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In this paper we investigate the possibility of a dynamical definition of an effective temperature for com-
pacting granular media in the framework of the fluctuation-dissipati) relations. We have studied two
paradigmatic models for the compaction of granular media, which consider particles diffusing on a lattice, with
either geometricaltetris model or dynamical(Kob-Andersen modglconstraints. Idealized compaction with-
out gravity has been implemented for the tetris model, and compaction with a preferential direction imposed by
gravity has been studied for both models. In the ideal case of an homogeneous compaction, the obtained FD
ratio is clearly shown to be in agreement with the prediction of Edwards’ measure at various densities. Similar
results are obtained with gravity only when the homogeneity of the bulk is imposed. In this case the FD ratio
obtained dynamically for horizontal displacements and mobility and from Edwards’ measure coincide. Finally,
we propose experimental tests for the validity of the Edwards’ construction through the comparison of various
types of dynamical measurements.
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[. INTRODUCTION semble invariant. Moreover, just as in the case of aging
glasses, the compaction dynamjés-6] does not approach
Granular material§1—3] play a very important role in any stationary state on experimental time scésdeast at
many fields of human life and industrial activities, such assmall enough forcingand these systems exhibit agiit-9]
agriculture, building, chemistry, etc. Their properties are in-and memory10-12. A granular media lives then always in
teresting not only for practical reasons, but also from theonequilibrium conditions. Even when one observes some
point of view of fundamental physics. In fact, in spite of their Stationary state as the result of a specific dynantécergy
apparent simplicity, they display a wide variety of behaviorsNi€Ction imposed to the system, one is never able to estab-

- : : .~lish some sort of equipartition principle ruling how the en-
that is only partially understood in terms of general physical . . A .
yP y g Py ergy injected is redistributed among the different degrees of

rinciples.
P P freedom of the system.
Despite all these difficulties, since granular systems in-
A. Typical problems to face in the study of compact volve a large number of particles, one is always naturally

granular matter inclined to treat them with methods of statistical mechanics.
The common wisdom about granular materials defineIn pa}rt_i(;ular, one of the main questions concerns the very
them as nonthermal systems, since thermal energy can 0_53|b|I_|ty to construct a cpherent thermodynam|cs_ and on

’ fiis point the debate is wide open. The construction of a

gene_rally neglected if compared to mechanical energy _due tf?1ermodynamics would imply the identification of a suitable
gravity and other exte_mal energy sources usu_ally acting Olisyribution that is left invariant by the dynamig¢s.g. the
these systems. In addition, a fundamental role in the dynarT}hicrocanonical ensembleand then the assumption that this

ICS 1S played by ;he mechanical energy d|53|p§lt|on due t%istribution will be reached by the system, under suitable
friction and collisions among the grains and with the CON-..nditions of “ergodicity.” As already mentioned since in

tainer walls: motion can take place only by ContanOUSIyrgranular media energy is lost through internal friction, and

feeding energy into the system that otherwise would ge ained by a nonthermal source such as tapping or shearing,

stuck into some m.etasta}ble state, no longer exploring spo his approach seems doomed from the outset. Nevertheless
taneously the configuration space. Consequently, as a mattgrtl '

. . e could ask whether some elementary thermodynamic
of fact, the dynamics of granular matter is always a respons
to an external perturbation and in general the response Wiﬁ_‘
depend in a nontrivial way on the rheological properties ofd
the medium, on the boundaries, on the driving procedur
and, last but not the least, on the past history of the syste
From the nonthermal character of these systems a lot 0
consequences can be drawn. The first one concerns the lack
of any ergodicity principles: a granular media is not able to
freely explore its phase space and the dynamical equations A lot of approache$13—22 have been devised in the last
do not leave the microcanonical or any other known enyears to provide a coherent scenario but till now the situation

uantities are well defined and what is their meaning. It is in
is spirit that in this paper we address the question of the
efinition of an effective temperature for compact granular
fnedia. Before going in the details let us briefly review the
tate of the art on these subjects.

B. State of the art
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is quite uncertain mainly because at a fundamental level It should be noted that previous measurements of FDR in
there is no general argument showing that a particular corthe presence of gravitiand thus heterogeneitieBave been
struction should lead to the relevant distribution for the dy-attempted in Refd.30,31. However, the negative response
namics(as one does in the case of conservative dynamicgunctions observed in Ref30] was subsequently shown in
leading to thermodynamigs Refs.[8,11] to be linked to memory effectsl0], and not to

Many models have been proposed in order to reproducEdwards’ measure. Moreover, the measures of R8531]
the rich phenomenology observed in granular compactionvere flawed by an incorrect definition of the correlation part
experiments [4,5], but a general thermodynamical-like of the fluctuation-dissipation ratio, due to the fact that one-
framework, based on the idea of describing a granular mateime quantities are still evolvingsee Sec. V for a detailed
rial with a small number of parameters is, however, still lack-discussioh The conclusion of Ref.31] about the existence
ing. of a dynamical temperature was thus premature.

A very ambitious approach, aiming at such a description The link established between Edwards’ approach and the
of dense granular matter has been put forward by Edwardguctuation-dissipation relations could open new perspectives
and co-workerq18,19, by proposing an equivalent of the from two different points of view. First of all from the ex-
microcanonical ensemble: macroscopic quantities N gerimental point of view where possibilities are open(ito
jammed situation should be obtained by a flat average ovefheck the Edwards’ measure by means of dynamical mea-
all blocked config_uration$i.e., in which every grain is un- surementsyii) perform dynamical measurementhrough
able to move of given volume, energy, etc. The strqng a5 the fluctuation-dissipation relationsof a “temperature”
treated as equivalent and have the same weight in the me%v-hiCh should only_depen_c_l on _the density_. This CO.UId aII_ow
sure. fOr egn tat Ieastthparr]tlal eqwhtt))ratmfnt r(])f thet.d|s|;/)r0port|.on|eX|stk—
. e ing between the huge number of theoretical/numerical works
Very recently, important progresses in this direction have and this paper contributes to this numband the few ex-

been reported in various contexts: a tool to systematically” . :
construct Edwards’ measure, defined as the set of bbcke%erlmental results. Moreover, very focused experimental re-

