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Jamming pattern in a two-dimensional hopper
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We perform granular flow experiments using metal disks falling through a two-dimensional hopper. When
the opening of the hopperd is small, jamming occurs due to formation of an arch at the hopper opening. We
study the statistical properties of the horizontal componentX and the vertical componentY of the arch vector
that is defined as the displacement vector from the center of the first disk to the center of the last disk in the
arch. Asd increases, the distribution function ofX changes from a steplike function to a smooth function while
that of Y remains symmetrical and peaked atY50. When the arch vectors are classified according to the
number of diskn in the arch, the mean valuên& is found to increase withd. In addition, the horizontal
componentXn and the absolute value of the vertical componentuYnu in each class have mean values increasing
with n. Regarding the arch as a trajectory of a restricted random walker, we derive an expression for the
probability density functionan(X) of forming ann-disk arch. The statistics (^n&,^Xn&,^uYnu& and the fraction
gd(n) of n-disk arches! of the arches generated byan(X) agree with those found in the experiment.
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I. INTRODUCTION

Although hoppers and silos are very common indust
and agricultural appliances, the dynamics of the granular
terials flowing inside them is not clearly understood~see Ref.
@1# and reference therein!. The flow properties of granula
materials is rather complex and there have been attemp
understand the basic physics of these systems both ex
mentally and theoretically@2–6#. It is common knowledge
that the flow rate of grains through a hopper increases w
the size of the hopper opening. However, when the hop
opening is comparable to the size of the grains, flow r
cannot be measured because jamming occurs unpredic
@7#. Once jamming takes place, no more grain can fl
through the hopper unless perturbed externally. Jammin
one of the peculiar processes exhibited by granular syst
whose dynamical behavior is poorly understood@8,9#. Be-
cause jamming is a random process, it is natural to tak
statistical approach to analyze the phenomenon. Rece
the flow of monodispserse disks under gravity in a tw
dimensional~2D! hopper has been studied. By analyzing t
disk configuration in each jamming event, Toet al. found
that the jamming probability observed in their experime
could be obtained using a restricted random walk mo
~RRWM! @10#. This model regards the jamming process
the formation of a stable arch at the hopper opening. T
effect of the hopper is to let go those arches that are sm
than the opening. When an arch bigger than the openin
formed, if it is stable and strong enough it blocks and s
ports the disks above. Then the probability that jamm
occurs should be related to the probability of forming an a
at the opening. When the configuration of the disks in
arch is described as the trajectory of a random walker,
arch forming probability and thus the jamming probabil
can be estimated. In this paper we report on the results
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further investigation of jamming in a 2D hopper. A descri
tion of the experimental aspect, a brief summary, and
general properties of the data obtained will be given in
following section. Then the RRWM will be presented and
prediction will be compared to the statistics of the arch fou
in each jamming event. A summary and outlook will b
given at the end.

II. EXPERIMENT

A. Setup and procedures

The details of the experimental setup have been give
Ref. @10#. In brief, 200 monodisperse 3-mm-thick met
disks of diameterD55 mm are made to fall through
4-mm gap between an aluminum plate and a transpa
plexiglass. A pair of metal plates~MP, FP! within the same
gap forms the inclined walls of the 2D hopper. These pla
are cut with an anglef560° with respect to the horizonta
axis and their relative distance determines the openingR of
the hopper~see Fig. 1!. The hopper is mounted on a vertic
rotating stage~i.e., the rotation axisW is along the horizontal
direction! such that the symmetry axis of the hopper is p
pendicular toW. The experiment starts with the hopper at t
upright position when disks in the hopper are falling towar
the hopper opening. Then the hopper is rotated upside d
so that all of the disks fall back into the hopper and t
experiment repeats when the hopper is rotated back to
upright position again. At a particulard[R/D, we repeat the
experimentNt times, record the numberNa of jamming
event and obtain the jamming probabilityJ(d)[Na /Nt . For
each jamming event, an image of the hopper, as show
Fig. 2~a!, is taken using a charge-coupled device camera
a frame grabber. From each of the captured images, we
cate the positions of the disks and determine the numbe
disks n in the arch. We shall call the arch consisting ofn
disks as ann-disk arch and denote the number of jammi
events withn-disk arch byNn . Since the relevant length
©2002 The American Physical Society08-1



u

o
se

ex

on
ng

iv
e
io

ta

in
re
r

th

.

