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Scaling, multiscaling, and nontrivial exponents in inelastic collision processes

E. Ben-Naint and P. L. Krapivsky
Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
2Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215
(Received 14 February 2002; published 29 July 2002

We investigate velocity statistics of homogeneous inelastic gases using the Boltzmann equation. Employing
an approximate uniform collision rate, we obtain analytic results valid in arbitrary dimension. In the freely
evolving case, the velocity distribution is characterized by an algebraic large-velocity tajt) ~v 7. The
exponenio(d, €), a nontrivial root of an integral equation, varies continuously with the spatial dimedsiod
the dissipation coefficien¢é. Although the velocity distribution follows a scaling form, its moments exhibit
multiscaling asymptotic behavior. Furthermore, the velocity autocorrelation function decays algebraically with
time, A(t) =(v(0)-v(t))~t~ ¢, with a nonuniversal dissipation-dependent expomentl/e. In the forced case,
the steady state Fourier transform is obtained via a cumulant expansion. Even in this case, velocity correlations
develop and the velocity distribution is non-Maxwellian.
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[. INTRODUCTION table Maxwell model precedes the Boltzmann equa&s].
Historically, it played an important role in the development

Inelastic gases consist of hard sphere particles that inteef kinetic theory[34—-36, and it still remains the subject of
act via contact interactions and dissipate kinetic energy upogurrent researcf87,38.
collisions[1]. They are used extensively to study dynamics Very recently, it has been noted that the Maxwell model is
of granular materials. Numericall, molecular dynamicsanalytically tractable even for inelastic collisiof39—43.
simulations are quite successful in modeling many of thénteresting behavior emerges in the freely evolving case. In
observed collective phenomena that include size segregatiofN® dimension, while moments of the velocity distribution
phase transitions, shocks, clustering, and development &xhibit multlscallng_[39], the ve_Iocny dlstr|but|_on itself still _
other spatial structuré—10]. In parallel, kinetic theory is @Pproaches a scaling form with an algebraic large-velocity
utilized to systematically derive macroscopic properties fromfail [40]. Here, we show analytically that in arbitrary spatial
the microscopic collision dynamid41—13. d|_menS|on the v_eIocny d|str|bgt|on_adm|ts a scaling s_olutlon

Inelastic gases, a prototype nonequilibrium interactingW'th an algebraic large-velocity tail. The F:orrespondlng ex-
particle system, are interesting on their own righté—21. ~ Ponent, a root _of a transcender_ltal_ equatlor_\,_depends_c_)n the
Recent theoretical and experimental studies show that thePatial dimension and the restitution coefficient. Addition-
velocity distributions exhibit anomalous large-velocity statis-ally; we find that the multiscaling behavior extends to higher
tics with exponential, stretched exponential, and Gaussiafimensions, and that the velocity autocorrelation function
tails [6—8,22—25. Inelastic gases involve significant veloc- €xhibits aging and nonuniversal asymptotic behavior. In gen-
ity and spatial correlations in contrast with traditional mo-€ral, velocity components develop significant correlations.
lecular gase$26-2§. Kinetic theory assumes that spatial Such_corr_ela_tlon_s d|m|n|s_h in the forced case, although the
velocity correlations are small. While this assumption can b&/elocity distribution remains non-Maxwellian. _
justified for strongly driven gases, the situation for freely ~ The rest of this paper is organized as follows. The basic
evolving gases is more difficult since velocity correlationsBoltzmann equation for the velocity distribution and its Fou-
can be ignored only in the early homogeneous ptiase- rer transform are pregented In Sec.lll. In Sec. lll, we Inves-
31], but must be taken into account in the asymptotic clusfigate the scaling regime, and obtain the extremal velocity
tering phase. Clearly, the strong energy dissipation raisedfalistics, moments of the velocity scaling function, and ve-
challenging new questiorf82]. Ic_)cny correla_ltlons. In Sec. IV, we illuminate the nonequ_lhb—

Yet, even more elementary questions remain unanswere§um dynamics by studying the time dependent behavior of
For example, random collision processes effectively generatd® moments and the velocity autocorrelation function. In
thermal, purely Maxwellian velocity distributions when the S€c. V, we consider nonequilibrium steady states in the
collisions are elastic. In particular, different components ofdriven case, and obtain the steady state distribution as a cu-
the velocity become uncorrelated. In this study, we consideflulant expansion. A few generalizations are briefly men-
these very same processes but with inelastic collisions. wioned in Sec. VI, and conclusions are given in Sec. VIL.
show that energy dissipation fundamentally alters the behav-
ior. The system is iptripsiqally a nonequilibrium one, and the Il. THE MAXWELL MODEL
resulting velocity distributions are far from thermal.

