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Jamming pattern in a two-dimensional hopper
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We perform granular flow experiments using metal disks falling through a two-dimensional hopper. When
the opening of the hoppetis small, jamming occurs due to formation of an arch at the hopper opening. We
study the statistical properties of the horizontal compoixeand the vertical componei of the arch vector
that is defined as the displacement vector from the center of the first disk to the center of the last disk in the
arch. Asd increases, the distribution function ¥fchanges from a steplike function to a smooth function while
that of Y remains symmetrical and peakedYat 0. When the arch vectors are classified according to the
number of diskn in the arch, the mean valug) is found to increase withl. In addition, the horizontal
componeni,, and the absolute value of the vertical compon¥pt in each class have mean values increasing
with n. Regarding the arch as a trajectory of a restricted random walker, we derive an expression for the
probability density functiora,(X) of forming ann-disk arch. The statistic0),(X,),{| Y|} and the fraction
gq(n) of n-disk archepof the arches generated by (X) agree with those found in the experiment.
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I. INTRODUCTION further investigation of jamming in a 2D hopper. A descrip-
tion of the experimental aspect, a brief summary, and the
Although hoppers and silos are very common industriaigeneral properties of the data obtained will be given in the
and agricultural appliances, the dynamics of the granular maollowing section. Then the RRWM will be presented and its
terials flowing inside them is not clearly understdsde Ref.  prediction will be compared to the statistics of the arch found
[1] and reference therginThe flow properties of granular in €ach jamming event. A summary and outlook will be
materials is rather complex and there have been attempts fiven at the end.
understand the basic physics of these systems both experi-
mentally and theoretically2—6]. It is common knowledge
that the flow rate of grains through a hopper increases with Il. EXPERIMENT
the size of the hopper opening. However, when the hopper
opening is comparable to the size of the grains, flow rate
cannot be measured because jamming occurs unpredictably The details of the experimental setup have been given in
[7]. Once jamming takes place, no more grain can flowRef. [10]. In brief, 200 monodisperse 3-mm-thick metal
through the hopper unless perturbed externally. Jamming idisks of diameterD=5 mm are made to fall through a
one of the peculiar processes exhibited by granular systemsmm gap between an aluminum plate and a transparent
whose dynamical behavior is poorly understd@]. Be-  plexiglass. A pair of metal platedP, FP within the same
cause jamming is a random process, it is natural to take gap forms the inclined walls of the 2D hopper. These plates
statistical approach to analyze the phenomenon. Recentlgre cut with an angleb=60° with respect to the horizontal
the flow of monodispserse disks under gravity in a two-axis and their relative distance determines the opeRing
dimensional2D) hopper has been studied. By analyzing thethe hoppei(see Fig. 1L The hopper is mounted on a vertical
disk configuration in each jamming event, ®al. found rotating stagdi.e., the rotation axi¥Vis along the horizontal
that the jamming probability observed in their experimentsdirection) such that the symmetry axis of the hopper is per-
could be obtained using a restricted random walk modependicular toN. The experiment starts with the hopper at the
(RRWM) [10]. This model regards the jamming process asupright position when disks in the hopper are falling towards
the formation of a stable arch at the hopper opening. Théhe hopper opening. Then the hopper is rotated upside down
effect of the hopper is to let go those arches that are smalleso that all of the disks fall back into the hopper and the
than the opening. When an arch bigger than the opening iexperiment repeats when the hopper is rotated back to the
formed, if it is stable and strong enough it blocks and sup-upright position again. At a particula=R/D, we repeat the
ports the disks above. Then the probability that jammingexperimentN; times, record the numbeN, of jamming
occurs should be related to the probability of forming an arclevent and obtain the jamming probabilityd) =N, /N, . For
at the opening. When the configuration of the disks in theeach jamming event, an image of the hopper, as shown in
arch is described as the trajectory of a random walker, th&ig. 2(a), is taken using a charge-coupled device camera and
arch forming probability and thus the jamming probability a frame grabber. From each of the captured images, we lo-
can be estimated. In this paper we report on the results of eate the positions of the disks and determine the number of
disks n in the arch. We shall call the arch consisting rof
disks as am-disk arch and denote the number of jamming
*Electronic address: ericto@gate.sinica.edu.tw events withn-disk arch byN, . Since the relevant length