KIWING TO AND PIK-YIN LAI PHYSICAL REVIEW E 66, 011308 ~2002!
scale in this problem is the disk diameterD, we shall express
all other distances in unit ofD.

B. Jamming probability and arch vector statistics

Table I shows a brief summary of the results from o
experiments. In these experiments,d.1 and we do not ob-
serve arches with only one disk, i.e.,N150. Since the maxi-
mum extent of an arch withn disk is nD, jamming event
with ann-disk arch is impossible ifn,d. Hence, we observe
an increasing number ofn-disk arches with increasingd as
indicated by the trend of the average number (^n&
[nNn /Na) of disks in the arch. On the other hand, most
the jamming events are contributed from only a few clas
of n-disk arches.

C. Arch vector end point statistics

From the captured images, we identify the arch and
tract the position (2x1 ,y1) of the first disk from the left and
the position (x2 ,y2) of the last disk, as shown in Fig. 2~b!.
The originO of the co-ordinate system is at the intersecti
of L1 and L2, which are, respectively, the lines passi
through the points (2x1 ,y1) and (x2 ,y2) and parallel to the
left and the right walls. The purpose of putting a negat
sign in front ofx1 is to makex1 a positive number. Becaus
of the stochastic nature of the jamming process, the posit

FIG. 1. Schematic diagram of the two-dimensional hopper in
upright position. The horizontal dashed lineW is the axis of rotation
of the rotating stage~not shown! on which the hopper is mounted
01130
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(2x1 ,y1) and (x2 ,y2) are random variables. From the da
of x1, we get the distribution functionFx1

(a) as the number

of events withx1.a divided byNa . The distribution func-
tions Fj(a) with j5y1 , x2, andy2 are obtained similarly.

In Fig. 3, we plot these distribution functions obtained
the experiments ford51.32. The insets in these figures a
the density functionsf j(a) that are the derivatives of thei
respective distribution functionsFj(a) with j5x1 ,y1 ,x2,
andy2. One can see thatx1 andx2 have practically the same
distribution. This feature is also apparent fory1 andy2. This
is because the hopper is symmetrical about they axis. Fur-

e

FIG. 2. An image captured~a! and its arch configuration~b! of
a typical jamming event.
TABLE I. Jamming probabilityJ(d) and numberNn of jamming events withn-disk arch for different hopper openingsd.

d Nt Na J(d) N2 N3 N4 N5 N6 N7 N8 N9 ^n&

1.32 400 400 1.00 281 97 18 4 0 0 0 0 2.36
1.79 400 399 1.00 145 199 47 7 1 0 0 0 2.80
2.58 500 491 0.98 0 244 176 61 8 2 0 0 3.67
2.79 400 388 0.97 0 188 153 41 6 0 0 0 3.65
2.95 400 374 0.94 0 169 166 38 1 0 0 0 3.65
3.53 1000 713 0.71 0 0 94 440 139 40 0 0 5.18
3.74 1000 449 0.45 0 0 36 308 86 18 1 0 5.20
4.05 1000 250 0.25 0 0 0 119 89 39 2 1 5.69
4.84 1000 18 0.02 0 0 0 16 11 1 0 0 6.72
8-2
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JAMMING PATTERN IN A TWO-DIMENSIONAL HOPPER PHYSICAL REVIEW E66, 011308 ~2002!
thermore, one can see thatFx1
(a) resemblesFy1