configurations of a given model, was proposed in RefsSults could help in Qiscriminating between the different mod-
[23,24; it was used to show that the outcome of the aging®!S Proposed in literature. On the other hand, from the
dynamics of the Kob-AndersefiKA) [25] model (a kineti-  theoretical point of view one is left with several questions:
cally constrained lattice-gas moglatas correctly predicted Why Edwards’ measure seems to be correct in a wide range
by Edwards’ measure. Moreover, the validity and relevancéf situations? Is it possible to identify some first principles
of Edwards’ measure have been demonstra&] for the justifications or derivations for it? Why the outcomes of the
tetris model[21], for one-dimensional phenomenological Edwards’ approach seem to coincide with the results of
models[27], for spin models with “tapping” dynamicf28],  fluctuation-dissipation measurements?
and for sheared hard spheif&$]. This paper, far from being able to address all these ques-
At present, however, the correspondence between Edions, tries to make the link between Edwards’ approach and
wards’ distribution and long-time dynamics is at bestthe fluctuation-dissipation measurements firmer in several re-
checked but does not follow from any principle. It is there-alistic situations and propose some possible experimental
fore important to continue to explore its range of validity andpaths for its checking. The outline of the paper is as follows.
therefore to test its applicability to various kinds of models.\ye first recall in Sec. Il the definition of the models under
Another important message emerging from these studiegonsideration, and in Sec. Ill how to construct Edwards’
concerns the link between Edwards’ approach and the outneasure. The case of homogeneous compaction for the tetris
comes of the measurements of the fluctuation-dissipation repodel is described in Sec. IV, while fluctuation-dissipation
lations. In Refs[23,24,24 it has been shown in the frame- (atios during a gravity-driven compaction are measured for

work of two non-mean-field models, the Kob-Andersenpgth KA and tetris models in Sec. V. Finally, possible experi-

(see below for its precise definitiprtoincides on a wide
range of densities with the fluctuation-dissipation ratio
(FDR) in homogeneous systems, i.e., in systems without any
preferential direction. This paper extends those results pro- The models we consider are lattice models, and in this
viding a series of evidences for the validity of Edwards’ ap-sense are not realistic microscopic models of granular mate-
proach in two main directions. rials. However, they are worth investigating: on the one
(i) First of all we focus on more realistic situations by hand, they have been shown to reproduce the complex phe-
considering the case of granular packings subject to gravitynomenology of granular mediesee Refs[7,8,11,2]1 and
this is an important example to test the role of large scaldRefs.[33,35); on the other hand, the validity of Edwards’
inhomogeneities, such as the density profiles along the prefneasure for some observables has already been shown in an
erential direction, whose treatment has to be performed verigdeal case of homogeneous compacti®8,24, making
carefully in order to avoid apparently nonphysical resultsthese finite-dimensional models good candidates for further

II. MODEL DEFINITION

[30]. investigations in more realistic situations, i.e., with heteroge-
(ii) We present results concerning the independence of theeities induced by gravity and the existence of a preferential
FD ratio of the observables used for its definition. direction.
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A. Tetris model model and the type of dynamics. For example, a particle is

Under the denomination of “tetris” falls a class of lattice M°'€ easily blocked in presence of an imposed drift, e.g.,

g : . : ravity.
[21] models whose basic ingredient is the geometrical frus9 . . -
tration. The models are defined on a two-dimensional square Th|§ approach, based on the idea of describing granular
material witha small number of parameteréeads to the

lattice with particles of randomly chosen shapes and SiZe$. + oduction of an entropBeq,, given by the logarithm of

The only constraint in the system is that particles cannothe number of blocked configurations of given volume, en-
overlap: for two nearest-neighbor particles, the sum of theergy etc., and its corresponding densiy, = Seqy/N As,
! N w— “Edw/ V- -

arms oriented along the bond connecting the two particleg,ciated with this entropy are the state variables such as
has to be smaller than the bond length. The interactions AR ompactivity” Xzl =(9/0V)Seqy(V) and “temperature”
hence not spatially quenched but determined in a seIf=|-71 — (3] 9E Edé” Edw

eaw= (9/IE) Sgqw(E).

consistent way by local particle conf|gurat|on§. The explicit construction of Edwards’ measure, as well as
In the version we usésee Ref[24]), the particles have a ot 16 equilibrium measure, has been described in detail in
“ T" shape (three arms of Iengtlidz whered sets the bond  Refs [23,24 for the tetris and the KA models. In particular,
size on the square latticeThe maximum density allowed is  Eqwards’ measure is obtained with an annealing procedure at
then pmax=2/3. fixed density. In order to select only the subset of configura-
tions contributing to the Edwards’ measure we introduce an
B. Kob-Andersen model auxiliary temperatureT,,, (and the correspondingg,,y

The other model we consider is the so-called KA model= 1/Taud and, associated with it, an auxiliary energy,y
[25], first studied in the context of mode-coupling theoriesWhich, for each configuration, is equal to the number of mo-
[32] as a finite dimensional model exhibiting a divergence oftile particles. A particle is defined as mobile if it can be
the relaxation time at a finite value of the control parametefMoved according to the dynamic rules of the original model.
(here the density this divergence is due to the presence in N particular, one measureS,, Baux.p). 1-€., the de-
this model of the formation of “cages” around particles at crease of the auxiliary energy at fixed density, performing an
high density(the model was indeed devised to reproduce théinnealing procedure increasing progressivgly,x. From
cage effect existing in supercooled liquids thls_ measure one can compute the Edwards’ entropy density

Though very schematic, it has then been shown to reprodefined by
duce rather well several aspects of glaj&3, like the ag-
ing behavior with violation of FDT[34], and of granular

compaction35]. Sedwl P) = Saux( Baux=*.p)

The successful comparison of aging dynamics and predic- "
tions of Edwards’ measure was moreover shown for the first :SequiI(P)_J €aux Baux:P)dBaux, (1)
time for this model, in Refd.23,24], in the idealized case of 0

homogeneous compaction. On the other hand, a study of the

violation of the FDT during the compaction procesmder

gravity) was undertaken in Ref31], and the existence of a WhereeauBaux,p) is the auxiliary Edwards’ energy density

dynamical temperature was advocafé8]. andsg( Baux= 0.p) = Sequilp) is the equilibrium entropy of
The model is defined as a lattice gas on a threethe model.

dimensional lattice, with at most one particle per site. The For the KA model, the equilibrium entropy is simply the

dynamical rule is as follows: a particle can move to a neigh€ntropy of a lattice gas. It is worth, however, recalling that,

boring empty site, only if it has strictly less thameighbors ~ for the tetris model(and in general when the equilibrium

in the initial and in the final position. measure is not known analyticallythe equilibrium measure
Following[25], we taker=5: this ensures that the system can also be obtained with an annealing procedure: also in

is still ergodic at low densities, while displaying a sharpthis case one introduces an auxiliary temperatlitg,

increase in relaxation times at a density well below 1. The= 1/8;,, associated with an auxiliary energy, ,, defined as

dynamic rule guarantees that the equilibrium distribution isthe total particle overlaps existing in a certain configuration.

