dir
tion moreover leads to the following remarks.

While calculating the Edwards’ measure, imposing on
the potential energy of the system will lead to a unique d
sity profile. Since the dynamical density profile depends
the history, it is already clear that specifying only the ene
will not be sufficient to predict all dynamical observables

Heterogeneities exist only along the vertical direction,
that observables along the vertical and horizontal directi
shoulda priori be treated separately.

Dynamical measures can either be made over the w
system or restricted to the bulk. In the first case, the interf
will obviously give an ‘‘equilibrium’’ contribution that may
be much larger than the bulk contribution.

FIG. 8. Typical density profile obtained during the compacti
dynamics of the KA model. The inset shows the dynamical interf
for x50.1 ~circles!, x50.2 ~squares!, x50.3 ~diamonds!, and x
50.4 ~crosses! together with equilibrium interfaces of a lattice ga
without constraints under gravity at the same shaking amplitu
~lines!. The interface profiles have been horizontally shifted
clarity.
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Our numerical results have been performed in the follo
ing conditions.

Tetris model: horizontal sizeL540, number of particles
Npart51600, number of runsNruns52000.

Kob-Andersen model: horizontal sizeL520–40, number
of particles Npart530 000–50 000, number of runsNruns
520–50.

B. FDT and its violations in the existence of a preferred
direction

In general, the fluctuation-dissipation theorem relates,
a system at equilibrium, conjugated response and correla
functions:

TR~ t,t8!5
]C~ t,t8!

]t8
.

Integrated betweentw andt1tw in order to use the integrate
response function, the relation becomes

Tx~ t1tw ,tw!5C~ t1tw ,t1tw!2C~ t1tw ,tw!. ~8!

Let us first consider the case of horizontal degrees of fr
dom: in these directions the system is homogeneous,
without drift. Then if we define

Ch~ t1tw ,tw!5
1

2N (
a5x,y

(
i 51

N

^ai~ tw1t !ai~ tw!&

2
1

2 (
a5x,y

K 1

N (
i 51

N

ai~ tw!L
3K 1

N (
i 51

N

ai~ tw1t !L ~9!

and

Bh~ t1tw ,tw!5
1

2N (
a5x,y

(
i 51

N

^@ai~ tw1t !2ai~ tw!#2&,

~10!

it is easily seen thatBh(t1tw ,tw)52@Ch(t1tw ,t1tw)
2Ch(t1tw ,tw)#.

Moreover, to measure susceptibilities, a perturbation
applied in the following way: untiltw , the system evolves
with forcing x and Hamiltonian~6!; at tw , a copy is made
and evolves aftertw according to the perturbed Hamiltonia
He5( izi

r1He
h where He

h5e( i( f ixi
r1giyi

r), with f i ,gi5

61 randomly for each particle andxi
r ,yi

r ,zi
r are the positions

of the particles in the perturbed system. The integrated
sponse

xh~ tw1t,tw!5
1

2eN (
i 51

N

^ f i@xi
r~ tw1t !2xi~ tw!#

1gi@yi
r~ tw1t !2yi~ tw!#& ~11!

can then be measured.

e

s
r
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For a system at equilibrium@for example, the simple lat
tice gas with single occupancy and no kinetic constrain
and Hamiltonian~6!#, the FDT relation can be observed,

Bh~ tw1t,tw!52Txh~ tw1t,tw!. ~12!

During compaction, the violation of FDT can then be inve
tigated from a parametric plot ofxh vs Bh . This is exactly
similar to the homogeneous case of Sec. IV.

Up to now, however, the only tentative measures of F
have been realized with observables coupled to the ver
direction@30,31#. This is in contrast with other cases of sy
tems with a preferential direction, where measures along
only direction with noa priori heterogeneities were unde
taken@29,41,42#.

In Ref. @31#, the case of the KA model with a vertica
random perturbation was considered. The vertical me
square displacement

Bv~ t1tw ,tw!5
1

N (
i 51

N

^@zi~ tw1t !2zi~ tw!#2&

was measured and confronted to the integrated respons

xv~ tw1t,tw!5
1

eN (
i 51

N

^ f i@zi
r~ tw1t !2zi~ tw!#&

to a perturbationHe
v5e( i f izi

r ( f i561 randomly!. The ex-
istence of a dynamical temperature was inferred from
observed linear relation betweenBv and xv , with a slope
different from the applied temperature.