(a). Hence,

we let $x% be the values$x1 ,x2% andFx(a) be the distribu-
tion function forx. Similarly, we letFy(a) denote the distri-
bution function fory5$y1 ,y2%. Then we can collapseFy(a)
ontoFx(a) by simply rescalingy to y85y/h by a numerical
factorh51.7, as shown in Fig. 4. Such phenomenon refle
the fact that (2x1 ,y1) and (x2 ,y2) are, respectively, points
on the lines@L1 andL2 in Fig. 2~b!# parallel to the left and
right walls of the hopper. Henceyi5xi tanf for i 51,2 and
the distribution ofy can be scaled to that ofx by taking y8
5y/tanf. With f560°,tanf51.73, this agrees very we
with the numerical value~1.7! obtained from the experimen
Therefore there are only two sets of independent data ou
the four measured quantities:x1 , y1 , x2, andy2.

D. Arch vector components statistics

We chooseX[x21x1 andY[y22y1 as the two indepen
dent sets of data. Let us call the displacement vector fr

FIG. 3. Distribution functions of the end points of the arch
obtained ford51.32. The datas,3,L, and1 are forFj(a) with
j5x1 , x2 , y1, andy2, respectively. Their respective density fun
tions f j(a) are shown in the inset accordingly.

FIG. 4. Distribution functionFx(a) and the scaled distribution
function Fy8(a) for d51.32 with y85y/1.7. The inset shows the
density functionf x(a) and the scaled density functionf y8(a).
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(2x1 ,y1) to (x2 ,y2) as the arch vector. Then the quantiti
X andY are, respectively, the horizontal and the vertical co
ponents of the arch vector@see Fig. 2~b!#. Because of the
stochastic nature ofx1 , y1 , x2, andy2 , X andY are stochas-
tic too. Figure 5 shows the distribution functionFX(a) and
the density functionf X(a) for d51.32. One can see tha
f X(a) and f x(a) look similar and have the same number
peaks. However, they cannot be collapsed on each other
simple scaling. The two main peaks inf X(a) are cleanly
separated from each other, while those two main peak
f x(a) have significant overlap. When we classify the jam
ming events according ton, the number of disks in the arch
we find that the first and the second peaks inf X(a) corre-
spond ton52 and n53, respectively. On the other hand
f X(a) is very different from the density functionf Y(a) that
is symmetrical aboutY50 as shown in Fig. 6. This is a
direct consequence of the mirror symmetry of the hoppe
mentioned before.

It is worth examining the statistics inX for the 2-disk
arches in which the magnitude of the arch vectors is un

FIG. 5. Distribution functionFX(a) and density functionf X(a)
~inset! for the horizontal component of the arch vector atd51.32.
The figure in the inset shows the geometry of the 2-disk arch w
the arch vector has the shortest horizontal component.

FIG. 6. Distribution functionFY(a) and density functionf Y(a)
for the vertical component of the arch vector atd51.32.
8-3
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KIWING TO AND PIK-YIN LAI PHYSICAL REVIEW E 66, 011308 ~2002!
The inset in Fig. 5 indicates that the lower and upper lim
of X for the 2-disk arches atd51.32 are 0.65 and 1, respe
tively. The upper limit ofX is trivial while the lower limit of
X corresponds to the situation shown in Fig. 5. This figu
shows the arch vector with the maximum possible argum
w in a hopper with anglef and openingd. The geometry in
this figure give sin(f2w)5(d20.5)sinf20.5 and the lower
limit of X is then cosw. For f560° andd51.32, we have
w547.9°. So the lower limit inX is 0.67, which is consisten
with the experimental finding. However, whenn.2, the
lower limit of X cannot be obtained in this simple geomet
cal argument because the magnitude of the arch vector i
longer a constant.