!

trivially simple since all the configurations of a given density For each value of /,,, one allows the configurations with a
are equ_ally pro_bable: the Hamiltonian is just O since no Stati?)robability given bye(—ﬁ;uxE;ux)_ Starting with a large tem-
Interactions exist. peratureT.,, one samples the allowed configurations by pro-

Moreover, it is also easy to consider a mixture of WO yressively decreasing,,,. As T, is reducedE,,, de-
types of particles, by considering particles of type 1 with a aux S .
creases and only af;,,=0 (no violation of constraints

certain valuev, for the dynamical constraint, and particles of - . .

type 2 with v,# vy [35]. glloweo) the au?ullary.energy is precisely zero. The expllora-
tion of the configuration space can be performed working at

constant density by interchanging the positions of couples of

particles. This procedure is used to compBtg,(Biux:P)

Edwards’ approach is based on a flat sampling over all thand e} (Baux,p) (energy per particle from which one

blocked configurations, i.e., configurations with all particlescan compute the equilibrium entropy per particle by the
unable to move. This definition therefore depends on thexpression

IIl. EDWARDS’ MEASURE
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1 , : ‘ their nearest neighbors and cannot diffuse on the lattice. This
filling procedure stops when no other particles can be depos-
ited on the system anymore, yielding a reproducible initial
density ofp~0.547.

The irreversible compaction dynamics is then realized al-
ternating attempted random diffusiofis which a particle is
chosen with uniform probability and allowed to move to-
wards one of its nearest neighbors with probabifity 5,
only if all the possible geometrical constraints are satisfied
and attempted random depositions on the latteo® empty
site is chosen with uniform probability and a grain is then
adsorbed on the lattice only if no violation of the geometrical
. . ‘ constraints occujs The global density increases, the system
0 0.2 0.4 0.6 0.8 remaining homogeneous during the process.

p The Monte CarldMC) time unit is defined as the number
of elementary dynamical steps normalized to the number of
sites of the latticel2. In order to overcome the problem
related to the simulation of very slow processes and obtain-
ing a reasonable number of different realizations to produce

o clean data, we have devised a fast algorittimthe spirit of
=Sequill Baux= O,p)—f erux Baux:P)ABLux Bortz-Kalos-Lebowitz algorithn{36]), where the essential
0 ingredient is the updating of a list of mobile particleghose
number isn,,p) . In order to reduce the number of less sig-
nificant events, such as failed attempts of deposition/
diffusion, this algorithm is essentially based on a guided dy-
nl — —_ i1 _ namics where only mobile particlgse., grains that could

Sequi Bau=0,p)=—pInp=(1=p)In(1=p)+pln 4’(2) diffuse toward a nyeighborinz sitare cor?sidered. At each

time step onamobile particle is chosen with uniform prob-
which is easily obtained by counting the number of ways inability and allowed to move if all the geometrical constraints
which one can arrangel? particles of four different types are satisfied. If the attempt has been successful, the list of
on L? sites. mobile particles is then updated, performindpaal control

Edwards’ and equilibrium entropies, computed as a funcof grains’ mobility. This procedure therefore introduces a
tion of density, are reported in Fig. 1 for the tetris model. Ittemporal bias in the evolution of the system, which has to be
is also possible to compute the so-called Edwards’ ratio, detaken into account by incrementing the time of an amount
fined as At=1/n,.,, after each guided elementary step. This algo-

rithm becomes very efficient as the density of the system
dsgqw(p) / dSequilp) increases, since the number of mobile particles reduces dras-
Xedw= dp dp (3) tically.
During the compaction, we measure the dengify) of
Xeaw @pproaches 1 g8— pmax, Since at the maximum den- particles, the density,,,o(t) of mobile particles, the mobil-
sity all configurations become blocked and therefore equilibity
rium and Edwards’ entropies become equivalent.

08 |

Seaw(P) + SequilP)

0.4

FIG. 1. sggn(p) andseqyil(p) for the tetris model.

SequiI(P)Esequil(ﬁéux: ®,p)

wheree},,.(Baux:p) is the auxiliary energy per particle. For
the choice made for the particles one has

N
(t t +t) i E E 5<[rk(t +t k(tw)]>
IV. FLUCTUATION-DISSIPATION RATIO FOR THE CASE A dN 7 &= of
WITHOUT GRAVITY
A. Tetris model: Dynamics without gravity obtained by the application of a random force to the particles

It is worth to recall that for the KA model, the compaction betweent,, andt,, +t, and the mean square displacement

dynamics was obtained by means of a“piston,” i.e. by cre-

ating and destroying particles only on the topmost ldgéa 1 N

cubic lattice of linear sizé) with a chemical potentiaj B(tw.tw )= g > Z tw ) —rR(tw)]1%)

[33]. The validity of Edwards’ measure in this case has been &

described in Refd.23,24. We will therefore focus here on

the tetris model. In Refs[24,26, compaction dynamics (N is the number of particlesa=1,...d runs over the

without gravity has been implemented for this model in orderspatial dimensionsd=2 for tetris,d=3 for KA; r is mea-

to avoid generating a preferential direction. sured in units of the bond siz# of the square lattige In-
The system is initialized through a random sequential adédeed, the quantitieg(t,, ,t,,+t) andB(t,, ,t,,+t), at equilib-

sorption of “T"-shaped particles on an initially empty lat- rium, are linearly relatedand actually depend only drsince

tice. The grains must satisfy the geometrical constraints witlime-translation invariance holpsy
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FIG. 2. Einstein relation in the tetris model with interrupted £ 3. Evolution ofB(t+t,,,t,,) for varioust,, (from bottom to
aging, at various densities. Insets, density of mobile particles vs top, 5x 10%, 10%, 3x 10%, and 5x 10%). Inset, collapse oB; for the
for t,,= 10%, andB(t,, + t,t,,) vst for two differentt,, (illustration of collapse, we have not taken into account the final portion of each

). curve, because of a saturation®fiue to finite-size effects.
X rupted aging, characterized by an increasp gfi(t) toward
2x(t)=EB(t), (4) its equilibrium value(inset of Fig. 2 and a single linear
Ty relation for the y vs B parametric plot. Fluctuation-

