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Scaling, multiscaling, and nontrivial exponents in inelastic collision processes
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We investigate velocity statistics of homogeneous inelastic gases using the Boltzmann equation. Employing
an approximate uniform collision rate, we obtain analytic results valid in arbitrary dimension. In the freely
evolving case, the velocity distribution is characterized by an algebraic large-velocity tail,P(v,t);v2s. The
exponents(d,e), a nontrivial root of an integral equation, varies continuously with the spatial dimensiond and
the dissipation coefficiente. Although the velocity distribution follows a scaling form, its moments exhibit
multiscaling asymptotic behavior. Furthermore, the velocity autocorrelation function decays algebraically with
time,A(t)5^v(0)•v(t)&;t2a, with a nonuniversal dissipation-dependent exponenta51/e. In the forced case,
the steady state Fourier transform is obtained via a cumulant expansion. Even in this case, velocity correlations
develop and the velocity distribution is non-Maxwellian.
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I. INTRODUCTION

Inelastic gases consist of hard sphere particles that in
act via contact interactions and dissipate kinetic energy u
collisions @1#. They are used extensively to study dynam
of granular materials. Numerically, molecular dynam
simulations are quite successful in modeling many of
observed collective phenomena that include size segrega
phase transitions, shocks, clustering, and developmen
other spatial structures@2–10#. In parallel, kinetic theory is
utilized to systematically derive macroscopic properties fr
the microscopic collision dynamics@11–13#.

Inelastic gases, a prototype nonequilibrium interact
particle system, are interesting on their own rights@14–21#.
Recent theoretical and experimental studies show that
velocity distributions exhibit anomalous large-velocity stat
tics with exponential, stretched exponential, and Gaus
tails @6–8,22–25#. Inelastic gases involve significant velo
ity and spatial correlations in contrast with traditional m
lecular gases@26–28#. Kinetic theory assumes that spati
velocity correlations are small. While this assumption can
justified for strongly driven gases, the situation for free
evolving gases is more difficult since velocity correlatio
can be ignored only in the early homogeneous phase@29–
31#, but must be taken into account in the asymptotic cl
tering phase. Clearly, the strong energy dissipation ra
challenging new questions@32#.

Yet, even more elementary questions remain unanswe
For example, random collision processes effectively gene
thermal, purely Maxwellian velocity distributions when th
collisions are elastic. In particular, different components
the velocity become uncorrelated. In this study, we cons
these very same processes but with inelastic collisions.
show that energy dissipation fundamentally alters the beh
ior. The system is intrinsically a nonequilibrium one, and t
resulting velocity distributions are far from thermal.

We consider a collision process, where random pairs
particles undergo inelastic collisions with a random imp
direction. This process, often called the Maxwell model,
described by a Boltzmann equation with a uniform collisi
rate. In classical kinetic theory of gases, the analytically tr
1063-651X/2002/66~1!/011309~10!/$20.00 66 0113
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table Maxwell model precedes the Boltzmann equation@33#.
Historically, it played an important role in the developme
of kinetic theory@34–36#, and it still remains the subject o
current research@37,38#.

Very recently, it has been noted that the Maxwell mode
analytically tractable even for inelastic collisions@39–43#.
Interesting behavior emerges in the freely evolving case
one dimension, while moments of the velocity distributio
exhibit multiscaling@39#, the velocity distribution itself still
approaches a scaling form with an algebraic large-velo
tail @40#. Here, we show analytically that in arbitrary spati
dimension the velocity distribution admits a scaling soluti
with an algebraic large-velocity tail. The corresponding e
ponent, a root of a transcendental equation, depends on
spatial dimension and the restitution coefficient. Additio
ally, we find that the multiscaling behavior extends to high
dimensions, and that the velocity autocorrelation funct
exhibits aging and nonuniversal asymptotic behavior. In g
eral, velocity components develop significant correlatio
Such correlations diminish in the forced case, although
velocity distribution remains non-Maxwellian.

The rest of this paper is organized as follows. The ba
Boltzmann equation for the velocity distribution and its Fo
rier transform are presented in Sec. II. In Sec. III, we inv
tigate the scaling regime, and obtain the extremal veloc
statistics, moments of the velocity scaling function, and
locity correlations. In Sec. IV, we illuminate the nonequilib
rium dynamics by studying the time dependent behavior
the moments and the velocity autocorrelation function.
Sec. V, we consider nonequilibrium steady states in
driven case, and obtain the steady state distribution as a
mulant expansion. A few generalizations are briefly me
tioned in Sec. VI, and conclusions are given in Sec. VII.

II. THE MAXWELL MODEL

We study a homogeneous system of identical inela
spherical particles. The mass and the cross section are s
unity without loss of generality. Particles interact via bina
collisions that lead to exchange of momentum along the
pact direction. The postcollision velocitiesv1,2 are given by a
©2002 The American Physical Society09-1
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linear combination of the precollision velocitiesu1,2,

v1,25u1,27~12e!~g•n!n. ~1!