E. Effect of hopper opening on arch vector statistics

Using the arch vector concept, it is obvious that an a
with X,d21 will not survive in a hopper of openingd
because such an arch will flow out of the hopper. Hence,
jamming probabilityJ(d) should be related to the distribu
tion function FX(a) at different d. To investigate such a
relation, we examine the arch vector of each jamming ev
Figure 7 shows the distributionsFX(a) at d51.32, 1.89,
2.58, 2.79, 2.95, 3.53, 3.74, 4.05, and 4.84. They appea
fall into four groups according to the hopper opening. Wh
d,2 (d51.32 and 1.89!, FX(a) has two sharp edges tha
correspond to the two peaks in their respective density fu
tion f X(a). As mentioned before, these two peaks are c
tributions from the 2-disk and 3-disk arches. Whend.2 but
less than 3, (d52.58, 2.79, and 2.95!, no 2-disk arch can be
in the hopper and the contribution from the 2-disk arch v
ishes. Similarly, in the third group whend lies between 3 and
4 (d53.53 and 3.74!, the contribution from the 3-disk arch i
zero. Finally, in the last group whend54.05 and 4.84, which
are greater than 4, no arches with less than five disks
observed. Qualitatively, asd increases,FX(a) changes from
a steplike function to a smoothly varying function andf X(a)
changes from a multi-peak function to a single-peak funct

FIG. 7. Distribution functionFX(a) for d51.32, 1.89, 2.58,
2.79, 2.95, 3.53, 3.74, 4.05, and 4.84. For clarity, while the lin
contain all the data, the symbols represent only part of the dat
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as shown in Figure 8. Such trend suggests that the contr
tions of 2-disk arch, 3-disk arch, and 4-disk arch toX are
decoupled. On the other hand, there are significant over
ping of the density functions inX for n-disk arches whenn
.4. The large fluctuation of the last data set (d54.84) is
due to the small number (Na518) of jamming event ob-
served at this large hopper opening.~Fig. 8!.

The change in the distribution and the density functions
Y due to increasingd, is very different from that ofX.
Figure 9 showsFY(a) at different d. Surprisingly,FY(a)
does not change very much whend increases from 1.32 to
4.84. The density functionf Y(a) shown in the inset of this
figure is symmetrical abouta50. In addition, f Y(a) peaks
at a50. This implies that the arches are preferably sy
metrical about the center line of the hopper. We shall ret
to this point later~Sec. III C! in this paper.

s

FIG. 8. Density functionf X(a) for d51.32, 1.89, 2.58, 2.79
2.95, 3.53, 3.74, 4.05, and 4.84, with their values shifted up by
0.01, 0.02, . . . , 0.08, respectively. For clarity, while the lines con
tain all the data, the symbols represent only part of the data.

FIG. 9. Distribution functionFX(a) for d51.32, 1.89, 2.58,
2.79, 2.95, 3.53, 3.74, 4.05, and 4.84. For clarity, the symbols
resent only part of the data.
8-4
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III. THE RESTRICTED RANDOM WALK MODEL

When disks are falling through the hopper, one can c
sider that the disks are forming arches randomly from o
side of the hoppper to the other side. Jamming occurs w
one of these arches at the hopper opening is strong enou
block other disks from falling through. For example, in
typical jamming event shown in Fig. 2~a!, it is the arch made
of the lowest five disks just above the opening that stops
flow. This arch can be described byr1 ,r2 ,r3 andr4 wherer i
is the displacement vector from the center of thei th disk to
that of the (i 11)th disk. While the magnitude ofr i is unity,
the angleu i betweenr i and thex axis is a random variable
Hence, then-disk arch can be considered as a trajectory o
random walker going from (2x1 ,y1) to (x2 ,y2) in n21
steps.

Although theu i ’s are random, there are contraints that t
random walker has to follow:

p/2.u i.2p/2, ~1!

u1.•••.u i.•••.un21 , ~2!

; iÞ j ,U(
k51

i

r k2 (
k51

j

r kU>1, ~3!

X[x21x1.d21. ~4!