In Ref. @30#, a perturbation in the forcing was applied, a
confronted to the following mean-square displacement:

B̃v~ t1tw ,tw!5^@h~ tw1t !2h~ tw!#2&

with h(t)5( izi(t)/N. The perturbation in the forcing lead
to the observation of negative response functions@ x̃v(t
1tw ,tw)5hr(t1tw)2h(t1tw), wherehr is the mean heigh
of the perturbed system, the perturbation being applied a
tw#, interpreted as the signature of a ‘‘negative dynami
temperature.’’ This case was investigated in Refs.@8,11#
where this result was shown to be linked to the existence
memory effects, as also confirmed in experiments@10#.

In both cases, however, the existence of a downward d
due to compaction, was not taken into account for the cor
definition of the correlation part of the fluctuation-dissipati
relation: indeed, in the first case, the correlation being

Cv~ t1tw ,tw!5
1

N (
i 51

N

^zi~ tw1t !zi~ tw!&2K 1

N (
i 51

N

zi~ tw!L
3K 1

N (
i 51

N

zi~ tw1t !L , ~13!

Bv(t1tw ,tw) is not proportional toCv(t1tw ,t1tw)2Cv(t
1tw ,tw) as in the homogeneous case. This is even m
easily seen in the second case, where the correlation co
01131
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gated to the response to a change in the driving isC̃v(t
1tw ,tw)5^h(t1tw)h(tw)&2^h(t1tw)&^h(tw)&. Indeed

B̃v~ t1tw ,tw!5^h2~ t1tw!1h2~ tw!&22^h~ t1tw!h~ tw!&

and

C̃v~ t1tw ,t1tw!2C̃v~ t1tw ,tw!5^h2~ t1tw!&

2^h~ t1tw!h~ tw!&2^h~ t1tw!&^h~ t1tw!2h~ tw!&

~14!

are not simply related sincêh(t1tw)&Þ^h(tw)& and ^h2(t
1tw)&Þ^h2(tw)& ~see also a similar discussion, on the ca
of one-time quantities changing with time, in Ref.@43#!.

It turns out therefore that the results of Refs.@30,31# area
priori flawed from an incorrect measure of the correlati
part of FDR.

We will see in the next subsections how measures of c
relation and response functions along the horizontal dir
tions lead to sensible results, whereas all measures of ver
correlations or response lead to the impossibility of defin
effective temperatures.

C. FDR in the aging „compacting… regime

1. Vertical observables?

Two sets of response and correlation functions cana pri-
ori be measured: the incoherent ones (Cv ,xv) as in Ref.@31#

or the coherent ones (C̃v ,x̃v) as in Ref.@30#.
If we write

Cv~ t1tw ,t1tw!2Cv~ t1tw ,tw!

5K 1

N (
i 51

N

zi~ t1tw!@zi~ t1tw!2zi~ tw!#L
1

1

N K (
i 51

N

zi~ t1tw!L K 1

N (
i 51

N

@zi~ tw!2zi~ t1tw!#L
5K 1

N (
i 51

N

@zi~ tw!2zi~ t1tw!#@^h~ t1tw!&2zi~ t1tw!#L
we can observe that genericallyzi(tw1t)<zi(tw) since the
system is compacting, so that two opposite contributions
be distinguished inCv(t1tw ,t1tw)2Cv(t1tw ,tw): the par-
ticles such thatzi(t1tw),h(t1tw) give a positive contribu-
tion, those such thatzi(t1tw).h(t1tw) give a negative
one. At short and intermediate times, the particles close
the surface move more than those in the bulk and there
the negative contribution dominates. This leads to a nega
Cv(t1tw ,t1tw)2Cv(t1tw ,tw). At very long times
Cv(t1tw ,t1tw)2Cv(t1tw ,tw) has to become positive b
definition, but such times may not be reachable in a num
cal simulation.

This peculiar behavior comes from the fact that the drift
not homogeneous in the system: some regions are comp
0-9
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ing more than others. Local drifts should then be taken i
account. However, this is numerically~and also experimen
tally! too difficult to measure.