A. Setup and procedures
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FIG. 1. Schematic diagram of the two-dimensional hopper in the
upright position. The horizontal dashed liéis the axis of rotation
of the rotating stagénot shown on which the hopper is mounted.

(x2,y2)

r | ¥
scale in this problem is the disk diamefgrwe shall express . 1 Ty

all other distances in unit db. - o

B. Jamming probability and arch vector statistics sty

Table | shows a brief summary of the results from our

experiments. In these experimentsy 1 and we do not ob- © Lp. ALy
serve arches with only one disk, i.8l; =0. Since the maxi- Y
mum extent of an arch witm disk is nD, jamming event

with ann-disk arch is impossible ifi<<d. Hence, we observe O

an increasing number of-disk arches with increasind as (b)

indicated by the trend of the average numbgm)(
=nN,/N,) of disks in the arch. On the other hand, most of FIG. 2. Animage capturett) and its arch configuratiotb) of
the jamming events are contributed from only a few classeg typical jamming event.

of n-disk arches.

(—x%4,y1) and (,,y,) are random variables. From the data
C. Arch vector end point statistics of x, we get the distribution functioR, («) as the number
From the captured images, we identify the arch and exef events withx,> « divided byN,. The distribution func-
tract the position {x,,y;) of the first disk from the left and tions F.(a) with =y, X,, andy, are obtained similarly.
the position &,,y,) of the last disk, as shown in Fig(i9. In Fig. 3, we plot these distribution functions obtained in
The originO of the co-ordinate system is at the intersectionthe experiments fod=1.32. The insets in these figures are
of L, and L,, which are, respectively, the lines passingthe density functions.(«) that are the derivatives of their
through the points{x;,y;) and ,,y,) and parallel to the respective distribution functiong.(a) with §=x;,y;,X,,
left and the right walls. The purpose of putting a negativeandy,. One can see that andx, have practically the same
sign in front ofx, is to makex; a positive number. Because distribution. This feature is also apparent fqrandy,. This
of the stochastic nature of the jamming process, the positionis because the hopper is symmetrical aboutyttexis. Fur-

TABLE |. Jamming probabilityJ(d) and numbeiN,, of jamming events witm-disk arch for different hopper openings

d Ny Na J(d) N> N3 Ny Ns Ne N7 Nag Ny (n)
1.32 400 400 1.00 281 97 18 4 0 0 0 0 2.36
1.79 400 399 1.00 145 199 47 7 1 0 0 0 2.80
2.58 500 491 0.98 0 244 176 61 8 2 0 0 3.67
2.79 400 388 0.97 0 188 153 41 6 0 0 0 3.65
2.95 400 374 0.94 0 169 166 38 1 0 0 0 3.65
3.53 1000 713 0.71 0 0 94 440 139 40 0 0 5.18
3.74 1000 449 0.45 0 0 36 308 86 18 1 0 5.20
4.05 1000 250 0.25 0 0 0 119 89 39 2 1 5.69
4.84 1000 18 0.02 0 0 0 16 11 1 0 0 6.72
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FIG. 3. Distribution functions of the end points of the arches FIG. 5. Distribution functiorFy(a) and density functioriy(a)
obtained ford=1.32. The dat&,x, ¢, and+ are forF «(a) with (insey for the horizontal component of the arch vectodat 1.32.
=Xy, X, V1, andy,, respectively. Their respective density func- The figure in the inset shows the geometry of the 2-disk arch when
tions f /() are shown in the inset accordingly. the arch vector has the shortest horizontal component.