Dissipation Theorem is then recovered, and the value of the
where X is the so-called FDR which is unitary in equilib- equilibrium fluctuation-dissipation ratioT$%, is obtained
rium. Any deviations from this linear law signals a violation from the measures of those quantities; its value actually does
of the Fluctuation-Dissipation TheorefDT). Nevertheless, not depend on the density of the system.
it has been shown, first in mean-field modg3s], then in It is interesting to mention that the behavior described in
various numerical simulations of finite dimensional modelsthis subsection can actually also be observed for the KA

[38,39 how in several aging systems violations from B4).  model, which was studied in Refi23,24] only under con-
reduce to the occurrence of two regimes: a quasiequilibriuninuous compaction.

regime with X=1 (and time-translation invariangefor

“short” time separations {<t,,), and the aging regime with

a constanX =1 for large time separations. This second slope o . .

is typically referred to as a dynamical temperatdig,, If the compaction is not stopped at tintg, the density

=Te4 such thatx:xdyn:-rgq/Tdyn [40]. increases, and a_typlcal aging behavior is observgd, as shown
We have simulated lattices of linear size-50, 100, 200, Fig. 3 where different curves @(1+1y,ty), for d_lfferent

in order to ensure that finite-size effects were irrelevant. w&/alues ofty, are reported: the mean-square displacement

have chosen periodic boundary conditions on the lattice, hay@€PeNds explicitly not only on the observation tifriut also

ing checked that other types of boundary conditiées., ont,. Thg system remains out of. equilibrium on_aII the

closed onesgave the same results. We have investigated thgbserved time scale, with the violation of TTI. The inset of

irreversible compaction dynamics of the system up to timeg!9- 3 shows the collapse of the curvesBfit+1,,,t,) for

of 2x10° MC steps, realizing a large number of different d|ﬁergnt valugs of the_age of the system, obtained with the

runs (N,,,<=8000—9000), in order to obtain clean data. ThelloWing scaling function:

random perturbation is realized by varying the diffusion

C. Aging dynamics

o . y . t+t,+1s
probability of each particle from the initial valyg= 3 to the In| ———
valuep®=;+ f{e, wheref{ =+ 1 is a random variable asso- B(t+1,,t,)=C 1, (5)
ciated with each grain independently for each possible direc- tyt+ts

tion (r =X,y), ande represents the perturbation strength. The
results presented here are obtained with a perturbation
strengthe=0.005, having checked that for 0.082<0.01  Wherec, ts, and 7 are fit parameters. Our results show a
nonlinear effects are absent. linear dependence of the parametersind = on the age of
the system, while the coefficientis nearly constant.
Moreover, we observe the density of mobile particles
Pmon(t) getting smaller than the corresponding value at equi-
When the compaction process is stopped at a certain timébrium [24], as another evidence of the out of equilibrium
tw, the system relaxes towards equilibrium: the mean-squarkeehavior of the system during the compaction process.
displacement and the integrated response function satisfy the The system also features a violation of the fluctuation-
TTI, as Fig. 2 shows. This is the so-called regime of inter-dissipation theorem. More precisely, thevs B parametric

B. Interrupted aging regime
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FIG. 4. Einstein relation in the tetris model: plot of the mobility Blt+1,.t,)
ZngX(tW’tWH) vszthe mean-square diSpIa%ﬁr.anW’tWH) fqr FIG. 5. Plot of the mobility Ig%(t, ,t,+t) vs the mean-
(Za);rmwld:t:ﬁ Salgzéb)o;mt’;e3f>:”12:};g§t\ﬁ ;?sogwde "f’r:]aekggsfaoerg l':%g greduare displacemerB(t,,,t,,+t) for different types of particles
linear of the FDT violation whose slope gives a measurXgf;. ?Wlth equal concentrations (a) “T"-shaped particles and(b)

“L"-shaped particles,t,,=5x 10*. The dynamical temperatures as-

sociated with the two different types of particle®., the slopes of
plot, reported in Fig. 4, shows two different linear behaviors:the dashed straight lingare equal to within the error bars.
for timest smaller thant,, we observe a first quasiequilib-

rium regime where FDT hold8.e., X4y,=1), followed by a  easily, being less constrained. Although we have two differ-
second regime in which FDT breaks down and a dynamicagnt types of particles, the system remains homogeneous dur-
temperaturdl 4, arises which is independent of the observa-ing compaction.
tion timet. This quantity actually depends on the age of the We have therefore measured FDR for the two different
system,t,,, and therefore on the density. We have investi-types of particles. The results obtained show that the two
gated this behavior in a large range of waiting times, corredynamical temperatures are equal within the error bars, even
sponding to several values of the density, obtaining the folthough the related diffusivities are differegsee Fig. 5 for an
lowing results: Xg,,=0.646+0.002, Xj,,=0.767=0.005, ~example with equal fractions of T-shaped and L-shaped par-
X§,,=0.784:0.005 attl=10", t2=3x10% and t3=5 ticles). This result has several important consequences. First
< 10°. of all the coincidence of the results for the dynamical tem-
perature obtained with different observables is a crucial step
for the establishment of a thermodynamical interpretation.
D. Results for a bidisperse system An.other importa_mt consequence arise; frpm the experimental
point of view: since the value of FDR is independent of the
In order to investigate the dependence of the dynamicadhape of the particles, it could be possible to measure the
temperature on the observables considered for its deﬁnitiordynamica| temperature of a granular material using a tracer
we have introduced two different types of particles. Besidegparticle different from the particles composing the system.
the “T"-shaped particles, already seen at the beginning ofThis dynamical temperature should not depend on the shape
the section, we have considered “L"-shaped particles. Suctof the tracer particle. The extension of this result to the case

grains are characterized by a different degree of disorder, sof compaction with gravity will be discussed in the following
we expect these particles, the “smaller” ones, to move moresection.
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12 - - ' ' densities obtained from Fig. 6 for different val_uestgf(i
=1,2,3). More preciselyp; is very close top(t,+tmay)-
This is to be expected since the measure of the FDT violation

o8l @ ] is made for times much larger thalj and, since the com-
: ® paction is logarithmic, the system actually spends more time
JGosr @ : at densities close tp(t,,+tya,) than top(t,).
o4 (8) Xn=0.646 V. FLUCTUATION-DISSIPATION RATIO FOR THE CASE
02 (b) Xn=0.767 | WITH GRAVITY
| (€) Xgyn=0.784 _ .
A. Compaction dynamics
0 1 1 I I
057 058 °'59Density°'° 061 062 While the use of a compaction without gravity is useful to

study an idealized context, real compaction due to shaking
FIG. 6. Static raticXgq,, as a function of density. The horizontal occurs because of gravity.