The first constraint~1! restricts the random walker to g
from left to right only. This constraint simplifies the theore
ical analysis without loss of generality because of the und
lying symmetry of the hopper. The second constraint~2!
means that the arch is everywhere convex. This is the
chanical equilibrium requirement for the arch to support
disks within the arch as well as those above it. The th
constraint~3! is the excludedvolumeinteraction among the
disks. This constraint ensures that the minimum distance
tween any two disks in the arch is the disk diameter. The
constraint~4! selects those arches with horizontal size big
than the hopper opening. Otherwise, the arch will f
through the hopper.

A. Jamming probability

Let f i(u) be the probability density function foru i so that
the probability foru i to fall betweenb i and b i8 can be ex-

pressed bypi5*
b i

b i8 f i(u)du. Then the joint probability for

having a particularn21 step unrestricted random walke
trajectory withu iP(b i ,b i8) is given by the productp1p2••

•pn21. For the restricted random walker under constraint~1!,
the upper bound ofu1 is p/2, i.e., b185p/2. Constraint~2!
requires that the maximum value ofu i is determined by the
value ofu i 21. Hence,b i85u i 21 for i .1. While setting the
upper bounds foru i is straightforward, evaluating the lowe
boundsb i is less trivial because of the excludedvolume
effect given by constraint~3!. ~We shall discuss the exclude
volume later in Sec. III B.! Nevertheless, the configuratio
probability densityan(X) for ann-disk arch vector to have a
horizontal componentX can be written as
01130
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an~X!5An
21E

b1

p/2

f 1~u1!du1E
b2

u1
f 2~u2!du2•••

3E
bn21

un22
f n21~un21!dun21dS X2 (

i 51

n21

cosu i D ,

~5!

whereAn is a normalization constant such that*0
`an(X)dX

51.
Obviously, an(X) is only defined forn.1 and an(X)

50 if X.n. The expression foran(X) can be evaluated
numerically if we assume thatf i(u) is uniformly distributed
for all physical values ofu i . The physical values ofu i are
determined by the excludedvolumeinteraction. Foru1, it is
the interaction with the left wall that requires2f,u1
,(p/2)1f. Hence,f 1(u1)51/p for u1 in this interval and
zero otherwise. Foru i with i .1, the constraint due to the
excludedvolumeinteraction between the disks is more com
plicated. Nevertheless,f i(u i) can be evaluated numerically
Then the probability of ann-disk arch vector with horizonta
component greater thand21 can be obtained as

j n~d!5E
d21

`

an~X!dX. ~6!

Note thatd21 is the value ofX for an arch to flow through
the hopper opening. The integral onan(X) reflects that only
arches bigger than the opening can survive in the hoppe
required by constraint~4!. Therefore, the jamming probabil
ity density can be written as

J~d!5 (
n52

`

gd~n! j n~d!, ~7!

where gd(n) is the probability that the arch consists ofn
disks when jamming does occur. Under suitable approxim
tion, gd(n) can be calculated as shown in Sec. III C. It w
found from experimental observation@10# thatgd(n) peaked
at n55 in the narrow range whenJ(d) decreased from 0.9
to 0.1. WhenJ(d) was approximated by taking only th
contribution of n55, this simple model agreed well with
experiment.

B. Excluded volume interaction of the RRW

The RRWM described so far has little analytical resu
and all theoretical predictions are obtained by generating
stricted random walk~RRW! trajectories under constraint
~1!–~3! using Monte Carlo simulations. An analytic approx
mation to the RRW is needed in order to gain better insi
of the jamming phenomenon. The difficulty is to calcula
an(X) under the excludedvolumeconstraint, which affects
both the integrandsf i(u i) and the domains of integrationb i
in Eq. ~5!. Just like self-avoiding walk in polymer physic
@11#, the excludedvolumeinteraction given by constraint~3!
are hard to deal with analytically. Nevertheless, one can re
the strict condition given in Eq.~3! and one just requires th
8-5
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disks to obey the ‘‘short-range’’ excludedvolumeinteractions
of three consecutive disks, as given by the constraint

uu i2u i 21u<
2p

3
. ~8!