thermore, one can see tHat () resembles, («). Hence, (—X1,Y1) to (X5,y,) as the arch vector. Then the quantities
L Y1 - XandY are, respectively, the horizontal and the vertical com-
we let{x} be the valuegx,,x,} andF(a) be the distribu- ponents of the arch vectdsee Fig. 2o)]. Because of the
tion function forx. Similarly, we letF,(a) denote the distri- stochastic nature of;, Yy, X,, andy,, X andY are stochas-
bution function _fory={y1,y2_}. Thenrwe can collapsléy(q) tic too. Figure 5 shows the distribution functidiy(«) and
ontoF(a) by simply rescaling/ toy’ =y/#» by anumerical density functionfy(«) for d=1.32. One can see that
IﬁCt(erZ:thl.z, as shown '(;' Fig. 4. Such phenotr_neron re_rﬂtectsfx(a) andf,(«) look similar and have the same number of
€ fact tha Ex1y1) an (_Xz’y2) are, respectively, points peaks. However, they cannot be collapsed on each other by a
on the lineg[L, andL, in Fig. Zb)] parallel to Fhe left and simple scaling. The two main peaks fg(a) are cleanly
rlhghtdyval_ls of the hoppetr). Henclzﬁ d: Xitind’(;ol; : :1k’_2 an’d separated from each other, while those two main peaks in
Ee/ Istri utpg of;icar: N scge to L_at y takingy I f«(a) have significant overlap. When we classify the jam-
=y/tang. With $=60°,tang=1.73, this agrees very well - i, o\ ents according to, the number of disks in the arch,
with the numerical valu€l.7) obtained from the experiment. e find that the first and the second peaks i) corre-
Therefore there are only two sets of independent data out pond ton=2 andn=3, respectively. On the other hand
the four measured quantities;, y;, Xz, andy,. fx(a) is very different from the density functioh,(«) that
is symmetrical abouly=0 as shown in Fig. 6. This is a
direct consequence of the mirror symmetry of the hopper as
We choos&X=x,+X; andY=y,—y, as the two indepen- mentioned before. S _
dent sets of data. Let us call the displacement vector from It is worth examining the statistics iX for the 2-disk
arches in which the magnitude of the arch vectors is unity.

D. Arch vector components statistics
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FIG. 4. Distribution functionF,(«) and the scaled distribution

function Fy,(a) for d=1.32 withy’=y/1.7. The inset shows the FIG. 6. Distribution functiorFy(«) and density functioriy(«)
density functionf,(«) and the scaled density functidy («). for the vertical component of the arch vectordat 1.32.
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FIG. 8. Density functionfy(«) for d=1.32, 1.89, 2.58, 2.79,
FIG. 7. Distribution functionFy(«) for d=1.32, 1.89, 2.58, 2.95, 3.53, 3.74, 4.05, and 4.84, with their values shifted up by 0,
2.79, 2.95, 3.53, 3.74, 4.05, and 4.84. For clarity, while the lines.01, 0.02...,0.08, respectively. For clarity, while the lines con-
contain all the data, the symbols represent only part of the data. tain all the data, the symbols represent only part of the data.

The inset in Fig. 5 indicates that the lower and upper limitsas shown in Figure 8. Such trend suggests that the contribu-

of X for the 2-disk arches at=1.32 are 0.65 and 1, respec- tions of 2-disk arch, 3-disk arch, and 4-disk archXare

tively. The upper limit ofX'is trivial while the lower limit of  decoupled. On the other hand, there are significant overlap-

X corresponds to the situation shown in Fig. 5. This figurepmg of the density functions iX for n-disk arches whem

shows the arch vector with the maximum possible argument. 4 Tpe large fluctuation of the last data set=(4.84) is

¢ in a hopper with angle) and openingl. The geometry in 4,6 15 the small numberN,=18) of jamming event ob-

thIS figure_give SIn@_QD):(d_OS)fmgb_OS and the lower served at this Iarge hopper OpenlrQElg 8)

limit of X is then cosp. I—Tor. ¢=§0 anddfl.Qz, we have The change in the distribution and the density functions in