We consider a collision process, where random pairs of We study a homogeneous system of identical inelastic
particles undergo inelastic collisions with a random impactspherical particles. The mass and the cross section are set to
direction. This process, often called the Maxwell model, isunity without loss of generality. Particles interact via binary
described by a Boltzmann equation with a uniform collisioncollisions that lead to exchange of momentum along the im-
rate. In classical kinetic theory of gases, the analytically tracpact direction. The postcollision velocitigs, are given by a
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linear combination of the precollision velocities ,, We conveniently reset the collision rate to unity by modify-
ing the time variable. The collision counteris defined via
Vi ,=Ug,+(1—€)(g-n)n. (1)  the transformationi/dr= (1/\/T)(d/dt). Specifically,
Hereg=u;—u, is the relative velocity and the unit vector e zln(1+t/t ) (6)
connecting the particles’ centers. In each collision, the nor- A *

mal component of the relative velocity is reduced by the

restitution coefficientr=1—2e. The energy dissipation €quals the average number of collisions experienced by a

equals AE=—e(1—€)(g-n)?, so for e=0 collisions are Pparticle. Applying the Fourier transform to E(@) and inte-

elastic, while fore=1/2 collisions are perfectly inelastic 9rating over the velocities gives

with maximal energy dissipation. Since the collision r(dg P

is Galilean invariant, the average velocity can be set to zero —F(k,7)+ F(k,T)If dnF[k—q,7]F[q,7] 7

without loss of generality. aT

We investigate the “Maxwell model” where the collision ) )

rate in the Boltzmann equation equals the typical velocityWith q=(1—e€)(k-n)n. This equation reflects the momen-

rather than the actual relative velocit$5,36|. This kinetic ~ tum transfer occurring during collisions. _

theory describes a stochastic process where randomly chosenWe restrict our attention to isotropic situations, and write

pairs of particles undergo inelastic collisions according tothe Fourier transforni-(k,7)=F(z,7) in terms of the vari-

Eq. (1) with a randomly chosen impact directionin sucha ~ ablez= k?. To perform the angular integration, it proves use-

process, no spatial correlations develop, and the normalizé§! to employ spherical coordinates with the polar axis par-

velocity distribution functionP(v,t), obeys allel tok, so thatk-n=cosé. The #-dependent factor of the
measuredn is proportional to (sirg)42d6. In terms of the

IP(v,t iable u = cos4, hasdn=Du, with
((T[ ):gf dnf dulP(ul,t)f du,P (U, 1 variable u=cos6, one hasdn=Dpu, wi
B E d__l Du= —1/2 1— (d73)/2d 8
x{8[v—uy+ (1= e)(g-mn]— 5(v—uy)}. 2 g | Pump e (@

2

whereB(a,b) is the beta function. This integration measure

The overall collision rate equats= JT whereT is the granu- IS prope.rly normahzngOD,u—l. Hereinafter, we denote
angular integration with brackets

lar temperature, or the average velocity fluctuation per de€
gree of freedomT = (1/d) f dvv2P(v,t) with v=|v|. The re- 1
striction g-n>0 on the angular integration range in Eg) <f)=f Duf(w). 9
can be tacitly ignored, because the integrand obeys the re- 0
flection symmetryn— —n. This angular integration should
be normalizedfdn=1.

We study primarily the freely evolving case where in the
absence of energy input the system “cools” indefinitely.

The governing Eq(7) for the Fourier transform can now be
rewritten in the convenient form

. J
From the Boltzmann equatidi), the temperature rate equa- EF(Z’ ) +F(z,7)=(F(éz,7)F(nz,71)), (10)
tion is
d 2e(1—e) with the shorthand notation§=1—(1—e€?)u and p=(1
aT=—)\T3’2 with A= —g (3)  —e€)%u. Hence, the Fourier equation is both nonlinear and

nonlocal. Interestingly, while it is difficult to integrate this
» . ) i equation with respect to time, most of the physically relevant
The constanth =2¢(1—e€)/dnng, is obtained using the features of the velocity distributions including large-velocity
identity n{+- .- +n3=1 that yields fdnn{=1/d. Solving  statistics and the time dependent behavior of the moments

Eq. (3) we find that the temperature decays according taan be found analytically, as will be shown below.
Haff's cooling law[14],

T(t)=T0(l+t/t*)72, (4) IIl. SCALING SOLUTIONS

Numerical simulations in two dimensions suggest that the
with the time scalet, =d/[e(1—€)\/To] set by the initial  velocity distribution approaches the scaling fof4@]

temperatureT,.
Given the convolution structure of the Boltzmann equa- P(v.t)~ —p| 2 (11)
tion (2), we introduce the Fourier transforf86] of the ve- (v.1) T2\ T/
locity distribution function,
The scaling form of the Fourier transform reads
F("’t):f dvel**P(v,1). ®) Flk)=®(x) with x=K°T. (12)
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In the k— 0 limit, the Fourier transform behaves Bgk,t) The exponentr can be now obtained by inserting(x)
=1-3k?T. This implies that the first two terms in the Taylor =® red X) + Pging(X) into Eq. (13) and balancing the domi-
expansion of the corresponding scaling function are univernant singular terms. We find that is a root of the integral
sal, ®(x)=1-3x. Substituting the above scaling form into equation

the governing Eq(10) and using the temperature cooling o—d
rate d/d7)T=—\T yields the governing equation for the 1—AT=(§(”*d)’2+ (o= D2y, (18)
scaling function