Hereg5u12u2 is the relative velocity andn the unit vector
connecting the particles’ centers. In each collision, the n
mal component of the relative velocity is reduced by t
restitution coefficient r 5122e. The energy dissipation
equals DE52e(12e)(g•n)2, so for e50 collisions are
elastic, while for e51/2 collisions are perfectly inelasti
with maximal energy dissipation. Since the collision rule~1!
is Galilean invariant, the average velocity can be set to z
without loss of generality.

We investigate the ‘‘Maxwell model’’ where the collisio
rate in the Boltzmann equation equals the typical veloc
rather than the actual relative velocity@35,36#. This kinetic
theory describes a stochastic process where randomly ch
pairs of particles undergo inelastic collisions according
Eq. ~1! with a randomly chosen impact directionn. In such a
process, no spatial correlations develop, and the normal
velocity distribution function,P(v,t), obeys

]P~v,t !

]t
5gE dnE du1P~u1 ,t !E du2P~u2 ,t !

3$d@v2u11~12e!~g•n!n#2d~v2u1!%.

~2!

The overall collision rate equalsg5AT whereT is the granu-
lar temperature, or the average velocity fluctuation per
gree of freedom,T5(1/d)*dvv2P(v,t) with v[uvu. The re-
striction g•n.0 on the angular integration range in Eq.~2!
can be tacitly ignored, because the integrand obeys the
flection symmetryn→2n. This angular integration shoul
be normalized,*dn51.

We study primarily the freely evolving case where in t
absence of energy input the system ‘‘cools’’ indefinite
From the Boltzmann equation~2!, the temperature rate equa
tion is

d

dt
T52lT3/2 with l5

2e~12e!

d
. ~3!

The constantl52e(12e)*dnn1
2, is obtained using the

identity n1
21•••1nd

251 that yields*dnn1
251/d. Solving

Eq. ~3! we find that the temperature decays according
Haff’s cooling law @14#,

T~ t !5T0~11t/t* !22, ~4!

with the time scalet* 5d/@e(12e)AT0# set by the initial
temperature,T0.

Given the convolution structure of the Boltzmann equ
tion ~2!, we introduce the Fourier transform@36# of the ve-
locity distribution function,

F~k,t !5E dveik•vP~v,t !. ~5!
01130
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We conveniently reset the collision rate to unity by modif
ing the time variable. The collision countert is defined via
the transformationd/dt5(1/AT)(d/dt). Specifically,

t5
2

l
ln~11t/t* ! ~6!

equals the average number of collisions experienced b
particle. Applying the Fourier transform to Eq.~2! and inte-
grating over the velocities gives

]

]t
F~k,t!1F~k,t!5E dnF@k2q,t#F@q,t# ~7!

with q5(12e)(k•n)n. This equation reflects the momen
tum transfer occurring during collisions.

We restrict our attention to isotropic situations, and wr
the Fourier transformF(k,t)[F(z,t) in terms of the vari-
ablez5k2. To perform the angular integration, it proves us
ful to employ spherical coordinates with the polar axis p
allel to k, so thatk̂•n5cosu. Theu-dependent factor of the
measuredn is proportional to (sinu)d22du. In terms of the
variablem5cos2u, one hasdn[Dm, with

BS 1

2
,
d21

2 DDm5m21/2~12m!(d23)/2dm, ~8!

whereB(a,b) is the beta function. This integration measu
is properly normalized,*0

1Dm51. Hereinafter, we denote
angular integration with brackets

^ f &5E
0

1

Dm f ~m!. ~9!

The governing Eq.~7! for the Fourier transform can now b
rewritten in the convenient form

]

]t
F~z,t!1F~z,t!5^F~jz,t!F~hz,t!&, ~10!

with the shorthand notationsj512(12e2)m and h5(1
2e)2m. Hence, the Fourier equation is both nonlinear a
nonlocal. Interestingly, while it is difficult to integrate thi
equation with respect to time, most of the physically relev
features of the velocity distributions including large-veloc
statistics and the time dependent behavior of the mom
can be found analytically, as will be shown below.

III. SCALING SOLUTIONS

Numerical simulations in two dimensions suggest that
velocity distribution approaches the scaling form@40#

P~v,t !;
1

Td/2
PS v

AT
D . ~11!

The scaling form of the Fourier transform reads

F~k,t !5F~x! with x5k2T. ~12!
9-2
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In the k→0 limit, the Fourier transform behaves asF(k,t)
>12 1

2 k2T. This implies that the first two terms in the Taylo
expansion of the corresponding scaling function are univ
sal, F(x)>12 1

2 x. Substituting the above scaling form int
the governing Eq.~10! and using the temperature coolin
rate (d/dt)T52lT yields the governing equation for th
scaling function

2lxF8~x!1F~x!5^F~jx!F~hx!&. ~13!