¢=47.9°. So the lower limit irK is 0.67, which is consistent Y due to increasingd, is very different from that ofX.

with the .experlmental fmdmg.l Hovyevgr, vyhem>2, the . Figure 9 shows~y(«a) at differentd. Surprisingly, Fy(«)

lower limit of X cannot be obtained in this simple geometri- does not change very much wherincreases from 1.32 to

cal argument because the magnitude of the arch vector is Wg4 The density functiofy(a) shown in the inset of this

longer a constant. figure is symmetrical about=0. In addition,fy(a) peaks

at «=0. This implies that the arches are preferably sym-

metrical about the center line of the hopper. We shall return
Using the arch vector concept, it is obvious that an arcHo this point later(Sec. Il O in this paper.

with X<<d—1 will not survive in a hopper of openind

because such an arch will flow out of the hopper. Hence, the 1

jamming probabilityJ(d) should be related to the distribu-

tion function Fy(«) at differentd. To investigate such a

relation, we examine the arch vector of each jamming event.

Figure 7 shows the distributionSy(«) at d=1.32, 1.89,

2.58, 2.79, 2.95, 3.53, 3.74, 4.05, and 4.84. They appear to

fall into four groups according to the hopper opening. When

d<2 (d=1.32 and 1.89 Fy(«) has two sharp edges that

correspond to the two peaks in their respective density func-

tion fy(a). As mentioned before, these two peaks are con-

tributions from the 2-disk and 3-disk arches. When2 but

less than 3,d=2.58, 2.79, and 2.95n0 2-disk arch can be

in the hopper and the contribution from the 2-disk arch van-

ishes. Similarly, in the third group whethlies between 3 and

4 (d=3.53 and 3.74 the contribution from the 3-disk arch is 0

zero. Finally, in the last group wheh=4.05 and 4.84, which

are greater than 4, no arches with less than five disks are

observed. Qualitatively, asincreasesFx(a) changes from FIG. 9. Distribution functionFy(a) for d=1.32, 1.89, 2.58,

a steplike function to a smoothly varying function afid «) 2.79, 2.95, 3.53, 3.74, 4.05, and 4.84. For clarity, the symbols rep-

changes from a multi-peak function to a single-peak functiorresent only part of the data.

E. Effect of hopper opening on arch vector statistics
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I1l. THE RESTRICTED RANDOM WALK MODEL . 72 01
a(X)=A, fﬁ f1(01)d91f f2(6,)dO,- - -
1

When disks are falling through the hopper, one can con- 2

sider that the disks are forming arches randomly from one

side of the hoppper to the other side. Jamming occurs when v J“’n
one of these arches at the hopper opening is strong enough to X
block other disks from falling through. For example, in a

typical jamming event shown in Fig(&), it is the arch made )
of the lowest five disks just above the opening that stops the ) o

flow. This arch can be described by,r,,r5 andr, wherer, ~ WhereA, is a normalization constant such thigfa,(X)dXx
is the displacement vector from the center of ttiedisk to C ) ]

that of the {+1)th disk. While the magnitude f is unity, Obviously, a,(X) is only defined forn>1 and a,(X)
the angled, betweenr; and thex axis is a random variable. =0 If X>n. The expression fom,(X) can be evaluated
Hence, then-disk arch can be considered as a trajectory of rumerically if we assume thdi(6) is uniformly distributed
random walker going from 4xy,y;) 0 (X»,y,) in n—1 for all physical values ob;. The physical values of; are