XD (X) + B(x) ={(D(E)D( 7X)). (13) This relation, originally derived in Ref$41,47, can be re-

cast as an eigenvalue problem. Indeed, defining=(1

One can check that the velocity distribution is purely Max- —&"—#7") we can rewrite Eq.(18) as \,=uk; with u
wellian ®(x)=e %2 in the elastic casg44]. Indeed\=0  =(o—d)/2. Note tha =N\, so there is an obvious solution
and £+ =1 in this case. A stochastic process of elastick=1, or c=d+2. In this case, the singular term simply

collisions effectively randomizes the velocities and leads to £0incides with the dominant regular ternx(”~%"?=x.
thermal distribution. Hence, this solution is trivial and in the following we shall

seek a solution witlr>d+2.

The integral equatiofi18) can also be rewritten in terms
o . . ] ) ) of special functions. The first integral on the right-hand side
Itis instructive to consider first the one-dimensional caseof Eq. (18) can be expressed in terms of the hypergeometric

Here, integration over is immediate as this variable equals fynction ,F,(a,b;c;z) [45] and the second as a ratio of beta
unity, and the scaling function satisfiesAx®’(x) +®(x) functions:

=®[ ex]P[(1— €)?x]. Remarkably, this nonlocal nonlinear

A. Algebraic tails

differential equation admits a very simple solutigt0] - e(1-e) ‘T;d _F. d; v %; g;l_ 2
D (x)=(1+ x)exp = VX). (14
o—d+1 d
Performing the inverse Fourier transform gives the velocity F(T F(E)
distribution as a squared Lorentzian +(1—¢€)° ¢ ] . (19
r{3 el
P(w)= %(1+W2)*2. (15 2/ \2

We conclude that the exponemt= o(d, €) depends in a non-

The scaling solutior{15) is universal as it is independent of trivial fashion on the spatial dimensiahas well as the dis-
the dissipation coefficient. Its key feature is the algebraic sipation coefficiente.
tail, P(w)~w~ 4 as|w|—oe. First, let us investigate the dependence on the dissipation

In general dimensiod, the large velocity behavior of the coefficient by considering the quasielastic lirait- 0. In the
velocity distribution can be determined from the small waveelastic case, the Maxwellian distributiof,(x) =e™*, im-
number behavior of its Fourier transform. For example, theplies a diverging exponent—x as e—0. Therefore, the
smallx expansion of the one-dimensional solutid®) con-  right-hand side of Eq(19) vanishes in the quasielastic limit

tains both regular and singular termb{x)=1—3x+3x¥?  and to leading order
4

+---, and the dominant singulac®? term reflects thev ™ d
tail of P(w). In general, an algebraic tail of the velocity = (20
distribution (11),

PW)~W™ T as w—o, (16) Clearly, the quasielastic limit is singular. Dissipation, even if

minute, seriously changes the nature of the sy§&2b,31.
LEurther corrections can be obtained via a systematic pertur-

ation expansion ir. We merely quote the two leading cor-
rections in the physically relevant dimensions,

indicates the existence of a singular component in the Fo
rier transform,

Dgingdx)~x(7"D2 as x—0. 17
+0(e"?),

2 2(e7%+1) 4m—(e 2+1)?
The inverse is also correct. This can be seen by recasting the 7(2:€)= ¢~ Jme +

Fourier transformb (x) OCfBOdWV\/d_l'P(W) exp (iwX) into a

Laplace transform(s)o f5dww!™ 2P(w)e s by writing x 3 [3x
= —3s°. The smalls expansion ofl(s) contains regular and o(3,€)= . 2_+
singular components. For example, whesd, the integral

I (s) diverges as— 0 and integration over larg® yields the Next, we discuss the dependence on the dimension. First,
dominant contribution Ising(s)~s"*d. When d<o<d one can verify thab-=4 whend=1, by utilizing the identity

+1, 1(0) is finite, but the next term is the above singular ,F,(a,b;b;z)=(1—2) 2. In the infinite dimension limit,
term, sol(s)=1(0)+Igpngs)+ - -. In general, the singular the second integral;"~ 9’2 in Eq. (18) is negligible as it
contribution islsing(s)~s"‘d, thereby leading to Eq17). vanishes exponentially with the dimension. To evaluate

o

_ -3
6—e 2

+0(e?).
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FIG. 1. The exact exponemt, obtained from Eq(19), versus
the dissipation parameter The exponent was scaled by the dimen-
siond. Shown also is the limiting large dimension expres<i®D.