On the other hand, the coherent correlation and respo
C̃v , x̃v can also be measured. The difficulty arises from
measure of the coherent correlation functionC̃v , of order
1/N for N particles: relatively small systems have to be sim
lated with a large number of realizations. For an equilibriu
lattice gas without kinetic constraints, FDT is then reco
ered: N@C̃v(t1tw ,t1tw)2C̃v(t1tw ,tw)#5x̃v(t1tw ,tw).
In the case of the compacting system, the parametric plo
N@C̃v(t1tw ,t1tw)2C̃v(t1tw ,tw)# vs x̃v(t1tw ,tw) re-
veals a first part of slope one, which corresponds to the f
equilibrium response of the interface. At larger timest, how-
ever, the response of the bulk, which can compactify m
easily if the forcing is increased, leads to a decrease
x̃v(t1tw ,tw), which can even become negative as obser
in Ref. @30#. As tw goes to`, the bulk becomes so compa
that its contribution goes to zero, and the equilibrium FD
can be recovered thanks to the interface contribution. Th
results are summarized in Fig. 9.

The previous investigations shows that no definition of
effective temperature can be inferred from dynamical m
sures correlated with the preferred directions in which h
erogeneities occur.

Note that this kind of situation also arises in the study
effective temperatures in driven vortex lattices with rand
pinning: while an effective temperature can be defined
measured for degrees of freedom perpendicular to the d
problems are encountered when dealing with longitudi
observables@44#. We now turn to horizontal observables.

2. Horizontal observables

The first result is obtained by studying the whole syst
with a horizontal perturbation applied: the relation betwe

FIG. 9. x̃v(t1tw ,tw) vs N@C̃v(t1tw ,t1tw)2C̃v(t1tw ,tw)#
for the KA model, withL520, Npart54000, Nrun5500, x50.8
~circles!, andx50.5 ~squares!; tw5214 and t52, . . . ,216. The first
equilibrium part corresponds to the interface dynamics, while

longer timesx̃v decreases because of the bulk response. The
monds correspond to a simulation with no kinetic constraint a
Npart54000 particles: only equilibrium FDT is then observed. T
straight line has slope 1.
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mean-square displacementBh and response functionxh is
then clearly linear, with a slope equal to the temperatureT of
the forcing. This seemingly surprising result is easily e
plained by the fact that both functions are completely dom
nated by the contribution of the interface where the partic
can diffuse quite easily, and which actually displays an eq
librium profile ~see Fig. 8!. It seems therefore natural to re
strict the study of the observables to the bulk part of
sample, in which the density is quite homogeneous whe
constant forcing is applied~see Refs.@11,35# and Fig. 8!. The
sums definingBh , xh are therefore restricted to the particle
that remain betweentw and tw1t in the bulk ~defined, e.g.,
aszmin,zi,zmax, with zmin andzmax appropriately chosen!.

Our results, summarized in Fig. 9 and 10, are qualitativ
similar for both models. The clear violation of FDT obtaine
with horizontal perturbations allows for the measurements
the FD ratios while nothing can be said using the data
tained with vertical perturbations.

D. Results for a bidisperse system

In the models we have considered, it is quite easy
implement the presence of two types of particles~this has
already been seen in Sec. IV for the tetris model witho
gravity!.

t

a-
d

FIG. 10. 2Txh vs Bh for the tetris model~a! and the KA model
(tw5214)~b!. The straight lines have slope 1.
0-10
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For the Kob-Andersen model, we can simulate ‘‘sma
and ‘‘large’’ particles by taking different values for the k
netic constraint, e.g.,n155 and n256 or n257. As also
shown in Ref.@35#, partial segregation then occurs becau
the particle with largern are less constrained and can mo
more easily toward the bottom.

However, as shown in Fig. 11, there exists a bulk reg
in which the density profiles for both types of particles a
flat. It is therefore possible to measure FDR in this regio

The results, shown in Fig. 12, are quite clear: although
smaller particles are more mobile than the larger ones,
therefore diffuse more easily, the FDR for the two types
particles are equal. As already noted in Sec. IV, this resu
important since it means that the FDR can in principle
measured using tracers different from the particles comp

FIG. 11. Density profiles for a bidisperse system of 30 000 p
ticles with n155 and 10 000 particles withn256, for a forcingx
50.2, after 214 time steps. The less constrained particles have
fused more easily towards the bottom.

