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Coarsening of sand ripples in mass transfer models
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Coarsening of sand ripples is studied in a one-dimensional stochastic model, where neighboring ripples
exchange mass with algebraic ratEgm)~m?, and ripples of zero mass are removed from the system. For
¥<0, ripples vanish through rare fluctuations and the average ripple mass grofms) @y~ —y~in(t).
Temporal correlations decay &5Y? or t~?° depending on the symmetry of the mass transfer, and asymptoti-
cally the system is characterized by a product measure. The stationary ripple mass distribution is obtained
exactly. Fory>0, ripple evolution is linearly unstable, and the noise in the dynamics is irrelevanty For
=1, the problem is solved on the mean-field level, but the mean-field theory does not adequately describe the
full behavior of the coarsening. In particular, it fails to account for the numerically observed universality with
respect to the initial ripple size distribution. The results are not restricted to sand ripple evolution since the
model can be mapped to zero range processes, urn models, exclusion processes, and cluster-cluster aggrega-

tion.
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I. INTRODUCTION AND MOTIVATION d)\i 1
E:5[_F()\i—1)+ZF()\i)_F()\H—l)], 1

When a surface of sand is exposed to wind or water flow,
patterns such as ripples or dunes are commonly formed. Thgpile in the asymmetric cas@ssuming, say, mass transfer
physics of this process is extremely complex because it ingnly to the lefi one has
volves the interaction of a granular medium with a possibly
turbulent hydrodynamic flofl]. It is therefore desirable to d\;
develop simplified models that capture some of the key fea- gt - Thi—)+ TN 2
tures of the pattern formation.

[n this paper we are concerned with a glass of mOd_eISI'he factor 1/2 in Eq(1) makes the time scales for both the
which focus on the role of the mass transfer in the eVOIUt'OrUynamics equal

of the pattern. Along a one-dimensional cut perpendicular to A homogeneous state of equally sized ripplkgf, is

the ripples, the pattern is described by a Set of ripple stationary under Eq$1) and(2), but its stability depends on

lengths, where the indexiabels the ripples n the array. The the derivative of the robber function: The pattern is stable for
\; are used here as a general measure of ripple size, without

reference to the detailed geometry of individual ripplese F,()‘)<O and unstable fol’'()>0 [3]. In the unstable

. . TR . case the dominant mode is a modulation of period 2, in
Fig. 1). In particular, we do not distinguish between the lin- which everv second riople arows and everv second one
ear size of a ripple and the mass it contaifer further y pp'e 9 y

discussion of this point s€&]). shrinks. As the size of the shrinking ripples reaches zero in a

; . finite time, the evolution equationd) and (2) have to be
During the evolution of the patterns, the flow tranSferSsupplemented by aextinction rule When the size of a ripple

mass between neighboring ripples. The central assumption Qfnishes; it is removed from the system and the remaining
the model is that the mass transferred to rigpl®m ripple  ripples are relabeled such that the previous neighbors of the
i+1 ori—1 (per unit time is a functionl’(\;) of the size of  removed ripple become neighbors of each other. Extinction
the ripple which gains the mass. Further motivation for thisevents contribute to theoarseningof the pattern, i.e., to an
assumption will be given below. We refer I(\) as the increase of the mean wavelength. In this work the reverse
robber functiont process of ripple creation is not considered, hence coarsening
Depending on the characteristics of the flow, the masss irreversible.
transfer between ripples can be symmetric or asymmetric. In The symmetric mass transfer modg) was first proposed
the symmetric case the balance between loss and gain pras a description of vortex ripples in coastal waters, which are
cesses for a given ripple leads to the evolution equd®n created under the oscillatory flow of surface way@k In
that context the dependence of the robber function on the
size of the gaining ripple is motivated by the observation that

*Electronic address: ehe@fyslab.hut.fi the mass transfer is effectuated mostly by a separation vortex
"Electronic address: jkrug@Theo-Phys.Uni-Essen.DE that appears in the wake of that ripple. Numerical simula-
This term was suggested to us by Ko van der Weele. tions [3] and experiment$2] show thatl’(\) is nonmono-
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e cooiea iSRRI o dynamics can be described by Eq@$) and (2). For 0<vy
i i i - Ty <1 the mean ripple size grows algebraically with the expo-
‘ nent 1/(1- ), while the growth is exponential fop=1. In
FIG. 1. Experimental image of vortex ripples in a one- the latter case the evolution equations become linear, and the
dimensional annular geometry, published[2]. The amplitude of  problem can be solved exactly on the mean-field level. The
the fluid oscillations is denoted bg. The line above the pattern mean-field theory reproduces the exponential growth for the
shows a fit of triangles with a constant Slope. COUrtesy of K. H.mean r|pp|e Size, but incorrect'y predicts a dependence of the