n—-1
72fnfl( enl)d0n15( X— 2 COSHi) )
=1

-1

steps. determined by the excludedlumeinteraction. Foré,, it is
Although thed,’s are random, there are contraints that theth® interaction with the left wall that requires ¢<6,
random walker has to follow: <(m/2)+ ¢. Hence,f(61) =1/ for 6, in this interval and
zero otherwise. Fop; with i>1, the constraint due to the
2> 6,>—7/2, (1) excludedvolumeinteraction between the disks is more com-
plicated. Nevertheless;(6;) can be evaluated numerically.
0> >0>->0,_1, (20 Then the probability of am-disk arch vector with horizontal
i J_ component greater thath—1 can be obtained as
vm-,‘g N 2, T =1, 3 .
Lok jn(d)= L_lan(x)dx- (6)

i , , Note thatd—1 is the value ofX for an arch to flow through
The first constraint(1) restricts the random walker t0 g0 e hopper opening. The integral ag(X) reflects that only
from left to right only. This constraint simplifies the theoret- 5, heg bigger than the opening can survive in the hopper, as

icgl analysis without loss of generality because of the U”derfequired by constraint4). Therefore, the jamming probabil-
lying symmetry of the hopper. The second constrd@jt ity density can be written as
means that the arch is everywhere convex. This is the me-

chanical equilibrium requirement for the arch to support the o

disks within the arch as well as those above it. The third J(d)= gg(n)ja(d), (7)
constraint(3) is the excludedsolumeinteraction among the n=2

disks. This constraint ensures that the minimum distance be-

tween any two disks in the arch is the disk diameter. The lastvhere gq4(n) is the probability that the arch consists of
constraint(4) selects those arches with horizontal size biggerdisks when jamming does occur. Under suitable approxima-
than the hopper opening. Otherwise, the arch will falltion, g4(n) can be calculated as shown in Sec. Ill C. It was

through the hopper. found from experimental observati¢hO] thatgy(n) peaked
atn=>5 in the narrow range whed(d) decreased from 0.9
A. Jamming probability to 0.1. WhenJ(d) was approximated by taking only the
- . . ibuti fn=5, this simpl I Il with
Let f;( ) be the probability density function fak so that gigglr:)mugﬁ? ofn=5, this simple model agreed well wit
the probability fore; to fall betweeng; and 8 can be ex- '
pressed b)pi:fﬁ: fi(6)de. Then the joint probability for B. Excluded volume interaction of the RRW
having a particulam—1 step unrestricted random walker  The RRWM described so far has little analytical results
trajectory with6; e (B;,/) is given by the producb;p,- - and all theoretical predictions are obtained by generating re-

*Pn-1. For the restricted random walker under constréliit  stricted random walKRRW) trajectories under constraints
the upper bound ob, is 7/2, i.e., 81 =m/2. Constraint(2)  (1)—(3) using Monte Carlo simulations. An analytic approxi-
requires that the maximum value 6f is determined by the mation to the RRW is needed in order to gain better insight
value of §,_,. Hence,B{ = 6;_, for i>1. While setting the of the jamming phenomenon. The difficulty is to calculate
upper bounds fop; is straightforward, evaluating the lower a,(X) under the excludedolumeconstraint, which affects
boundsg; is less trivial because of the exclude@lume  both the integrand$;(6;) and the domains of integratigh
effect given by constrain@). (We shall discuss the excluded in Eq. (5). Just like self-avoiding walk in polymer physics
volumelater in Sec. Il B) Nevertheless, the configuration [11], the excluded/olumeinteraction given by constrairi8)
probability densitya,(X) for ann-disk arch vector to have a are hard to deal with analytically. Nevertheless, one can relax
horizontal componenX can be written as the strict condition given in Eq3) and one just requires the
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disks to obey the “short-range” excludeglumeinteractions
of three consecutive disks, as given by the constraint

2
|9i_9i—1|$?-

8

These short-range excludedlumeinteractions would allow

711 /2 3 01
an(X)=A, ;Jl do,— de,- - -

™) — 72

n

4

2" [
m\4m — /2 ! — /2 2 — /2
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for the overlapping of the first disk and thath disk with
m=4. Relaxing the strict excludedlumeinteractions to the
short-range type, one can obtain the density funcfide;)
=3/47 and the lower limitB;=maxX—/2,6, _,— (27/3)}
for i>1. Ignoring the minor difference in replacing by
— /2, a,(X) can be approximated as