One can check that the velocity distribution is purely Ma
wellian F(x)5e2x/2 in the elastic case@44#. Indeed,l50
and j1h51 in this case. A stochastic process of elas
collisions effectively randomizes the velocities and leads t
thermal distribution.

A. Algebraic tails

It is instructive to consider first the one-dimensional ca
Here, integration overm is immediate as this variable equa
unity, and the scaling function satisfies2lxF8(x)1F(x)
5F@e2x#F@(12e)2x#. Remarkably, this nonlocal nonlinea
differential equation admits a very simple solution@40#

F~x!5~11Ax!exp~2Ax!. ~14!

Performing the inverse Fourier transform gives the veloc
distribution as a squared Lorentzian

P~w!5
2

p
~11w2!22. ~15!

The scaling solution~15! is universal as it is independent o
the dissipation coefficiente. Its key feature is the algebrai
tail, P(w);w24 as uwu→`.

In general dimensiond, the large velocity behavior of the
velocity distribution can be determined from the small wa
number behavior of its Fourier transform. For example,
small-x expansion of the one-dimensional solution~14! con-
tains both regular and singular terms:F(x)512 1

2 x1 1
3 x3/2

1•••, and the dominant singularx3/2 term reflects thew24

tail of P(w). In general, an algebraic tail of the veloci
distribution ~11!,

P~w!;w2s as w→`, ~16!

indicates the existence of a singular component in the F
rier transform,

Fsing~x!;x(s2d)/2 as x→0. ~17!

The inverse is also correct. This can be seen by recasting
Fourier transformF(x)}*0

`dwwd21P(w)exp (iwAx) into a
Laplace transformI (s)}*0

`dwwd21P(w)e2ws by writing x
52s2. The small-s expansion ofI (s) contains regular and
singular components. For example, whens,d, the integral
I (s) diverges ass→0 and integration over largew yields the
dominant contribution I sing(s);ss2d. When d,s,d
11, I (0) is finite, but the next term is the above singu
term, soI (s)5I (0)1I sing(s)1•••. In general, the singula
contribution isI sing(s);ss2d, thereby leading to Eq.~17!.
01130
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The exponents can be now obtained by insertingF(x)
5F reg(x)1Fsing(x) into Eq. ~13! and balancing the domi
nant singular terms. We find thats is a root of the integral
equation

12l
s2d

2
5^j (s2d)/21h (s2d)/2&. ~18!

This relation, originally derived in Refs.@41,42#, can be re-
cast as an eigenvalue problem. Indeed, definingln5^1
2jn2hn& we can rewrite Eq.~18! as lm5ml1 with m
5(s2d)/2. Note thatl[l1, so there is an obvious solutio
m51, or s5d12. In this case, the singular term simp
coincides with the dominant regular term,x(s2d)/25x.
Hence, this solution is trivial and in the following we sha
seek a solution withs.d12.

The integral equation~18! can also be rewritten in term
of special functions. The first integral on the right-hand s
of Eq. ~18! can be expressed in terms of the hypergeome
function 2F1(a,b;c;z) @45# and the second as a ratio of be
functions:

12e~12e!
s2d

d
52F1Fd2s

2
,
1

2
;
d

2
;12e2G

1~12e!s2d

GS s2d11

2 DGS d

2D
GS s

2 DGS 1

2D . ~19!

We conclude that the exponents[s(d,e) depends in a non-
trivial fashion on the spatial dimensiond as well as the dis-
sipation coefficiente.

First, let us investigate the dependence on the dissipa
coefficient by considering the quasielastic limite→0. In the
elastic case, the Maxwellian distribution,F(x)5e2x/2, im-
plies a diverging exponents→` as e→0. Therefore, the
right-hand side of Eq.~19! vanishes in the quasielastic lim
and to leading order

s.
d

e
. ~20!

Clearly, the quasielastic limit is singular. Dissipation, even
minute, seriously changes the nature of the system@6,25,31#.
Further corrections can be obtained via a systematic pe
bation expansion ine. We merely quote the two leading co
rections in the physically relevant dimensions,

s~2,e!5
2

e
2

2~e2211!

Ape
1

4p2~e2211!2

p
1O~e1/2!,

s~3,e!5
3

e
2A3p

2e
1F62e232

p

4 G1O~e1/2!.

Next, we discuss the dependence on the dimension. F
one can verify thats54 whend51, by utilizing the identity
2F1(a,b;b;z)5(12z)2a. In the infinite dimension limit,
the second integral̂h (s2d)/2& in Eq. ~18! is negligible as it
vanishes exponentially with the dimension. To evalu
9-3
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the second integral we take the limitsd→` andm→0 with
z5md/2 fixed. The integration measure~8! is transformed
according toDm→(pz)21/2e2zdz, and the basic Eq.~18!

becomes 12e(12e)u5*0
`dz(pz)21/2e2[11(12e2)u]z with

the shorthand notationu5(s/d)21. Performing the integra
tion yields 12e(12e)u5@11(12e2)u#21/2. This cubic
equation has the aforementioned trivial solutionu50 and
two nontrivial solutions. Choosing the physically relevantu,
we obtain that asd→`,

s

d
5

11
3

2
e2e32e1/2S 11

5

4
e D 1/2

e~12e2!
. ~21!