the second integral we take the limds—«~ and x—0 with
z=pnd/2 fixed. The integration measuf8) is transformed
according toDu— (7z) Y% ~%dz, and the basic Eq(18)
becomes  e(1—e)u=[idz(mz) Y2 1+1A-Auz it
the shorthand notatiom= (o/d) — 1. Performing the integra-
tion yields 1-e(1—e)u=[1+(1—€*)u] Y2 This cubic
equation has the aforementioned trivial solutios0 and
two nontrivial solutions. Choosing the physically relevant
we obtain that agl— o,
3

1+ —e—e3— €3
2

5 1/2
1+ Zé

d e(1—€?) @y
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vides a lower bound for the exponent;(d,e)=o(d,e
=1/2) with ¢(d,1/2)=6.287 53, 8.32937, fad=2, 3, re-
spectively. Numerical simulation results are consistent with
the former valug46]. The algebraic tails are characterized
by unusually large exponents that may be difficult to mea-
sure accurately in practice; for instance, typical granular par-
ticles are characterized by the dissipation coefficien.1
yielding o= 30 in three dimensions. Figure 1 also shows that
the quantityo/d weakly depends upon the dimension, and
the larged limit (21) provides a good approximation even at
moderate dimensions.

B. Divergence of the moments

The algebraic tail of the velocity distribution implies that
sufficiently small moments of the scaling functidn(x) are
finite, while moments larger than some index diverge. In the
scaling regime, moments of the velocity distribution can be
calculated by expanding the Fourier transform in powers of
X,

P)= 2, ol —x)". (22
The coefficientsp,, yield the leading asymptotic behavior of
the velocity moments\ (t) = fdvoP(v,t), via the relation
(2n)!' T"p,=(u"YM,,. Inserting the moment expansion
into the governing Eq(13) yields the closed hierarchy of
equations

n-1

(?\n—nM)cbn:mE:l )\m,n—md)mﬁbn—m (23
with N, =(1—&"— 7") and A, =(£M7'). The first few co-
efficients are written explicitly in Appendix A. Starting with
$o=1 and ¢,=1/2, further coefficients are determined re-
cursively from EQq.(23). In the elastic casee=0), one has

In general,ocd, and therefore, the algebraic decay be-4 —(n12" -1 consistent withd (x)=e *'2. For generak,
comes sharper as the dimension increases. The expon&fk first two terms are

o(d,€) increases monotonically with increasidgand addi-
tionally, it increases monotonically with decreasiagsee

Fig. 1). Both features are intuitive as they mirror the mono-

tonic dependence of the energy dissipation rate2e(1

—e€)/d ond ande. Hence, the completely inelastic case pro-

1 31—62
17 Td+2
¢2—§ 1+ €2’

1=3472

(24)

91—62 L(1—-e)(1+3¢) e(1—e)(1—€?)

1 1732 i a (d+2)(d+4)
$3=48 T 11 e (1+e)? e(1—€)(3+6)
Td+2 ST d+2 (d+2)(d+4)

The behavior is determined by two parameterande. Fix-
ing €, we see that a given momed, is finite only if the
dimension is sufficiently largel>d,(€). In particular,¢, is
finite only if the left-hand side of Eq(23) is positive, \,,
—n\,>0. This condition is satisfied only if the dimension is
sufficiently larged>d,,, with d,, being the spatial dimension
at whichh,=n\ . For exampleg,>0 whend>d,, and ¢,

is finite only whend>ds with the following crossover di-
mensions:

dy,=1+3€?,
(25)

3 1
d3=§(62+ 2¢—1)+ E‘/25_ 60e+186¢°— 4>+ 49¢”.
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Conversely, for a fixed dimension, a given moment is finite The time evolution of the moments can be studied using
only if the dissipation is sufficiently small. For examplg;  the expansion,
is positive only whene<0.302074, 0.427 438 ad=2,3.

Such values, obtained by solving polynomial equations, yield _ - N

integer values of the large-velocity decay exponent F(z, T)_n§=:O fa(7)(=2)" (28)

0(2,0.302074%8 and 0(3,0.427 438¥ 9, in accord with

direct numerical solution of E¢19). The actual moments are related to the coefficients via
(2n)!f,={(u"YM,,,. Substituting the expansiof28) into

C. Velocity correlations (10) yields the evolution equations
Maxwell’s seminal derivation of the Maxwellian distribu- n—1
tion (see Ref[26], p. 36 relies on two basic assumptions: if PN o= 2 N f g 29
(1) isotropy of the velocity distribution, ant2) absence of dr- " "N TmammominTme

correlations between the velocity components. The latter as-
sumption is directly probed using the following correlation We demonstrate multiscaling asymptotic behavior by

measure: evaluating the second, fourth, and sixth moments. The sec-
5 2 2, 2 ond moment is obtained fromd(d7)f;+N\,f;=0 with \;
Q:<vay>_<v><><vy> (26) =\=2¢€(1—¢€)/d. Hence, we recover Haff's lawf,(7)
vy =f,(0)e M7 or f,(t)=f(0)(1+t/t,) 2. Asymptotically,

the second moment of the velocity distribution has the uni-

A nonvanishingQ indicates that velocity correlations do versal behaviorM,~t 2. The next coefficient, satisfies
exist, and the largeQ the larger the correlation. In the

freely evolving case, this quantity easily follows from the d

smallx behavior of the scaling functiond(x). By a_f2+)\2f2=)\l,lf%- (30
definition, (vi)=(v7)=T and furthermore, (viv})