These short-range excludedvolumeinteractions would allow
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for the overlapping of the first disk and themth disk with
m>4. Relaxing the strict excludedvolumeinteractions to the
short-range type, one can obtain the density functionf i(u i)
53/4p and the lower limitb i5max$2p/2,u i 212(2p/3)%
for i .1. Ignoring the minor difference in replacingb i by
2p/2, an(X) can be approximated as
an~X!>An
21 1

pE2p/2

p/2

du1

3

4pE2p/2

u1
du2•••

3

4pE2p/2

un22
dun21dS X2 (

i 51

n21

cosu i D
5An

21 1

p S 3

4p D n22E
2p/2

p/2

du1E
2p/2

u1
du2•••E

2p/2

un22
dun21dS X2 (

i 51

n21

cosu i D
5An

21 1

p~n21!! S 3

4p D n22E
2p/2

p/2

du iE
2p/2

p/2

du2•••E
2p/2

p/2

dun21dS X2 (
i 51

n21

cosu i D , ~9!
with the normalization constantAn given by

An[E
0

`

an~X!dX>
~ 3

4 !n22

~n21!!
. ~10!

Figure 10 shows the values ofAn calculated by Monte
Carlo integration of Eq.~5! and those obtained using th
analytic approximation~10!. Monte Carlo results give the
sum of allAn to be(n52

` .1.515 while the analytic approxi
mation gives(n52

` 5 4
3 (e3/421).1.49. One can see that th

analytic approximation is quite accurate. Hence, treating
full excludedvolumeconstraint by the short-range exclude
volumeapproximation produces negligible error, especia
for small n. With the same approximation, we have
e

j n~d!>An
21 1

p~n21!! S 3

4p D n22

3E
2p/2

p/2

du iE
2p/2

p/2

du2•••E
2p/2

p/2

dun21

3QS (
i 51

n21

cosu i112dD . ~11!

This gives

j 2~d!>H 12~2/p!sin21~d21!, d,2

0, d>2.
~12!

For n53, we have
j 3~d!>5
12

4

p2E
0

d21

dy
sin21~d212y!

A12y2
, d,2

F12
2

p
sin21~d22!G2

4

p2E
d22

1

dy
sin21~d212y!

A12y2
, 2<d<3

0, d.3.

~13!
x-
of

ly

re
lts
Although the analytic approximations ofj n(d) for n.3
are too complicated to be written down, their numerical v
ues can be obtained for givenn and d by generating RRW
trajectories that obey constraints~1!–~4!. From these trajec-
tories, we classify the arch vectors according ton and calcu-
late the average values for the horizontal component^Xn& of
the arch vectors in each class. For the vertical compon
Yn , the average value vanishes, i.e.,^Yn&50. So we calcu-
late the average of̂uYnu&. The results (̂Xn& and^uYnu&) for
-

nt

d53.74 and 4.05 are plotted in Fig. 11 along with the e
perimental results for comparison. The theoretical values
both ^Xn& and^uYnu& increase withn. The experimental data
also show the general trend of increasing withn except for
the data for largen where the experimental data are on
from one sample due to the fact that arch with largen is very
improbable. Furthermore, the predicted values of both^Xn&
and^uYnu& agree well with the experimental data. Since the
is no fitting parameter in the theoretical values, our resu
8-6
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JAMMING PATTERN IN A TWO-DIMENSIONAL HOPPER PHYSICAL REVIEW E66, 011308 ~2002!
FIG. 10. Comparison of the normalization constantAn calcu-
lated using the short-range excludedvolumeapproximation~solid
line! calculated by using Eq.~10! and those (s) that are obtained
using direction Monte Carlo simulation with no approximation.

FIG. 11. Average values of the horizontal component (s) and
the vertical component (L) of the n-disk arch vector from experi-
ments ford53.74 ~a! and 4.05~b!. The lines are the theoretica
values obtained from RRW trajectories generated by Monte C
simulations.
01130
indicate that the RRW model can capture the configuration
the arch quite accurately.