In general,s}d, and therefore, the algebraic decay b
comes sharper as the dimension increases. The expo
s(d,e) increases monotonically with increasingd, and addi-
tionally, it increases monotonically with decreasinge ~see
Fig. 1!. Both features are intuitive as they mirror the mon
tonic dependence of the energy dissipation ratel52e(1
2e)/d on d ande. Hence, the completely inelastic case pr

FIG. 1. The exact exponents, obtained from Eq.~19!, versus
the dissipation parametere. The exponent was scaled by the dime
sion d. Shown also is the limiting large dimension expression~21!.
is
n

01130
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vides a lower bound for the exponent,s(d,e)>s(d,e
51/2) with s(d,1/2)56.287 53, 8.329 37, ford52, 3, re-
spectively. Numerical simulation results are consistent w
the former value@46#. The algebraic tails are characterize
by unusually large exponents that may be difficult to me
sure accurately in practice; for instance, typical granular p
ticles are characterized by the dissipation coefficiente'0.1
yielding s'30 in three dimensions. Figure 1 also shows th
the quantitys/d weakly depends upon the dimension, a
the large-d limit ~21! provides a good approximation even
moderate dimensions.

B. Divergence of the moments

The algebraic tail of the velocity distribution implies th
sufficiently small moments of the scaling functionF(x) are
finite, while moments larger than some index diverge. In
scaling regime, moments of the velocity distribution can
calculated by expanding the Fourier transform in powers
x,

F~x!5 (
n>0

fn~2x!n. ~22!

The coefficientsfn yield the leading asymptotic behavior o
the velocity moments,Mk(t)5*dvvkP(v,t), via the relation
(2n)!Tnfn.^mn&M2n . Inserting the moment expansio
into the governing Eq.~13! yields the closed hierarchy o
equations

~ln2nl1!fn5 (
m51

n21

lm,n2mfmfn2m ~23!

with ln5^12jn2hn& and lm,l5^jmh l&. The first few co-
efficients are written explicitly in Appendix A. Starting with
f051 andf151/2, further coefficients are determined r
cursively from Eq.~23!. In the elastic case (e50), one has
fn5(n!2n)21, consistent withF(x)5e2x/2. For generale,
the first two terms are

f25
1

8

123
12e2

d12

123
11e2

d12

, ~24!
f35
1

48

123
12e2

d12

123
11e2

d12

123
~12e!~113e!

d12
130

e~12e!~12e2!

~d12!~d14!

123
~11e!2

d12
110

e~12e!~31e2!

~d12!~d14!

.

The behavior is determined by two parameters:d ande. Fix-
ing e, we see that a given momentfn is finite only if the
dimension is sufficiently large,d.dn(e). In particular,fn is
finite only if the left-hand side of Eq.~23! is positive,ln

2nl1.0. This condition is satisfied only if the dimension
sufficiently larged.dn , with dn being the spatial dimensio
at whichln5nl1. For example,f2.0 whend.d2, andf3
is finite only whend.d3 with the following crossover di-
mensions:

d25113e2,
~25!

d35
3

2
~e212e21!1

1

2
A25260e1186e224e3149e4.
9-4
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Conversely, for a fixed dimension, a given moment is fin
only if the dissipation is sufficiently small. For example,f3
is positive only whene,0.302 074, 0.427 438 atd52,3.
Such values, obtained by solving polynomial equations, y
integer values of the large-velocity decay expon
s(2,0.302 074)58 and s(3,0.427 438)59, in accord with
direct numerical solution of Eq.~19!.

C. Velocity correlations

Maxwell’s seminal derivation of the Maxwellian distribu
tion ~see Ref.@26#, p. 36! relies on two basic assumption
~1! isotropy of the velocity distribution, and~2! absence of
correlations between the velocity components. The latter
sumption is directly probed using the following correlatio
measure:

Q5
^vx

2vy
2&2^vx

2&^vy
2&

^vx
2&^vy

2&
. ~26!

A nonvanishingQ indicates that velocity correlations d
exist, and the largerQ the larger the correlation. In th
freely evolving case, this quantity easily follows from th
small-x behavior of the scaling functionF(x). By
definition, ^vx

2&5^vy
2&5T and furthermore, ^vx

2vy
2&

5(]2/]kx
2)(]2/]ky

2)Fuk5054T2F9(0). Consequently, one
hasQ54F9(0)2158f221. Using Eq.~24! we find

Q5
6e2

d2~113e2!
, ~27!

whend.d25113e2 andQ5` otherwise. While the quan
tity Q is physical whend>2, it is sensible to use analyti
continuation to reveal the underlying divergence. Veloc
correlations vanish for elastic gases. Interestingly, inelasti
introduces strong velocity correlations, and the largere the
larger the correlations asQ increases monotonically with in
creasinge. The perfectly inelastic case (e51/2) again pro-
vides a bound:Q,Qmax56, 6/5 for d52, 3, respectively.
This behavior is somewhat intuitive as the anisotropic co
sion rule~1! discriminates the velocity component normal
the impact direction.