lines correspond to the dynamical ratiog,, measured at,, The standard way of simulating the effect of gravity in a
=10, 3x10% and 16 and determine the valugs,~0.596, p, lattice model is to let the particles diffuse on a tiltedjuare
~0.603, andp3~0.605, to be compared with Fig. 7. or cubig lattice, with probabilitiesp,, (Pgown=1—Pup) 0
go up (down), respecting the geometrical or kinetic con-
E. Comparison with Edwards’ measure straints. A closed bOUndary is situated at the bottom of the

W . ition th its for th simulation box, of horizontal linear siZe and vertical size
€ are now in a position to compare the resuits for eLZ>L (lateral boundary conditions can be closed or open,

ST o eq
fluctuation-dissipation rati®qy,=Tg 7 Tayn, measured dur- ,nq yarious aspect ratios can be used, without changing the
ing the compaction dynamics, with the outcomes of Ed-egts qualitatively The control parameter is the ratio
wards’ approach at the corresponding densities. In Fig. 6 We I Pyown<1

up own .

report the values oKeq,, VS p (as obtained with the Ed-  "hig corresponds, in fact, to the dynamics at temperature
wards’ measuneand Xy, (obtained by the FDR in dynami- +_ _ 1/In(x) for the Hamiltonian

cal measurementsit three different values df,. In order to

check the matching betweefyy,, and Xqy, it is enough to

compare the densities obtained from Fig. 6 by imposing HZZ zi, (6)
Xeaw= Xayn With the corresponding dynamical densities ob-

tained at the correspondirty,. From Fig. 6 one getsp;  where thez; are the heights of the particlésf either of the
~0.596 forty,=10%, p,~0.603 fort;=3x10%, p3~0.605 models under consideratipmbove the bottom. Indeed, at-
for t3=5x10%. On the other hand, the evolution of the den-tempted diffusion moves which respect the constraints are
sity of the system during the measurements of the FDR iaccepted with probability min(£3H).

reported in Fig. 7. Since the measurements are performed As a result, particles tend to diffuse more easily towards
during the compaction, the density is evolving, going from the bottom. A nonzero value of is, however, needed in
p(ty) to p(ty+tmay. In each case, we obtain that indeed order to allow for rearrangements.

pielp(ty),p(ty,+tman ], where we have denoted with the A simple lattice gagwith the only constraint of single
occupancy diffusing with the above rule displays an equi-
0.61 . : : : librium behavior, with the known density profile
06 | - PO ez 2] @
(with B=1/T andz, depends on the number of partidlesd
£ o590t time translation invariance, and FDT is obeyed. The system
< is therefore stationary and no evolution of the density occurs.
On the other hand, systems of constrained particles like
0.58 - the tetris or Kob-Andersen models are unable to reach this
stationary state and are stuck at lower densitiagyer po-
tential energies with slow compaction and aging, reproduc-
0.57 ing the phenomenology of granular compacti8ri1,21,35.

10 10°  10° 100 10°  10° In particular, it has been shown, both experimentally and
numerically, that, due to heterogeneities, the value of the
FIG. 7. Evolution of the density during the measurementg of Potential energyor of the bulk densityis not the only rel-

andB for t,= 10%, 3x10%, and 16. The evolution during the qua- €vant parametef10,11], and that, in order to explain for
siequilibrium part is plotted with lines, and during the violation of instance memory phenomenon, it is necessary to take into
FDT with symbols. The horizontal lines correspond to the densitiesiccount the whole density profile along the vertical direction.
p1, P2, andps from Fig. 6. For example, various density profiles can be obtained at ap-
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Our numerical results have been performed in the follow-
ing conditions.

Tetris model: horizontal sizeé =40, number of particles
Npart= 1600, number of runsl,s=2000.

Kob-Andersen model: horizontal size=20-40, number
of particles Np4=30000-50 000, number of run¥,,,s
=20-50.

p(2)

B. FDT and its violations in the existence of a preferred
direction

In general, the fluctuation-dissipation theorem relates, for

- - a system at equilibrium, conjugated response and correlation
0 50 100 150 functions:

z

FIG. 8. Typical density profile obtained during the compaction TR(t,t) = gC(t,t") _
dynamics of the KA model. The inset shows the dynamical interface ' !
for x=0.1 (circles, x=0.2 (squarey x=0.3 (diamond$, and x
=0.4 (crosseptogether with equilibrium interfaces of a lattice gas Integrated betweety, andt+t,, in order to use the integrated
without constraints under gravity at the same shaking amplitudeﬁesponse function, the relation becomes
(lineg). The interface profiles have been horizontally shifted for
clarity. Tx(t+t,,ty)=C(t+t, t+t,)—C(t+t,,ty). (8

proximately the same potential energy, by varying the evo- Let us first consider the case of horizontal degrees of free-
lution of the forcingT with time. dom: in these directions the system is homogeneous, and
A first order treatment consists in separating a slowlywithout drift. Then if we define
compacting bulk part and an interfa@. Because the inter-
face is much more dilute than the bulk, the particles feel 1
much less the constraints, and it turns out that the density ~ Ch(t+tw.tw) =55 _2 2, (ai(ty+tai(ty)
profile at the interface is exactly the same as the density amey =t
profile of a lattice gas without constrainfsee the inset of 1
a=Xx,y <

N

Fig. 8), with Hamiltonian(6) and forcingT. This part of the 5

system can therefora priori be considered as “in equilib-

rium,” i.e., its shape and dynamics are simply linked to the

forcing. X <
At this level of treatment, the system is therefore consid-

ered to be homogeneous in the horizontal directions, and

heterogeneities are taken into account only in the vertica®"

direction. 1 N
Compaction data, under the effect of gravity, for various - , —a 2

types of tetris model can be found in Reff8,11,21 and for Br(t e tw) = 5 aSxy 21 ([a(twt O =ait) 1,

the KA model in Ref[35]. Although we have monitored the (10)

usual quantities describing the compaction, we will therefore .

not repeat this analysis, but concentrate on the violation off 1S €asily seen thatB(t+ty,tw) =2[Ch(t+1,,t+1y)

1 N
N ai<tw+t>> 9)

FDT during compaction, showingn passanthat the few — Cn(t+tw,tw)]. o o
existing data can be misleading or misinterpreted. Moreover, to measure susceptibilities, a perturbation is
The existence of heterogeneities along the vertical direc@Pplied in the following way: untit,,, the system evolves

tion moreover leads to the following remarks. with forcing x and Hamiltonian(6); att,,, a copy is made