C. Circular arch approximation

It should be pointed out that the normalization const
An equalsj n(1) that is the probability of getting ann-disk
stable arch from a collection of disks with excludedvolume
interactions, regardless of the value ofX. Hence, one can
treat An as the stability probability of ann-disk arch. The
exponential decay form in Eq.~10! reveals thatn-disk arches
with largen are highly improbable. Using the stability prob
ability An , further theoretical calculations concerning th
statistics of the arches in the jamming state can be obta
by approximating the shape of the jamming arch. Motiva
by the experimental observation that the distribution inY
peaks atY50 and hence the jamming arches are prefera
symmetric, we take the bold assumption that the jamm
arch can be approximated by a circular arc centered at
apex of the hopper cone. Suppose the arch begins at a
tancel from the opening on the hopper wall, the circular a
length is given byl 5(2l1dsecf)@(p/2)2f#. Then the
number of disks in the arch can be approximated asn5 dl e,
which is the integer just larger thanl . Assuming thatl is
uniformly distributed in the region@0,̀ #, arches with differ-
ent values ofn can be generated. Of course, arches with la
values ofn is improbable due to stability andAn will account
for this effect. Thus the information about the arch statist
can be calculated by generatingn in a simulation. Denote the
number of arches withn by Mn , thengd(n) can be calcu-
lated as

gd~n!5
AnMn

(
n

AnMn

. ~14!

Figure 12 shows the theoretical predictions forgd(n) using
the circular arc model together with the experimental res
for comparison. The theoretical predictions can capture
the qualitative features ofgd(n) and even agree quantita
tively quite well in some cases.

The mean disk number̂n& in the jamming arches can
also be computed aŝn&5(nngd(n)/(ngd(n). The theoret-
ical results together with the experimental data are show
Fig. 13. The experimental data points all lie roughly near
predicted curve. It is worth noting that the theoretical cur
of ^n& increases monotonically withd with kinks for values
of d slightly less than integral values where the increase
^n& becomes very slow. Such a behavior also seems to
pear in the experimental data neard&3 andd&4. However,
more sample statistics are required to firmly establish thi

IV. SUMMARY AND OUTLOOK

In this paper, the experimental results on the detail sta
tics of the jamming arches in a two-dimensional hopper
reported. The distribution functions of the end positions
the jamming arches are measured and the statistics of
jamming arches are obtained. The flow of granular particle
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the hopper near the jamming region is a complicated di
pative process. We attempted to model such a complex
nomenon with a stochastic approach using a simplified
stricted random walker model that bears basically o
excludedvolumeinteraction and stability conditions. Despi
its simplicity, the RRWM captures most of the essential ch
acteristics of the jamming arches even quantitatively. W
the further theoretical analysis of the RRWM together w

FIG. 12. Fraction ofn-disk arches in jamming eventsgd(n) for
d53.75 ~a! and 4.05~b!. The ‘‘s ’’s are from experimental obser
vation and the lines are from theoretical calculation using the
cular arch approximation.
b

ui

. E

01130
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-
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r-
h

the circular arch approximation, much insight concerning
probability of forming a jamming arch can be found. In pa
ticular, detailed arch statistics, such asgd(n) and the mean
number of disks in a jamming arch can be calculated, wh
agrees quite well with experimental measurements.

In practical applications, there are of course many m
complications in hoppers, such as the friction and adhes
among the grains, which would increase the jamming pr
ability. Our RRWM could be extended to include such e
fects by locally relaxing the convexity constraint to som
extent. Other interesting effects in the jamming phenome
such as grain polydisersity, effects of irregular grain shap
asymmetric hopper, and replacing disks by spheres are
rently under our experimental investigations. These res
will be presently elsewhere.
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FIG. 13. The variation of the mean number of disks^n& in the
jamming events with the hopper openingd. The ‘‘s ’’s are from
experimental data and the line is from theoretical calculation.
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