= (71 9k3) (9% K3)F|i—o=4T?®"(0). Consequently, one Solving Eq.(30) we find thatf,(7) is a linear combination of
hasQ=4®"(0)-1=8¢,—1. Using Eq.(24) we find two exponentialse *2” and e 217, whose decay coeffi-
cients are equal,= 2\, at the crossover dimensiah. In-

2
Q= 6—62 27) tegrating the rate Eq30) and translating back to the physi-
d—(1+3€%)’ cal timet, we obtain
whend>d,=1+3e? andQ=< otherwise. While the quan- fo(1)=Cy(1+1t/t,) 4+ Cy(1l+t/t,) 2% (31

tity Q is physical whend=2, it is sensible to use analytic

continuation to reveal the underlying divergence. VeloCityfor g+d,. Here, ay=Ay/Ny, Ci=\;1f2(0)/(Ao—2X1),
correlations vanish for elastic gases. Interestingly, inelasticity,q C,=f,(0)—C,. Whend=d,, one finds

introduces strong velocity correlations, and the largehe

larger the correlations &3 increases monotonically with in- fo(1)=[CyIN(1+1/t, )+ CoJ(1+1t/t,) (32)
creasinge. The perfectly inelastic cases€ 1/2) again pro-

vides a bOUﬂdQ<QmaX=6, 6/5 ford=2, 3, respectively. with C1=)\11f§(0) and szfz(o)_ Thus for d>d2, the
This behavior is somewhat intuitive as the anisotropic CO'“'fourth moment exhibits ordinary scaling,~t~%, or M,
sion rule(1) discriminates the velocity component normal to ~M§~t*4. Whend<d,, multiscaling becomes a,lpparent as

the impact direction. f,~t~2%2 and therefore the ratiM4/M§ diverges asymp-
totically. This is consistent with the divergence of the fourth
moment of the scaling functiod (x) that occurs at the same

So far, we focused on the leading asymptotic behavior ofrossover dimensiod,. A logarithmic correction occurs at
the velocity distribution. The diverging moments and the dis-this dimension. In summary, we find the following leading
sipative nature of this system suggest that the time deper@Symptotic behavior of the fourth moment:
dence may exhibit rich behavior. Thus, we study relaxation .
of velocity characteristics such as the moments and the au- t d>dy,
tocorrelation function. My(t)~3 t74Int, d=d,, (33

t72%2, d<d,.

IV. NONEQUILIBRIUM DYNAMICS

A. Multiscaling of the moments

While moments of the scaling function diverge, the actual A similar calculation can be carried for the sixth moment.
moments must remaifinite at all times, particularly at the The solution of @/d7)f3+ X gfs=(Ny+ N, ) f1f,, with fy
scaling regime. Therefore, the above moment analysis sugnd f, given above involves three exponentiaks:?s7,
gests that knowledge of the leading asymptotic behavior ig~*17*2)7 ande™ 31", Asymptotically, the first exponential
not sufficient to characterize the time dependent behavior adlominates wheml<d;, and consequentlyyl g~t~243; oth-
sufficiently large moments. erwise, the third exponential dominates and thence ordinary
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4 - - - - It is simple to show(see Appendix Bthat the autocorre-
lation evolves according to the following linear equation:

d 1-€
3l o] d—TA(TW,T)=—TA(TW,T), (37)

S where time is again expressed in terms of the collision
counters 7, and 7. Equation (37) is solved to give
ot .~ 1 A7y, 7)=A(7y, 1) X —[(1—e)/d](v—7,)}, or equiva-
lently

Aty 1) =Ag(1+t, /t,)Ye 2(1+t/t,) Y (38)

! 0 0.1 0.2 0.3 0.4 05 with Ag=dT,. Therefore A(t,,,t) is a function of the wait-

g ing time t,, and the observation timg and not simply of
their differencet—t,,. This interesting history dependence
or “aging” is another signature of the nonequilibrium nature
of our system.

_ 6 _ _ Memory of the initial conditions can be quantified by set-
scaling occursMg~t~°. Generally, the leading asymptotic ting t,,= 0. Writing A(t)=A(0,t) we arrive at the following
behavior of the dath moment is characterized by two differ- algebraic decay:

ent regimes

FIG. 2. The crossover dimensiodg(e) of Eq. (25) versus the
dissipation coefficient fon=2,3.