FIG. 12. KA model: 2Txh vsBh , measured in the homogeneou
bulk, for the two types of particles~symbols, more constrained pa
ticles with n155; lines, less constrained particles withn256), for
various forcing (0.1, 0.2, and 0.4) andtw5214, t52, . . . ,218. The
two kinds of particles display differentxh andBh at a given time,
but the same violation of FDT.
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ing the granular material, and that the FDR should then
independent of the shape of the tracer.

E. Edwards’ measure

Edwards’ measure is defined as a flat measure ove
blocked configurations, i.e., configurations with all particl
unable to move. For a system under gravity, a particle
heightz is ‘‘blocked’’ if it cannot move downwards, i.e. if all
its neighboring sites atz21 are occupied or if the particle
cannot move towards either of these sites because of
geometrical or kinetic constraints.

Implementing this difference~with respect to the case
without gravity! into the auxiliary model of Refs.@23,24# is
straightforward.

As in Ref. @29#, the following procedure is used: the au
iliary model has total ‘‘energy’’bauxEaux1bEp whereEaux
is as usual the number of mobile particles,baux the auxiliary
inverse temperature,Ep the potential energy, andb a
Lagrange multiplier. For each value ofb, an annealing pro-
cedure is performed onbaux , until configurations with
Eaux50 are reached. The density profiles are then measu
along with the value ofEp . Repeating the procedure the
yields the curvebEdw(Ep) directly. The profiles at various
values ofEp are shown in Fig. 13. These profiles are qu
different from the dynamically obtained profiles at simil
energies. This is not surprising since they have been obta
imposing only the potential energy, whereas the dynam
profiles depend on the history and it has been sho
@8,10,11# that Ep is not the only relevant parameter.

In this case, Edwards’ measure, if constructed by imp
ing only one parameter, is not able to predict dynamical
servables.

On the other hand, since dynamically the bulk dens
profiles are flat, we can generate blocked configurations w
homogeneous density, at various densities. This yields a
stricted Edwards’ measure; proceeding as in Refs.@23,24# we
obtain Edwards’ entropy at the densities considered and
can therefore compute

r-

f-
FIG. 13. KA model: density profiles for Edwards’ measure, o

tained with various values of the Lagrange parameterb ~symbols!.
A dynamically obtained profile is also shown for comparison,
corresponds to a constant shakingx50.4 and to a potential energ
similar to the caseb50.02 ~stars!. The profiles are very different.
0-11
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XEdw5

dsequil~r!

dr

dsEdw~r!

dr

, ~15!

which is shown in Fig. 14 in the case of the KA model.

F. Comparison and discussion

From the dynamics on the one hand and Edwards’ m
sure on the other hand the following two sets of data
obtained.

Dynamical FDR at various densities, for horizontal d
placements and response functions; since the densit
evolving during the measures, an uncertainty is observe

Statically obtainedXEdw .
Figure 14 shows that the agreement between both se

data is very good, even for a quite large vibrationx50.4 or
low densities 0.73.

The theoretical results can be summarized as follows
the case of a homogeneous bulk, the ratioXd of the horizon-
tal dynamical temperature to the imposed tempera
21/ln(x) only depends on the bulk density, and is given
XEdw(r). Using various vibration amplitudes, we hav
checked thatXd at various densities andXEdw(r) indeed
coincide. Another check of the consistency of the theoret
construction can be made by comparing two dynamical p
cedures: if a certain forcingT1 is applied untiltw , and then
changed toT2, a dynamical temperatureTd

12 will be obtained.
While Td

12 depends onT2, the equality

T2

Td
12

5XEdw@r~ tw!#

should be observed, at least ifT2 is not much higher thanT1
~in this case, as shown in Ref.@11#, the bulk density change

FIG. 14. Circles,XEdw5(dsequil(r)/dr)/(dsEdw(r)/dr) vs r
for KA model, imposing homogeneity; squares, dynamically o
tained FDR~for horizontal displacements and response! vs density
measured for the corresponding dynamical profiles. Inset, equ
rium and Edwards’ entropy densities~imposing homogeneity for
Edwards’ entropy!.
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suddenly by a large amount aftertw). We have performed
such measurements and checked that this is indeed the
~see Fig. 15!.