IV. NONEQUILIBRIUM DYNAMICS

So far, we focused on the leading asymptotic behavio
the velocity distribution. The diverging moments and the d
sipative nature of this system suggest that the time dep
dence may exhibit rich behavior. Thus, we study relaxat
of velocity characteristics such as the moments and the
tocorrelation function.

A. Multiscaling of the moments

While moments of the scaling function diverge, the act
moments must remainfinite at all times, particularly at the
scaling regime. Therefore, the above moment analysis
gests that knowledge of the leading asymptotic behavio
not sufficient to characterize the time dependent behavio
sufficiently large moments.
01130
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The time evolution of the moments can be studied us
the expansion,

F~z,t!5 (
n50

`

f n~t!~2z!n. ~28!

The actual moments are related to the coefficients
(2n)! f n5^mn&M2n . Substituting the expansion~28! into
~10! yields the evolution equations

d

dt
f n1lnf n5 (

m51

n21

lm,n2mf mf n2m . ~29!

We demonstrate multiscaling asymptotic behavior
evaluating the second, fourth, and sixth moments. The s
ond moment is obtained from (d/dt) f 11l1f 150 with l1
5l52e(12e)/d. Hence, we recover Haff’s lawf 1(t)
5 f 1(0)e2l1t or f 1(t)5 f 1(0)(11t/t* )22. Asymptotically,
the second moment of the velocity distribution has the u
versal behavior,M2;t22. The next coefficientf 2 satisfies

d

dt
f 21l2f 25l1,1f 1

2 . ~30!

Solving Eq.~30! we find thatf 2(t) is a linear combination of
two exponentials,e2l2t and e22l1t, whose decay coeffi-
cients are equall252l1 at the crossover dimensiond2. In-
tegrating the rate Eq.~30! and translating back to the phys
cal time t, we obtain

f 2~ t !5C1~11t/t* !241C2~11t/t* !22a2 ~31!

for d5” d2. Here, an5ln /l1 , C15l1,1f 1
2(0)/(l222l1),

andC25 f 2(0)2C1. Whend5d2, one finds

f 2~ t !5@C1 ln~11t/t* !1C2#~11t/t* !24 ~32!

with C15l1,1f 1
2(0) and C25 f 2(0). Thus for d.d2, the

fourth moment exhibits ordinary scaling,f 2;t24, or M4

;M2
2;t24. Whend,d2, multiscaling becomes apparent a

f 2;t22a2 and therefore the ratioM4 /M2
2 diverges asymp-

totically. This is consistent with the divergence of the four
moment of the scaling functionF(x) that occurs at the sam
crossover dimensiond2. A logarithmic correction occurs a
this dimension. In summary, we find the following leadin
asymptotic behavior of the fourth moment:

M4~ t !;H t24, d.d2 ,

t24 ln t, d5d2 ,

t22a2, d,d2 .

~33!

A similar calculation can be carried for the sixth mome
The solution of (d/dt) f 31l3f 35(l1,21l2,1) f 1f 2, with f 1
and f 2 given above involves three exponentials:e2l3t,
e2(l11l2)t, ande23l1t. Asymptotically, the first exponentia
dominates whend,d3, and consequently,M6;t22a3; oth-
erwise, the third exponential dominates and thence ordin
9-5
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scaling occurs,M6;t26. Generally, the leading asymptot
behavior of the 2nth moment is characterized by two diffe
ent regimes

M2n~ t !;H t22n, d.dn ,

t22n ln t, d5dn ,

t22an, d,dn .

~34!

Further logarithmic corrections affecting subdominant ter
occur at the crossover dimensionsd2 , . . . ,dn21.

The dependence ofdn(e) on the dissipation coefficient i
shown in Fig. 2. In the physical dimensionsd52,3, the
fourth moment exhibits ordinary scaling behavior. The six
order moment exhibits multiscaling if the dissipation coe
cient is large enough:e.0.302 074, 0.427 438 ford52,3,
respectively. In the largen limit, ln→1 so fromln5nl1 we
find dn→2e(12e)n. Thus, regardless of the dissipation p
rameters and the dimension, sufficiently large moments
hibit multiscaling,

M2n}M2
an , an5ln /l1 . ~35!