A(t)=Ay(1+t/t, ) Ve, (39

t2n, d>d,,
“on _ " In contrast with the temperature that decays with a universal
Map(t)~| t7Int, d=d,, (34) law, T(t)~t "2, the autocorrelation decays with a nonuniver-
t=2em, d<d,. sal law,A(t)~t~Y¢. The exponent is independent of the di-
mension. However, it strongly depends on the dissipation,
Further logarithmic corrections affecting subdominant termsand the stronger the dissipation, the stronger the memory of
occur at the crossover dimensioas, . . . ,dn_1. the initial conditions. This decay exponent is bounded by 2
The dependence af,(e) on the dissipation coefficientis <1/e<c. In the elastic case¢=0, a simple exponential
shown in Fig. 2. In the physical dimensionk=2,3, the decay occurs, and in the totally inelastic case;1/2, the
fourth moment exhibits ordinary scaling behavior. The sixth-autocorrelation and the temperature are proportional to each
order moment exhibits multiscaling if the dissipation coeffi- other.
cient is large enoughe>0.302 074, 0.427 438 fod=2,3, The autocorrelation function allows calculation of the
respectively. In the large limit, A\,—1 so fromA,=n\; we  long-time spread in the position of a tagged partitft)
find d,—2e(1— €)n. Thus, regardless of the dissipation pa- =(|x(t) —x(0)|?). Using x(t) —x(0)= [5dt’v(t"), one can
rameters and the dimension, sufficiently large moments eXmmediately expressA?(t) via the autocorrelation func-

hibit multiscaling, tion, A2=2ftdt' fLdt’A(t",t'). Substituting Eq.(38) into

an this expression and performing the integration yields
M2n=M3",  an=An/\y. (39 A2(t)=C, In(1+Ut,)+CL[(1+t/t, )" Ye—1]  with C,

. o =2Agt2el(1—€) and C,=—C,e/(1—€). Asymptotically,
Interestingly, the multiscaling exponents saturate asymptotithe second term is negligible, and the spread has a generic
cally, ap—d/[2e(1~€)] asn—co. Of course, if the dimen-  |ogarithmic behavior
sion increases or the dissipation parameter decreases, the or-

der of the lowest moment exhibiting multiscaling increases, A~+Int (40
and in practice, it may be difficult to observe deviations from
ordinary scaling. For example, at=3 and e=0.1, multi-  reflecting thet ! decay of the overall velocity scalé7,48.

scaling occurs only for moments whose index exceeds 30.
V. STEADY STATES

B. Nonuniversal velocity autocorrelations So far, we have discussed freely cooling systems where

The autocorrelation function quantifies memory in the ve-the energy decreases indefinitely. In typical experimental
locity of a tagged particlg26]. The velocity autocorrelation, situations, however, the system is supplied with energy to

A(t,,t), is defined via balance the energy dissipatip6—8,23. Theoretically, it is
natural to consider white noise forcifig2,49, i.e., coupling
Aty t)=v(ty) - v(1), (36) to a thermal heat bath that leads to a nonequilibrium steady

state. Interestingly, a stretched exponential behawdu,)
where the overline denotes averaging over all particles and exp(—v®?), is found for the driven inelastic hard sphere
ty, is the “waiting” time, t,, <t. gas[22].
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Specifically, we assume that in addition to changes due to
collisions, velocities may also change due to an external
forcing: (dv; /dt)|hea & With j=1, ... d. We use standard
uncorrelated white noisgg;(t)&;(t"))=2D &;; 6(t—t") with
a zero averaggs;) =0. The rate equation for the temperature
is modified by the additional source ternd/@t)T+AT3?
=2D, and the system approaches a steady state,
=(2D/\)?3. The relaxation toward this state is exponential,
|TOC_T|~e—ConS[><I.

Uncorrelated white noise forcing amounts to diffusion in
velocity space. Therefore, Eq7) is modified as follows,
aldT—(aldT)+DK?. In the steady state, the Fourier trans-
form, F..(k)=W¥(y) with y=Dk?, obeys

(1+y)W(y)=(V(&y)¥(ny)). (41

This equation is solved recursively by employing the cumu-

lant expansion

\P(y)=eX;{ ) wn(—y)”}- (42)
The cumulantse,,, defined as
S K(iK)™
Fw(k)zexp[mE_l -~ } (43

are related to the coefficientg,,, viz. «,=(2n)!D"y,.
Writing 1+ y=exd =,=1(—Y)"/n], we recast Eq(41) into

1= < exn[ — > (J—n"H(=y)"

n=1

> (44)

with the auxiliary variablesy,= ,(1—&"— 3"). The de-
sired cumulants),, are obtained by evaluating recursively
the angular integrals of the auxiliary variable{sflm, and
then using the identities,=(,)/\,. In one dimension,
(u"y=1 and one immediately obtaifg/,)=n"*, and con-
sequentlyny,=[1—€>"—(1—¢€)?"]"* [39]. In higher di-
mensions, the quantitie(§bn) acquire nontrivial dependence
on n, eg, (y)=1, (Jo)=3(4D), and (y)= (Y11
—L(y3). The first few values foi, can be then evaluated.
In particular, ;=1\, and ,={((1—&— 7)2)/(2\5\,),
from which one can determine explicit expressions

d

lﬂl:m' (45)

B 302
Vo= a a1 (1- ) -121-0X1+ D)

PHYSICAL REVIEW E 66, 011309 (2002

———-d=2 /
— d-3 ;

FIG. 3. The velocity correlation measu€eversus the dissipa-
tion coefficiente. The scaling regime resul®?) is shown in the top
graph, and the steady state regdlf) is shown in the bottom graph.