O n—-1
d6n 16(X 2 cos&)

dé,_ 15(X E coso)

1 1 3 n=2 rnap2 /2 /2 2
_An W(n_l)l E J’fﬂ'IZdeiJ‘fﬂn'IZdaz'..ffﬂ/2d0n715 = osai ' (9)
|
with the normalization constam,, given by _ . 3 \n-2
In(d)=A, ETE E)
- ()
A.= X)dX= . 10 2 2 w2
R = EC NI T
—7l2 —7l2 — 72
Figure 10 shows the values &f, calculated by Monte n-1
Carlo integration of Eq(5) and those obtained using the (G E cosei+1—d). (11
analytic approximation10). Monte Carlo results give the =1
sum of allA,, to beX,_,=1.515 while the analytic approxi- This gives
mation givesS,,_,=1(e%*—1)=1.49. One can see that the
analytic approximation is quite accurate. Hence, treating the ) 1—(2/m)sin" Y d—-1), d<2
full excludedvolumeconstraint by the short-range excluded jo(d)= d=2. (12
volume approximation produces negligible error, especially '
for smalln. With the same approximation, we have Forn=3, we have
|
( 4 J‘dfld sini(d—1-y) .
1— — _ <2
2 0 Y \/1—y2
ia(d)="{ 2 4 r1 sini(d—1-y) 13
Ja(d) [1——sin 1(d— 2)} f dy————, 2<d<3 13
T d-2 V1-y?
L O, d>3.

Although the analytic approximations ¢f(d) for n>3 d=3.74 and 4.05 are plotted in Fig. 11 along with the ex-
are too complicated to be written down, their numerical val-perimental results for comparison. The theoretical values of
ues can be obtained for givenandd by generating RRW both(X,) and(]Y,|) increase witm. The experimental data
trajectories that obey constrairt—(4). From these trajec- also show the general trend of increasing witkexcept for
tories, we classify the arch vectors accordingntand calcu- the data for largen where the experimental data are only
late the average values for the horizontal compox&p} of ~ from one sample due to the fact that arch with lange very
the arch vectors in each class. For the vertical componeritnprobable. Furthermore, the predicted values of Hath)

Y,, the average value vanishes, i€Y,,)=0. So we calcu- and{|Y,|) agree well with the experimental data. Since there
late the average dflY,|). The results (X,) and(|Y,|)) for  is no fitting parameter in the theoretical values, our results
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1.0 ® - indicate that the RRW model can capture the configuration of
O with approximation ] the arch quite accurately.
q:* 08 F no approximation  _|
g’ C. Circular arch approximation
§ 06 F - It should be pointed out that the normalization constant
LQ’ A, equalsj,(1) that is the probability of getting an-disk
% o4 L ) stable arch from a collection of disks with excludealume
e interactions, regardless of the value Xf Hence, one can
g treat A, as the stability probability of am-disk arch. The
E 02 - exponential decay form in Eq10) reveals thah-disk arches
with largen are highly improbable. Using the stability prob-
0.0 66O ability A,, further theoretical calculations concerning the
7o 5 10 statistics of the arches in the jamming state can be obtained

Number of disk in arch, n

by approximating the shape of the jamming arch. Motivated
by the experimental observation that the distributionYin

FIG. 10. Comparison of the normalization constaqgt calcu-
lated using the short-range excludedlumeapproximation(solid
line) calculated by using Eq10) and those Q) that are obtained
using direction Monte Carlo simulation with no approximation.

peaks aty=0 and hence the jamming arches are preferably
symmetric, we take the bold assumption that the jamming
arch can be approximated by a circular arc centered at the