Interestingly, the multiscaling exponents saturate asymp
cally, an→d/@2e(12e)# asn→`. Of course, if the dimen-
sion increases or the dissipation parameter decreases, th
der of the lowest moment exhibiting multiscaling increas
and in practice, it may be difficult to observe deviations fro
ordinary scaling. For example, atd53 and e50.1, multi-
scaling occurs only for moments whose index exceeds 3

B. Nonuniversal velocity autocorrelations

The autocorrelation function quantifies memory in the v
locity of a tagged particle@26#. The velocity autocorrelation
A(tw ,t), is defined via

A~ tw ,t !5v~ tw!•v~ t !, ~36!

where the overline denotes averaging over all particles
tw is the ‘‘waiting’’ time, tw,t.

FIG. 2. The crossover dimensionsdn(e) of Eq. ~25! versus the
dissipation coefficient forn52,3.
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It is simple to show~see Appendix B! that the autocorre-
lation evolves according to the following linear equation:

d

dt
A~tw ,t!52

12e

d
A~tw ,t!, ~37!

where time is again expressed in terms of the collis
counters tw and t. Equation ~37! is solved to give
A(tw ,t)5A(tw ,tw)exp$2@(12e)/d#(t2tw)%, or equiva-
lently

A~ tw ,t !5A0~11tw /t* !1/e22~11t/t* !21/e ~38!

with A05dT0. Therefore,A(tw ,t) is a function of the wait-
ing time tw and the observation timet, and not simply of
their difference,t2tw . This interesting history dependenc
or ‘‘aging’’ is another signature of the nonequilibrium natu
of our system.

Memory of the initial conditions can be quantified by se
ting tw50. Writing A(t)[A(0,t) we arrive at the following
algebraic decay:

A~ t !5A0~11t/t* !21/e. ~39!

In contrast with the temperature that decays with a unive
law, T(t);t22, the autocorrelation decays with a nonunive
sal law,A(t);t21/e. The exponent is independent of the d
mension. However, it strongly depends on the dissipati
and the stronger the dissipation, the stronger the memor
the initial conditions. This decay exponent is bounded by
<1/e<`. In the elastic case,e50, a simple exponentia
decay occurs, and in the totally inelastic case,e51/2, the
autocorrelation and the temperature are proportional to e
other.

The autocorrelation function allows calculation of th
long-time spread in the position of a tagged particleD2(t)
[^ux(t)2x(0)u2&. Using x(t)2x(0)5*0

t dt8v(t8), one can
immediately expressD2(t) via the autocorrelation func

tion, D252*0
t dt8*0

t8dt9A(t9,t8). Substituting Eq.~38! into
this expression and performing the integration yie
D2(t)5C1 ln(11t/t* )1C2@(11t/t* )121/e21# with C1

52A0t
*
2 e/(12e) and C252C1e/(12e). Asymptotically,

the second term is negligible, and the spread has a gen
logarithmic behavior

D;Aln t ~40!

reflecting thet21 decay of the overall velocity scale@47,48#.

V. STEADY STATES

So far, we have discussed freely cooling systems wh
the energy decreases indefinitely. In typical experimen
situations, however, the system is supplied with energy
balance the energy dissipation@6–8,23#. Theoretically, it is
natural to consider white noise forcing@22,49#, i.e., coupling
to a thermal heat bath that leads to a nonequilibrium ste
state. Interestingly, a stretched exponential behavior,P(v)
}exp(2v3/2), is found for the driven inelastic hard sphe
gas@22#.
9-6
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Specifically, we assume that in addition to changes du
collisions, velocities may also change due to an exter
forcing: (dv j /dt)uheat5j j with j 51, . . . ,d. We use standard
uncorrelated white noisêj i(t)j j (t8)&52Dd i j d(t2t8) with
a zero averagêj j&50. The rate equation for the temperatu
is modified by the additional source term (d/dt)T1lT3/2

52D, and the system approaches a steady state,T`

5(2D/l)2/3. The relaxation toward this state is exponenti
uT`2Tu;e2const3t.

Uncorrelated white noise forcing amounts to diffusion
velocity space. Therefore, Eq.~7! is modified as follows,
]/]t→(]/]t)1Dk2. In the steady state, the Fourier tran
form, F`(k)[C(y) with y5Dk2, obeys

~11y!C~y!5^C~jy!C~hy!&. ~41!

This equation is solved recursively by employing the cum
lant expansion

C~y!5expF (
n51

cn~2y!nG . ~42!

The cumulantskn , defined as

F`~k!5expF (
m51

`
km~ ik !m

m! G , ~43!

are related to the coefficientscn , viz. kn5(2n)!Dncn .
Writing 11y5exp@(n>1(2y)n/n#, we recast Eq.~41! into

15K expF2 (
n51

`

~c̃n2n21!~2y!nG L ~44!

with the auxiliary variablesc̃n5cn(12jn2hn). The de-
sired cumulantscn are obtained by evaluating recursive
the angular integrals of the auxiliary variables,^c̃n&, and
then using the identitiescn5^c̃n&/ln . In one dimension,

^mn&51 and one immediately obtains^c̃n&5n21, and con-
sequentlyncn5@12e2n2(12e)2n#21 @39#. In higher di-
mensions, the quantitieŝc̃n& acquire nontrivial dependenc
on n, e.g., ^c̃1&51, ^c̃2&5 1

2 ^c̃1
2&, and ^c̃3&5^c̃1c̃2&

2 1
6 ^c̃1

3&. The first few values forcn can be then evaluated
In particular, c151/l1 and c25^(12j2h)2&/(2l1

2l2),
from which one can determine explicit expressions

c15
d

2e~12e!
, ~45!

c25
3d2

4~d12!~12e2!212~12e!2~11e2!
.