While calculating the Edwards’ measure, imposing On|yand evolves ri’:d‘terw accohrding to the perturbeql Hamiltonian
the potential energy of the system will lead to a unique denHe=2iZj +H. where Hi=e€Z(fix{ +giyj), with f;,g;=
sity profile. Since the dynamical density profile depends orit 1 randomly for each particle and,y; ,z; are the positions
the history, it is already clear that specifying only the energyof the particles in the perturbed system. The integrated re-
will not be sufficient to predict all dynamical observables. sponse

Heterogeneities exist only along the vertical direction, so

N
that observables along the vertical and horizontal directions _ 1 ;
shoulda priori be treated separately. Xn(tw+t,t,)= 2eN 241 (Filx (ty+ 1) —Xi(ty)]
Dynamical measures can either be made over the whole
system or restricted to the bulk. In the first case, the interface +ailyi (ty+t)—yi(tw)]) (12)
will obviously give an “equilibrium” contribution that may
be much larger than the bulk contribution. can then be measured.

011310-8
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~ For a system at equilibriurffor example, the simple lat- gated to the response to a change in the drivingjt
tice gas with single occupancy and no kinetic constraints,i¢  t )=(h(t+t,)h(t,))—(h(t+t,))(h(t,)). Indeed
and Hamiltonian6)], the FDT relation can be observed,

Bh(tw+tvtw):2TXh(tw+tvtw)- (12) Ev(t+twatw):<h2(t+tw)+hz(tw)>_2<h(t+tw)h(tw)>

During compaction, the violation of FDT can then be inves-and
tigated from a parametric plot of;, vs By,. This is exactly

similar to the homogeneous case of Sec. IV. C,(t+ty,,t+1t,)—C,(t+1t,,t,)=(h?(t+1t,))

Up to now, however, the only tentative measures of FDR
have been realized with observables coupled to the vertical —(h(t+ty)h(ty)) —(h(t+t,))(h(t+t,) —h(t,))
direction[30,31]. This is in contrast with other cases of sys- (14)

tems with a preferential direction, where measures along the

only direction with noa priori heterogeneities were under- are not simply related singgh(t+1t,)) #(h(t.)) and(hz(t

taken[29,41,43. +t,))# (h?(t,)) (see also a similar discussion, on the case
In Ref. [31], the case of the KA model with a vertical of one-time quantities changing with time, in Rp43]).

random perturbation was considered. The vertical mean- |t turns out therefore that the results of Réf30,31] area

square displacement priori flawed from an incorrect measure of the correlation
N part of FDR.

1 S 2 We will see in the next subsections how measures of cor-

Bv(HtW'tw)_N “~ ([zi(te+ )= z(tw) % relation and response functions along the horizontal direc-

tions lead to sensible results, whereas all measures of vertical

was measured and confronted to the integrated response correlations or response lead to the impossibility of defining
effective temperatures.

N
1
_ r _
Xo(tw+tty) = eN le (filzi(tw+t)—z(tw)]) C. FDR in the aging (compacting) regime

) ; 1. Vertical observables?
to a perturbatioH!=€2,f;z (f;==*=1 randomly. The ex-

istence of a dynamical temperature was inferred from the WO Sets of response and correlation functions agmi-
observed linear relation betwed), and y,, with a slope O be measured: the incoherent on€s (x,) as in Ref[31]
different from the applied temperature. or the coherent one<( ,x,) as in Ref[30].
In Ref.[30], a perturbation in the forcing was applied, and  If we write
confronted to the following mean-square displacement:
Cv(t+tw 1t+tw) - Cu(t+tw 1tW)

B, (t+1ty,ty) =([h(t,+t)—h(t,)]?) LN
:<N 2 Zi(t+tw)[zi(t+tw)_Zi(tw)]>

with h(t)=Z=,z(t)/N. The perturbation in the forcing leads =

to the observation of negative response functifns(t L LN
+ty,ty) =h"(t+t,) —h(t+t,), whereh" is the mean height
of the perturbed system, the perturbation being applied after * N< ;1 Zi(t+tW)> <N Zl [Z‘(tW)_Z‘(t+tW)]>
twl, interpreted as the signature of a “negative dynamical N

temperature.” This case was investigated in RéB11] /1 >

where this result was shown to be linked to the existence of =\ N & [2(tw) —zi(t+tw) J[{h(t+ 1) —Z(t+tw)]
memory effects, as also confirmed in experimd¢ny.

In both cases, however, the existence of a downward drifR,N
due to compaction, was not taken into account for the correcé
definition of the correlation part of the fluctuation-dissipation
relation: indeed, in the first case, the correlation being

e can observe that genericalty(t,,+t)=<z(t,,) since the
ystem is compacting, so that two opposite contributions can
be distinguished itC,(t +t,,,t+t,) — C,(t+t,t,): the par-
ticles such thay;(t+t,,)<h(t+t,) give a positive contribu-
1 N 1 N tion, ;\hos: suchdt.hazi(t+éw)>h'(t+tw)hgive qlnegalltive
= . . (= . one. At short and intermediate times, the particles closer to
ColtH b ) N .21 (@t Oz(tw) <N i;l Z'(tw)> the surface move more than those in the Eulk and therefore
LN the negative contribution dominates. This leads to a negative
= . C,(t+t,,t+t,)—C,(t+ty.,t,). At very long times
><< N Z’l Z'(tw+t)>’ (3 C,(t+t,, t+t,)—C,(t+t,.t,) has to become positive by
definition, but such times may not be reachable in a numeri-
B,(t+t,t,) is not proportional taC,(t+t,,,t+t,)— C,(t cal simulation.
+t,,ty) as in the homogeneous case. This is even more This peculiar behavior comes from the fact that the drift is
easily seen in the second case, where the correlation conjnot homogeneous in the system: some regions are compact-
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0.5
3
04 | @ x=0.4t,=10
i L
:f < 0.3
% &
Mo S 02
=2 N
0.1 |
-1 - - od : : : :
0 10 20 0 0.2 0.4 0.6 0.8 1
N(C, (t+t,,t+t, )—C, (t+t .t )) B, (t+1,.1,)

FIG 9 ;(U(t-i_twytw) Vs N[ay(t+twlt+tw)_av(t+tW!tW)] O_OIX=0.2
for the KA model, withL =20, N,,,=4000, N,,,=500, x=0.8 +—+ x=0.1
(circles, andx=0.5 (square} t,, =2 andt=2, ...,25 The first
equilibrium part corresponds to the interface dynamics, while at =
longer times}v decreases because of the bulk response. The dia- *_f
monds correspond to a simulation with no kinetic constraint and =
Npart=4000 particles: only equilibrium FDT is then observed. The IS
straight line has slope 1. '&
ing more than others. Local drifts should then be taken into
account. However, this is numericalignd also experimen-
tally) too difficult to measure.