6.0

Arch vector components

0.0

6.0

=
o

Lng
o

Arch vector components

0.0

FIG. 11. Average values of the horizontal componeni) (and
the vertical component® ) of the n-disk arch vector from experi-

(@)

6 7 8 9

Number of disk in arch, n

apex of the hopper cone. Suppose the arch begins at a dis-
tance from the opening on the hopper wall, the circular arc
length is given by/=(2\+dseap)[(7/2)— ¢]. Then the
number of disks in the arch can be approximatedia$/],
which is the integer just larger thafi. Assuming thaix is
uniformly distributed in the regiof0,], arches with differ-
ent values of can be generated. Of course, arches with large
values ofn is improbable due to stability andl, will account

for this effect. Thus the information about the arch statistics
can be calculated by generatingn a simulation. Denote the
number of arches wittm by M,,, thengy(n) can be calcu-
lated as

AnM,,

2 . (14
AnMp

gg(n)=

Figure 12 shows the theoretical predictions ¢fn) using

the circular arc model together with the experimental results
for comparison. The theoretical predictions can capture all
the qualitative features afy(n) and even agree quantita-
tively quite well in some cases.

The mean disk numbein) in the jamming arches can
also be computed &) == ,ngq(n)/=,gq4(n). The theoret-
ical results together with the experimental data are shown in
Fig. 13. The experimental data points all lie roughly near the
predicted curve. It is worth noting that the theoretical curve
of (n) increases monotonically witt with kinks for values
of d slightly less than integral values where the increase of
(n) becomes very slow. Such a behavior also seems to ap-
pear in the experimental data nebe 3 andd<4. However,
more sample statistics are required to firmly establish this.

IV. SUMMARY AND OUTLOOK

In this paper, the experimental results on the detail statis-
tics of the jamming arches in a two-dimensional hopper are

ments ford=3.74 (a) and 4.05(b). The lines are the theoretical reported. The distribution functions of the end positions of
values obtained from RRW trajectories generated by Monte Carléhe jamming arches are measured and the statistics of the

simulations.

jamming arches are obtained. The flow of granular particle in
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FIG. 13. The variation of the mean number of digks in the
jamming events with the hopper openidg The “O”s are from
experimental data and the line is from theoretical calculation.

o
=
T

- the circular arch approximation, much insight concerning the
probability of forming a jamming arch can be found. In par-
ticular, detailed arch statistics, such @gn) and the mean
number of disks in a jamming arch can be calculated, which
agrees quite well with experimental measurements.

In practical applications, there are of course many more
complications in hoppers, such as the friction and adhesion
0 5 10 among the grains, which would increase the jamming prob-
ability. Our RRWM could be extended to include such ef-
fects by locally relaxing the convexity constraint to some

FIG. 12. Fraction of-disk arches in jamming evengg(n) for  extent. Other interesting effects in the jamming phenomena,
d=3.75(a) and 4.05(b). The “O”s are from experimental obser- such as grain polydisersity, effects of irregular grain shapes,
vation and the lines are from theoretical calculation using the cir-asymmetric hopper, and replacing disks by spheres are cur-
cular arch approximation. rently under our experimental investigations. These results
will be presently elsewhere.

Fraction of n—disk arch, g (n)
o =
o 'S
T T

0.0

Number of disk in arch, n

the hopper near the jamming region is a complicated dissi-
pative process. We attempted to model such a complex phe-
nomenon with a stochastic approach using a simplified re- The authors would like to thank Professor H. K. R&l-
stricted random walker model that bears basically onlysan National University, Korgavho initiated our study on
excludedvolumeinteraction and stability conditions. Despite the jamming phenomenon of granular flow. This research
its simplicity, the RRWM captures most of the essential charwas supported by the National Council of Science of Taiwan
acteristics of the jamming arches even quantitatively. Withunder Grant Nos. NSC 90-2112-M-001-034 and 90-2112-M-
the further theoretical analysis of the RRWM together with008-037.
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