\I’N(O)
=1
[¥'(0)]?

In terms of the first two coefficients of the cumulant expan-
sion, Q=21//2/zp§. Substituting the value of these coeffi-
cients yields

Q (46)

B 6e’(1—¢€)
Q= (d+2)(1+e)—3(1—e)(1+€%)°

(47

Note that for a fixed spatial dimension, this quantity is maxi-
mal in the completely inelastic case. For instan@g,.y
=2/11 in two dimensions an®,,,x=2/15 in three dimen-
sions. These values are smaller by an order of magnitude or
more than the corresponding values in the unforced case.
Intuitively, one expects that white noise forcing randomizes
the velocities of the particles. Indeed, velocity correlations
are much less pronounced in this case, as seen in Fig. 3.
Additionally, velocity correlations diminish as the dimension
increases. At large dimensions, velocity correlations vanish
according toQ~d 1, indicating that the velocity distribu-
tion becomes purely Maxwelliany (y)—exp(-y/2) when
d—oo.

VI. GENERALIZATIONS

The above results can be generalized in a number of
ways. For example, the development of spatial correlations
can be considered by placing particles on a lattice and allow-
ing for nearest-neighbor collisions only. In this section, we
briefly mention two straightforward generalizationg1p en-
ergy generating collisions, an@) distribution of restitution
coefficients.

So far, we discussed only the physical case of dissipative
collisions, namelye<0. However, the above results in the
freely evolving case hold for energy generating collisions,

Thus, the steady state distribution is not purely Maxwelliani.e., e>0 as well. Although the typical velocity scale di-
To probe velocity correlations or alternatively, deviationsverges, the velocity distribution still follows the scaling so-

from a factorizing Maxwellian distribution, we consider the lution (11) with algebraic large-velocity statistics. The corre-

quantityQ, defined in Eq(26). At the steady state, it is given sponding exponents is still obtained from Eq.(19).

by However, the behavior does change, as follows from the ana-
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lytically tractabled— oo behavior. In contrast with the dissi- the corresponding exponent depends on the restitution coef-
pative case, the second term on the right-hand side of Edicient only.
(19 now dominates, and it grows exponentially as In contrast with elastic collisions, stochastic inelastic col-
xal”= 972 gince the left-hand side of ELI) is of the order  lision processes are not effective in mixing particle veloci-
of unity, the constana must be equal to one. On the other ties. The stronger the inelasticity, the stronger the history
hand, the constard is evaluated using the Stirling formula dependence, i.e., memory of previous behavior. Additionally,
I'(x)~(x/e)* to givea=(1—¢€)%(o—d)d¥(~dDg-o/le=d) inelasticity can generate significant correlations between dif-
Equatinga=1, we arrive at ferent velocity components. Such correlations do develop
even in the forced case, where dissipation is balanced by
energy input, and one may expect that Maxwellian velocity
distribution emerge.
) ) . ) ) ) ) The Maxwell model is truly mean field in nature with all
While the exponent rises linearly with the dimension, it €x-,qnects of the collision process being random. While it is not
hibits differente dependence. Numerical solution®hows g, hrising that such a theory is solvable, the rich structure of
that this large dimension estimate again yields a useful apne solution is somewhat unexpected. For example, the ex-
proximation even at moderate dimensions. __ponent follows from a transcendental equation, and cannot
Several recent studies have used a distribution of restityso optained from heuristic arguments or dimensional analy-
tion coefficients to model driven granular systems, includingsis ' Remarkably, even the leading asymptotic behavior in the
for example, a one-dimensional gas of rods with internal,ge dimension limit remains nontrivial as it involves roots
degrees of freedoni50,51, and vertically vibrated layers ¢ o\ bic or transcendental equations.
[52]. By tuning the distribution properly, one can have a  \ye have explored only the basic characteristics. Clearly,
situation where overall energy is conserved as dissipativgne can study higher order velocity correlation measures as
collisions are balanced by energy generating collisionsy e|| a5 higher order autocorrelations. Furthermore, the relax-
When the restitution coefficient is drawn from the distribu- 5¢qn toward the steady state appears analytically tractable.
tion p(e€), one simply integrates the collision integral in the e siraightforward analysis is cumbersome and it may be
Boltzmann equatioii2) with respect to the measupge). In eyl to expand first the solutions in terms of more natural
one dimension, one can check that the scaling solutloqx)u”ding blocks, e.g., orthogonal polynomials.
®(x)=(1+ yx)exp(— VX) still holds, and, in particular, the  \ve stress that the Maxwell model is exact for stochastic
exponenio=4 is robust. In general dimension, the exponentinelastic collision processes with random collision partners
o is given by and impact angles. It may be applicable in situations where
an effective stirring mechanism leads to perfect mixing. Oth-
erwise, it should be regarded as an uncontrolled approxima-
tion of the Boltzmann equation. Indeed, existing theoretical
and numerical studies give little evidence for algebraic tails