On the other hand, the coherent correlation and response ‘ . .

C, . x, can also be measured. The difficulty arises from the 0 1 B 2 3 4
measure of the coherent correlation functiGp, of order (bt tit,)

1/N for N particles: relatively small systems have to be simu-
lated with a large number of realizations. For an equilibrium
lattice gas without kinetic constraints, FDT is then recov-
ered: N[C,(t+ty,,t+t,)—C,(t+ty,tw)]=xu(t+ty.tw). . o
In the case of the compacting system, the parametric plot %ean-lsqular? d'SplaiimeBIF and resip;or;f]e tfunctlom;_u;
N[C, (tty t+ ty) — Co(t tyot)] VS Xu(t+ty.ty) re- en clearly linear, with a slope equal to the tempera

veals a first part of slope one, which corresponds to the fas{he. forcing. This seemingly surprising result is easily ex-
equilibrium response of the interface. At larger timesow- Plained by the faCt. tha.‘t both fun_ctlons are completely d(.)m"
ever, the response of the bulk, which can compactify moré‘ated. by the c_ontr|bqt|on of the_mterface Wh.efe the part|cle_s
easily if the forcing is increased, leads to a decrease ofan diffuse quite easily, and which actually displays an equi-
~ . . CIlbnum profile (see Fig. 8 It seems therefore natural to re-
X, (t+1ty,ty), which can even become negative as observed, . he studv of the ob bles to the bulk ¢ of th
in Ref.[30]. Ast,, goes too, the bulk becomes so compact strict the study of the observables to the bulk part of the
that its contribution goes to zero, and the equilibrium FprSample, in W.h'Ch the d_ensny IS quite homogeneous when a
can be recovered thanks to the interface contribution. Thosg"Stant fo_rcmg is applietsee Refs[11,35| and Fig. 8. Th_e
results are summarized in Fig. 9. sums defl_nmg_%h, Xn, are therefor_e restricted to _the particles
The previous investigations shows that no definition of arfhat remain betweety, andt,,+t in the bulk (defined, e.g.,
effective temperature can be inferred from dynamical mea@SZmin<Zi<Zmax, With Zni, andzy,ax appropriately chosen
sures correlated with the preferred directions in which het- Our results, summarized in Fig. 9 and 10, are qualitatively
erogeneities occur. similar for both models. The clear violation of FDT obtained
Note that this kind of situation also arises in the study ofwith horizontal perturbations allows for the measurements of
effective temperatures in driven vortex lattices with randomthe FD ratios while nothing can be said using the data ob-
pinning: while an effective temperature can be defined andained with vertical perturbations.
measured for degrees of freedom perpendicular to the drive,
problems are encountered when dealing with longitudinal o
observable$44]. We now turn to horizontal observables. D. Results for a bidisperse system

In the models we have considered, it is quite easy to
implement the presence of two types of partic(dss has

The first result is obtained by studying the whole systemalready been seen in Sec. IV for the tetris model without
with a horizontal perturbation applied: the relation betweengravity).

FIG. 10. ZTx;, vs By, for the tetris mode(a) and the KA model
(tw=2%)(b). The straight lines have slope 1.

2. Horizontal observables
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FIG. 11. Density profiles for a bidisperse system of 30 000 par-
ticles with »,=5 and 10 000 particles witl,=6, for a forcingx FIG. 13. KA model: density profiles for Edwards’ measure, ob-
=0.2, after 2 time steps. The less constrained particles have diftained with various values of the Lagrange paramgtésymbols.
fused more easily towards the bottom. A dynamically obtained profile is also shown for comparison, it

corresponds to a constant shakig 0.4 and to a potential energy

For the Kob-Andersen model. we can simulate “small” similar to the casg=0.02 (star3. The profiles are very different.

and “large” particles by taking different values for the ki- ing the granular material, and that the FDR should then be
netic constraint, e.g.y;=5 andv,=6 or v,=7. As also independent of the shape of the tracer.

shown in Ref[35], partial segregation then occurs because

the particle with largew are less constrained and can move E. Edwards’ measure

more easily toward the bottom. _ . Edwards’ measure is defined as a flat measure over all
However, as shown in Fig. 11, there exists a bulk regiory|ocked configurations, i.e., configurations with all particles
in which the density profiles for both types of particles areynable to move. For a system under gravity, a particle at
flat. It is therefore possible to measure FDR in this region. heightzis “blocked” if it cannot move downwards, i.e. if all
The results, shown in Fig. 12, are quite clear: although théts neighboring sites at—1 are occupied or if the particle
smaller particles are more mobile than the larger ones, andannot move towards either of these sites because of the
therefore diffuse more easily, the FDR for the two types ofgeometrical or kinetic constraints.
particles are equal. As already noted in Sec. IV, this result is Implementing this differencéwith respect to the case
important since it means that the FDR can in principle bewithout gravity into the auxiliary model of Refd23,24 is
measured using tracers different from the particles composstraightforward.
As in Ref.[29], the following procedure is used: the aux-
iliary model has total “energy’BauxEauxt BE, WhereE,

4 5 6 xe0.1 @s as usual the number of mobile particl%ux the auxiliary
T x:0.1 B inverse tempgra_tureEp the potential energy, aptﬁ a

gl o— x;o'z 7 Lagrange multiplier. For each value gf an annealing pro-
......... x=0:2 cedure is performed orB,,, until configurations with
+—+ x=0.4 e E.ux=0 are reached. The density profiles are then measured,
--- x=0.4 ST along with the value oE,. Repeating the procedure then

yields the curveBeq.(Ep) directly. The profiles at various
values ofE, are shown in Fig. 13. These profiles are quite
different from the dynamically obtained profiles at similar
energies. This is not surprising since they have been obtained
imposing only the potential energy, whereas the dynamical
profiles depend on the history and it has been shown
[8,10,11 thatEj, is not the only relevant parameter.

In this case, Edwards’ measure, if constructed by impos-

Bh(t"'tw,tw) ing only one parameter, is not able to predict dynamical ob-
servables.