Thus, the steady state distribution is not purely Maxwelli
To probe velocity correlations or alternatively, deviatio

from a factorizing Maxwellian distribution, we consider th
quantityQ, defined in Eq.~26!. At the steady state, it is give
by
01130
to
al

,

-

.

Q5
C9~0!

@C8~0!#2
21. ~46!

In terms of the first two coefficients of the cumulant expa
sion, Q52c2 /c1

2. Substituting the value of these coeffi
cients yields

Q5
6e2~12e!

~d12!~11e!23~12e!~11e2!
. ~47!

Note that for a fixed spatial dimension, this quantity is ma
mal in the completely inelastic case. For instance,Qmax
52/11 in two dimensions andQmax52/15 in three dimen-
sions. These values are smaller by an order of magnitud
more than the corresponding values in the unforced c
Intuitively, one expects that white noise forcing randomiz
the velocities of the particles. Indeed, velocity correlatio
are much less pronounced in this case, as seen in Fig
Additionally, velocity correlations diminish as the dimensio
increases. At large dimensions, velocity correlations van
according toQ;d21, indicating that the velocity distribu-
tion becomes purely Maxwellian,C(y)→exp(2y/2) when
d→`.

VI. GENERALIZATIONS

The above results can be generalized in a number
ways. For example, the development of spatial correlati
can be considered by placing particles on a lattice and all
ing for nearest-neighbor collisions only. In this section, w
briefly mention two straightforward generalizations to~1! en-
ergy generating collisions, and~2! distribution of restitution
coefficients.

So far, we discussed only the physical case of dissipa
collisions, namely,e,0. However, the above results in th
freely evolving case hold for energy generating collision
i.e., e.0 as well. Although the typical velocity scale d
verges, the velocity distribution still follows the scaling s
lution ~11! with algebraic large-velocity statistics. The corr
sponding exponents is still obtained from Eq. ~19!.
However, the behavior does change, as follows from the a

FIG. 3. The velocity correlation measureQ versus the dissipa-
tion coefficiente. The scaling regime result~27! is shown in the top
graph, and the steady state result~47! is shown in the bottom graph
9-7
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lytically tractabled→` behavior. In contrast with the diss
pative case, the second term on the right-hand side of
~19! now dominates, and it grows exponentially
}a(s2d)/2. Since the left-hand side of Eq.~19! is of the order
of unity, the constanta must be equal to one. On the oth
hand, the constanta is evaluated using the Stirling formul
G(x);(x/e)x to give a5(12e)2(s2d)dd/(s2d)s2s/(s2d).
Equatinga51, we arrive at

s>dn with ~n21!n2
n

n215~12e!22. ~48!

While the exponent rises linearly with the dimension, it e
hibits differente dependence. Numerical solution ofn shows
that this large dimension estimate again yields a useful
proximation even at moderate dimensions.

Several recent studies have used a distribution of res
tion coefficients to model driven granular systems, includ
for example, a one-dimensional gas of rods with inter
degrees of freedom@50,51#, and vertically vibrated layers
@52#. By tuning the distribution properly, one can have
situation where overall energy is conserved as dissipa
collisions are balanced by energy generating collisio
When the restitution coefficient is drawn from the distrib
tion r(e), one simply integrates the collision integral in th
Boltzmann equation~2! with respect to the measurer(e). In
one dimension, one can check that the scaling solu
F(x)5(11Ax)exp(2Ax) still holds, and, in particular, the
exponents54 is robust. In general dimension, the expone
s is given by

12l
s2d

2
5E der~e!^j (s2d)/21h (s2d)/2& ~49!

with the decay ratel5*der(e)l(e). We conclude that al-
gebraic large-velocity statistics extend to situations wh
the dissipation coefficiente is drawn from a given distribu-
tion.

VII. CONCLUSIONS

We have studied inelastic gases within the framework
the Maxwell model, a Boltzmann equation with a unifor
collision rate. We have shown that this kinetic theory is a
lytically tractable as closed evolution equations characte
the Fourier transform and consequently moments of the
locity distribution. In the freely evolving case, the syste
approaches a scaling regime, and the velocity distribu
has an algebraic large-velocity tail. The corresponding ex
nent varies continuously with the spatial dimension and
degree of dissipation. The decay exponents can be very l
and therefore it may be difficult to distinguish a power la
from a stretched exponential. In the driven case, we h
determined the cumulants of the velocity distribution.