VI. RELATIONS WITH EXPERIMENTS

While the link between a dynamically measured tempe
ture and a static measure is of great theoretical importanc
is experimentally impossible to sample such a measure. T
oretical predictions can be checked experimentally o
through purely dynamical measures.

Preliminary results in this direction were obtained by t
Chicago group@4# by measuring the volume fluctuation
with respect to the steady-state volume at different height
the sample. Since the curves obtained at different height
not coincide, the authors concluded that one single obs
able, namely, the Edwards compactivity, cannot account
the depth dependence of the fluctuations. These conclus
are in agreement with our results obtained in systems wi
preferential direction where fixing one single observable
the Edwards approach does not allow for the prediction
the dynamical observables unless one reduces the analy
some homogeneous section of the system.

Thanks to recent theoretical progresses, new experim
have been proposed in order to check the existence of
namical temperatures@23,29,41,42#, by monitoring mean-
square displacements and mobility of tagged particles,
tracers, in sheared supercooled liquids or foams, or
sheared or tapped granular media. The existence of a li
relation (B vs x! could be tested for various shapes, mass
etc., of the tracers, in order to check that this relation
indeed defining a temperature.

Our analysis of models compacting under gravity su
gests also other types of experimental possibilities. Fi
only diffusivity and mobility in the direction perpendicular t
the gravity should be measured. Moreover, the existenc
strong heterogeneities implies that a tracer close to the in
face should allow to measure a temperatureTd

i which de-

-

b-

FIG. 15. x vs B following a change in the forcing fromx1 to x2

at tw5214: the slope depends on the forcing applied aftertw (t
52, . . . ,218). Inset,T2x vs B, showing the equality of the dynami
cal ratiosT2 /Tdyn .
0-12
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pends directly on the driving amplitude@in the models,T5
21/ln(x)#, and is stationary, i.e., does not depend on the b
density. On the other hand, a tracer well immersed in
bulk should yield another valueTd

b of the FDR ~which de-
pends ontw), and theratio Td

b/Td
i should depend only on th

density of the bulk. For example, if experiments are p
formed changing the driving intensity attw from x1 to x2,
and the two associated ‘‘interface’’ and ‘‘bulk’’ temperatur
are measured, the ratioTd

b/Td
i should be independent ofx2,

provided the bulk density does not change significantly.
this way, the comparison of only dynamical measures wo
be a strong experimental test for the whole theoretical c
struction, without any need to sample the underlying sta
measure.

VII. SUMMARY AND CONCLUSIONS

In this paper, we have studied two paradigmatic mod
for the compaction of granular media. These models cons
particles diffusing on a lattice, with either geometrical
dynamical constraints. Idealized compaction without grav
has been implemented for the tetris model, and compac
with a preferential direction imposed by gravity has be
studied for both models. The possibility to define dynam
cally a temperature in the framework of fluctuatio
dissipation relations and to link it to the statically construc
Edwards’ measure has been investigated.

In the first, ideal, case of the homogeneous compact
the obtained FD ratios have been clearly shown to be
hy

se
d

.R

er

ge
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agreement with the prediction of Edwards’ measure at v
ous densities.

The situation is more complicated if a preferential dire
tion is present: then the whole density profile hasa priori to
be taken into account. Moreover, the vertical drift due
compaction leads to contradictory~and sometimes meaning
less! results when observables coupled to the preferential
rection are considered for the evaluation of a FD ra
@30,31#. Since the energy of the system is not the only p
rameter, and since the density profiles depend on the his
Edwards’ measure is nota priori able to predict the dynami
cal configurations. If, however, the homogeneity of the bu
is imposed, FD ratio obtained dynamically for horizontal d
placements and mobility and from Edwards’ measure co
cide.

It is striking to note that Edwards’ measure, whicha pri-
ori could be valid only for very weak forcing and almo
stationary systems seems, however, to yield good predict
even for nonstationary systems that are still compacting.

Finally, we have proposed experimental tests of the wh
theoretical construction, through the comparison of vario
types of dynamical measurements, since the constructio
Edwards’ measure, numerically straightforward, is obviou
impossible in experiments.
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