with the decay rate.= [dep(€)A(€). We conclude that al- characterizing inelastic gases. The only exception was ob-

gebraic large-velocity statistics extend to situations wheré€rved in a system with random restitution coefficients
the dissipation coefficiert is drawn from a given distribu- drawn from a broad distribution. In one dimension, both mo-

tion. lecular dynamics simulation and direct integration of the
Boltzmann equation for inelastic hard spheres show that the
velocity distribution has a power law tdib2].
VII. CONCLUSIONS In conclusion, our results, combined with previous kinetic

We have studied inelastic gases within the framework ofD€0ry studies that find exponential, stretched exponential,
the Maxwell model, a Boltzmann equation with a uniform and Gaussian tails, indicate that extremal velocity character-

collision rate. We have shown that this kinetic theory is anal

o=dv with (v—1)v =I=(1—€)2 (48

—d
1_)\0-7:f dep(6)<§(rr*d)/2+ 77((rfd)/2> (49)

istics can be sensitive to the details of the model, let alone

lytically tractable as closed evolution equations characteriz@arameters such as the restitution coefficient, and the dimen-
the Fourier transform and consequently moments of the ve*'0"-
locity distribution. In the freely evolving case, the system
approaches a scaling regime, and the velocity distribution ACKNOWLEDGMENTS
has an algebraic large-velocity tail. The corresponding expo-
nent varies continuously with the spatial dimension and the We thank A. Baldassari and M. H. Ernst for fruitful cor-
degree of dissipation. The decay exponents can be very largéspondence, and H. A. Rose for useful discussions. This
and therefore it may be difficult to distinguish a power lawesearch was supported by DOEW-7405-ENG-36,
from a stretched exponential. In the driven case, we hav®lSHDMR9978902, and ARO(DAAD19-99-1-0173.
determined the cumulants of the velocity distribution.

'_I'he time dependent behavior displz_iys a ngmper of ir!te_r- APPENDIX A: THE A COEFFICIENTS
esting features. Moments of the velocity distribution exhibit
multiscaling asymptotic behavior, and knowledge of the typi- To compute the coefficients,=(1—¢"— ") and A, 1,
cal velocity is insufficient to characterize all moments. The=(&"7™) we useé=1—(1—€®)u and 7= (1—€)?u. Thus,
velocity autocorrelation decays algebraically with time, andthe following integrals are required:
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(d 1
o E)F "2 13 2n-1+1
(%)= (1 d\ d2+d 2(n—-1)+d°
I E I n+§
In particular,  (u)=1/d, (u?)=3[d(d+2)], (3

=15[d(d+2)(d+4)], so the first few coefficients are

1
N=2€(1— e)a,

2 1 2 2 3
No=2(1—¢€ )6—2(1—6) (1+e )m,

1
A3:3(1—62)a—3(1—62)2 +2e(1—€)®

3
d(d+2)

342 15
“Cr @ aaray

1
)\111:(1—E)Za—(l—f)z(l—ez)m.

APPENDIX B: THE AUTOCORRELATION EVOLUTION
EQUATION

It is useful to work with the collision counter. In an
infinitesimal time intervalA7, the velocity of a particle
changes fronv=v(7) to

prob. 1-Ar,

v(r+Ar)= v—(1l—e€)(v—u)-nn prob. A7,

PHYSICAL REVIEW E 66, 011309 (2002

Hereu is chosen randomly from all particles and the impact
directionn is drawn from a uniform distribution. The rate
of change in the autocorrelation functiol\(7,,7)
=v(r,)-V(7) is evaluated as follows:

d A
E_ (Tw,7)

= lim v(7,)-[V(T+A7)—Vv(7)]/AT
A7—0

—(1—e)f duP(u,r)f dn[v(7,)-n][(v—u)-n]

l-e——  1—¢€ —_—
__TV(TW).V(T)+ Tj duP(u,m)Vv(7y)-U

_ 1—€

__TA(TW!T)'

(B1)

The angular integration in the second line of EB1) was
performed using the identity,

H(a,b)=fdn(a~n)(b~n)=§(a~b). (B2)

This identity can be deduced by rewriting the integral as
H(a,b)=a- h(b). By symmetryh(b)=fdnn(b-n) is a vec-

tor alongb, sayAb, implying H(a,b)=A(a-b). Evaluating
the special cask (a,a) =(u)a® we obtain Eq(B2). Finally,

the second term in the third line vanishe$s,,)-u(7)=0,
since the velocityu(7) of the randomly chosen collision
partner is uncorrelated with( 7).
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