The time dependent behavior displays a number of in
esting features. Moments of the velocity distribution exhi
multiscaling asymptotic behavior, and knowledge of the ty
cal velocity is insufficient to characterize all moments. T
velocity autocorrelation decays algebraically with time, a
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the corresponding exponent depends on the restitution c
ficient only.

In contrast with elastic collisions, stochastic inelastic c
lision processes are not effective in mixing particle velo
ties. The stronger the inelasticity, the stronger the hist
dependence, i.e., memory of previous behavior. Additiona
inelasticity can generate significant correlations between
ferent velocity components. Such correlations do deve
even in the forced case, where dissipation is balanced
energy input, and one may expect that Maxwellian veloc
distribution emerge.

The Maxwell model is truly mean field in nature with a
aspects of the collision process being random. While it is
surprising that such a theory is solvable, the rich structure
the solution is somewhat unexpected. For example, the
ponent follows from a transcendental equation, and can
be obtained from heuristic arguments or dimensional an
sis. Remarkably, even the leading asymptotic behavior in
large dimension limit remains nontrivial as it involves roo
of cubic or transcendental equations.

We have explored only the basic characteristics. Clea
one can study higher order velocity correlation measures
well as higher order autocorrelations. Furthermore, the re
ation toward the steady state appears analytically tracta
The straightforward analysis is cumbersome and it may
useful to expand first the solutions in terms of more natu
building blocks, e.g., orthogonal polynomials.

We stress that the Maxwell model is exact for stochas
inelastic collision processes with random collision partn
and impact angles. It may be applicable in situations wh
an effective stirring mechanism leads to perfect mixing. O
erwise, it should be regarded as an uncontrolled approxi
tion of the Boltzmann equation. Indeed, existing theoreti
and numerical studies give little evidence for algebraic ta
characterizing inelastic gases. The only exception was
served in a system with random restitution coefficie
drawn from a broad distribution. In one dimension, both m
lecular dynamics simulation and direct integration of t
Boltzmann equation for inelastic hard spheres show that
velocity distribution has a power law tail@52#.

In conclusion, our results, combined with previous kine
theory studies that find exponential, stretched exponen
and Gaussian tails, indicate that extremal velocity charac
istics can be sensitive to the details of the model, let alo
parameters such as the restitution coefficient, and the dim
sion.
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APPENDIX A: THE l COEFFICIENTS

To compute the coefficientsln5^12jn2hn& and ln,m
5^jnhm& we usej512(12e2)m andh5(12e)2m. Thus,
the following integrals are required:
9-8
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^mn&5

GS d

2DGS n1
1

2D
GS 1

2DGS n1
d

2D 5
1

d

3

21d
•••

2~n21!11

2~n21!1d
.

In particular, ^m&51/d, ^m2&53/@d(d12)#, ^m3&
515/@d(d12)(d14)#, so the first few coefficients are

l152e~12e!
1

d
,

l252~12e2!
1

d
22~12e!2~11e2!

3

d~d12!
,

l353~12e2!
1

d
23~12e2!2

3

d~d12!
12e~12e!3

3~31e2!
15

d~d12!~d14!
,

l1,15~12e!2
1

d
2~12e!2~12e2!

3

d~d12!
.

APPENDIX B: THE AUTOCORRELATION EVOLUTION
EQUATION

It is useful to work with the collision countert. In an
infinitesimal time intervalDt, the velocity of a particle
changes fromv[v(t) to

v~t1Dt!5H v prob. 12Dt ,

v2~12e!~v2u!•nn prob. Dt.
d

P.

nt

y,

01130
Hereu is chosen randomly from all particles and the impa
direction n is drawn from a uniform distribution. The rat
of change in the autocorrelation functionA(tw ,t)
5v(tw)•v„t… is evaluated as follows:

d

dt
A~tw ,t!

5 lim
Dt→0

v~tw!•@v~t1Dt!2v~t!#/Dt

52~12e!E duP~u,t!E dn@v~tw!•n#@~v2u!•n#

52
12e

d
v~tw!•v~t!1

12e

d E du P~u,t!v~tw!•u

52
12e

d
A~tw ,t!. ~B1!

The angular integration in the second line of Eq.~B1! was
performed using the identity,

H~a,b!5E dn~a•n!~b•n!5
1

d
~a•b!. ~B2!

This identity can be deduced by rewriting the integral
H(a,b)5a•h(b). By symmetry,h(b)5*dnn(b•n) is a vec-
tor alongb, sayLb, implying H(a,b)5L(a•b). Evaluating
the special caseH(a,a)5^m&a2 we obtain Eq.~B2!. Finally,
the second term in the third line vanishes,v(tw)•u(t)50,
since the velocityu(t) of the randomly chosen collision
partner is uncorrelated withv(tw).
ett.
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