FIG. 12. KAmodel: &y, vsBy,, measured in the homogeneous ~ On the other hand, since dynamically the bulk density
bulk, for the two types of particlesymbols, more constrained par- profiles are flat, we can generate blocked configurations with
ticles with ;=5 lines, less constrained particles with=6), for ~homogeneous density, at various densities. This yields a re-
various forcing (0.1, 0.2, and 0.4) ang=2'% t=2,...,28 The  stricted Edwards’ measure; proceeding as in 23,24 we
two kinds of particles display differeng, andBy, at a given time, obtain Edwards’ entropy at the densities considered and we
but the same violation of FDT. can therefore compute

2Ty, (t +t.t )
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FIG. 14. Circles Xeqw=(dSequilp)/dp)/(dszanlp)/dp) Vs p FIG. 15. x vs B following a change in the forcing fromy to x,

for KA model, imposing homogeneity; squares, dynamically Ob'att =21 the slope depends on the forcing applied atter(t

tained FDR(for horizontal displacements and response density :2‘”_ .29 Inset,T,x vs B, showing the equality of the dynami-
measured for the corresponding dynamical profiles. Inset, equilib(-:al 'ratio'sT T ’ '
rium and Edwards’ entropy densiti€snposing homogeneity for 27 dyn

Edwards’ entropy.
P¥ suddenly by a large amount aftg). We have performed

such measurements and checked that this is indeed the case

w (see Fig. 1b
p
Xeaw™ 57 (15
FI dsggulp)
T VI. RELATIONS WITH EXPERIMENTS
o o ) While the link between a dynamically measured tempera-

which is shown in Fig. 14 in the case of the KA model.  tyre and a static measure is of great theoretical importance, it

is experimentally impossible to sample such a measure. The-
F. Comparison and discussion oretical predictions can be checked experimentally only

From the dynamics on the one hand and Edwards’ meat_hrough p_urely dynam!cal measures. .
sure on the other hand the following two sets of data are I_Drellmlnary results in this d!rect|on were obtained by the
obtained. Chlcago group[4] by measuring the volume fluctuqtlons
Dynamical FDR at various densities, for horizontal dis- with respect to_ the steady-state vol_ume at d_lfferent he_|ghts of
placements and response functions; since the density fg'e Saf"p_'e- Since the curves obtained at d|ffere_nt heights do
evolving during the measures, an uncertainty is observed. not coincide, the authors concluded_ t_hat one single observ-
able, namely, the Edwards compactivity, cannot account for

tatically obtain . . .
?iguf:‘laos%gw:?égﬁhe agreement between both sets {he depth dependence of the fluctuations. These conclusions

data is very good, even for a quite large vibration 0.4 or are in agreement with our results obtained in systems with a

low densities 0 73; ' preferential direction where fixing one single observable in
The theoretical results can be summarized as follows: iﬁhe Edwards approach does not allow for the prediction .Of

the case of a homogeneous bulk, the ratioof the horizon- the dynamical observables unless one reduces the analysis to

tal dynamical temperature to the imposed temperaturgOme homogeneous section of the system.

- ! o Thanks to recent theoretical progresses, new experiments
Vin() onIy_ depends on the bglk densn_y, and is given byhave been proposed in order to check the existence of dy-
Xeaw(p)- Using various vibration amplitudes, we have

checked thatXy at various densities an¥gq,(p) indeed namical temperaturef23,29,41,42, by monitoring mean-

coincide. Another check of the consistency of the theoretic quare displacements and mobility of tagged particles, or

construction can be made by comparina two dvnamical prot A€ in sheared supercooled liquids or foams, or in
. : € oy paring two dy PTO%heared or tapped granular media. The existence of a linear
cedures: if a certain forcing, is applied untilt,,, and then

. 2 . : relation B vs x) could be tested for various shapes, masses,
cha_nge(ilztd'z, a dynamical temperqtuf"qﬁ will be obtained. etc., of the tracers, in order to check that this relation is
While T4 depends ofT,, the equality

indeed defining a temperature.
Our analysis of models compacting under gravity sug-
E:XEdW[p(t )] gests also other types of experimental possibilities. First,
Ti? v only diffusivity and mobility in the direction perpendicular to
the gravity should be measured. Moreover, the existence of
should be observed, at leasfTi§ is not much higher thaii;  strong heterogeneities implies that a tracer close to the inter-
(in this case, as shown in R¢fL1], the bulk density changes face should allow to measure a temperatlifewhich de-
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pends directly on the driving amplituden the modelsT= agreement with the prediction of Edwards’ measure at vari-
—1/In(x)], and is stationary, i.e., does not depend on the bulleus densities.

density. On the other hand, a tracer well immersed in the The situation is more complicated if a preferential direc-
bulk should yield another valu& of the FDR (which de- tion is present: then the whole density profile laggriori to
pends ort,,), and theratio TS/TQ should depend only on the be taken into account. Moreover, the vertical drift due to
density of the bulk. For example, if experiments are Ioer_compactlon leads to contradicto@nd sometimes meaning-
formed changing the driving intensity &, from x; to x, les9 results when observables coupled to the preferential di-

and the two associated “interface” and “bulk” temperatures rection are considered for the evaluation of a FD ratio

are measured, the raﬁfﬁ/-l—id should be independent af, [30,31]. Since the energy of the system is not the only pa-

provided the bulk density does not change significantly. jrameter, and since the density profiles depend on the history,

this way, the comparison of only dynamical measures woulchWarOIS measure is nat priori able to predict the dynami-

be a strong experimental test for the whole theoretical con.(—:al configurations. If, however, the homogeneity of the bulk

struction, without any need to sample the underlying static® imposed, FD ratio optained dynamically for horizontal di;-
measure, placements and mobility and from Edwards’ measure coin-

cide.
It is striking to note that Edwards’ measure, whiglpri-
ori could be valid only for very weak forcing and almost
In this paper, we have studied two paradigmatic model$tationary systems seems, however, to yield good predictions
for the compaction of granular media. These models considegven for nonstationary systems that are still compacting.
particles diffusing on a lattice, with either geometrical or  Finally, we have proposed experimental tests of the whole
dynamical constraints. Idealized compaction without gravitytheoretical construction, through the comparison of various
has been implemented for the tetris model, and compactiofyPes of dynamical measurements, since the construction of
with a preferentia| direction imposed by gravity has beenEdwardS' measure, numerically straightforward, is ObViOUS'y
studied for both models. The possibility to define dynami-impossible in experiments.
cally a temperature in the framework of fluctuation-
dissipation relations and to IinI_< it to t.he statically constructed ACKNOWLEDGMENT
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