Andersen. ripple size distribution and the coarsening law on the initial
conditions.
tonic, with a maximum neax=a, wherea is the amplitude In the following section the model is introduced and its

of the fluid oscillations. Thus patterns of wavelengthrelations to other models are discussed. Algebraically decay-
A<a(\A>a) are unstabléstablg, and the main interest is in ing robber functions Y<0) are considered in Sec. Ill. The
the wavelength selection process starting from a short waveproduct form of the mass distribution is derived in Sec. lll A,
length, unstable staf@—4]. the coarsening law is calculated in Sec. Ill B, and the ap-
A related, asymmetric mass transfer model for windproach to the product measure is analyzed in Sec. Il C. Sec-
driven sand ripples was introduced[#)]. The basic hypoth- tion IV is devoted to algebraically growing robber functions
esis of the model is that wind ripples wander with a speed y>0). The mean-field theory is first developed fpr=1
that is inversely proportional to their size. This implies that aand then compared to simulatio(BSec. IV A). Section IV B
leading ripple(ripple i +1) is eroded by the trailing ripple examines the case<Oy<1. Conclusions and open questions
(ripple i) at a rate which is proportional to X/, so the are formulated in Sec. V.
resulting evolution equation is of the tyd@) with I'(\)
~1/\. Sincel'’(\)<0, the homogeneous pattern is stable. Il. THE STOCHASTIC RIPPLE MODEL
However, when fluctuations are included by discretizing the
ripple sizes and implementing a stochastic mass transfer rule,
a fluctuation-driven coarsening mechanism becomes effec- In the stochastic model a sand ripple is characterized by
tive and leads to an increase of the mean wavelength witlis massm. The mass variables are integers such that each
timet as Int. ripple consists oim; elementary mass units and occupies a
In this paper we consider a class of stochastic modelsite i on a one-dimensional lattice. The mass is conserved,
whose noiseless counterparts are describepgr (2). We  i.e., M:=3;m;=const. Them; correspond to the length vari-
concentrate on monotonic, algebraic robber functibgs) ables\; used in Egs(1) and(2). As mentioned in the Intro-
~\? and study the coarsening process regardirgg a vari-  duction, the mass and the length of ripples are here consid-
able parameter. Fop<<0 this extends the results 5] on  ered to be indistinguishable. We use different symbols for
fluctuation-driven coarsening. The cage-0 is a simple re-  two reasons. We want to make a clear distinction betwgen
alization of linearly unstable ripple evolution, and it is stud- the real and integer valued ripple sizes diidl between the
ied here as a first step towards a better understanding afeterministic and noisy dynamics.
models with nonmonotonic robber functiois-4]. Although Ripples interact only by exchanging mass with their near-
the models are defined using the terminology of sand ripplesgst neighbors at an algebraic mass transfer da¢en)
they are connected to other problems in nonequilibrium sta=1"ym?. Since the constart, affects only the time scale it
tistical physics. For example, foy=0 the system maps to will be set equal to unity from now on. If ripples obtain mass
coalescing random walks and is therefore exactly solvableonly from one of their neighbors the mass transfer is called
Other equivalences include exclusion processes, zero-rang®tally) asymmetric. If the mass comes from both neighbors
processes, urn models, and cluster-cluster aggregation.  we call the dynamics symmetric. The removal of ripples is
Our main results are the following. In general, one candone such that lattice sites containing no mass are eliminated
identify two time scales in the dynamics: The one of ripplefrom the system.
extinctions and the other at which the system would equili- In the simulations three different initial conditions are
brate to a steady state in the absence of extinctions.yFor used. As random initial conditions we denote the case in
<0 the loss of a ripple is a rare fluctuation when the mearwhich the probability to have a ripple of size is given by
ripple size is large. Therefore the two time scales are welthe geometric distribution (2q)q™*, with 0<q<1. The
separated, and the system has time to relax to a quasisteagobability q is related to the mean ripple size as)=(1
state between ripple extinctions. We show that this state is-q) 1. A distributionm;=(m)Vi is referred to as monodis-
characterized by a product measure. This justifies the meaiperse. The third possibility is a Poisson distribution.
field assumption made iff], and allows us to calculate the In the dynamical evolution a ripple is first selected ran-
stationary ripple size distribution. The product measure bedomly and time is incremented Uy(t)*lF,;l;X, whereN(t)
comes exact only at the limit—o as the correlations in the is the number of ripples and, . is the maximum of all the
system decay as a power law. The average ripple size growates of the ripples in the system at timéDenote the mass
logarithmically at late times, with a prefactery 1. of the selected ripple byn. If x<I'(m)/T" 2, Wherex is a
For y>0, extinctions are frequent events which occur onuniformly distributed random number in the intenjal, 1],
the same time scale as the evolution of the surviving ripplesthe ripple gets a unit mass from its nearest neighbor. Other-
We find in this case that the noise is irrelevant, so that thevise a new ripple is selected and the process is repeated. For

A. Definition and simulation algorithm
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N’ FIG. 3. Mapping between the worm model, the asymmetric ex-
coalescence clusion proces$ASEP), and the cluster-cluster aggregati@cCA).

FIG. 2. Mapping between the asymmetric worm model and theparticles at contact, which changes the lenbh) of the
exclusion process with coalescence. system.

For negative(positive) y there is a repulsivéattractive
symmetric dynamics the neighbor is selected randomlynteraction between the particles. For the marginal case of
whereas in the asymmetric case it is always the right one. mass independent transfer rates<0) the interaction van-

ishes and the exclusion process reduces to coalescing ran-
B. Relation to other models dom walkers, which can be solved exacth5]. The most
) ) relevant results for our case afi¢ the average ripple mass
In the case of asymmetric dynamics and for —1 our  gr6ys asymptotically aém)(t)~ \t and (i) the ripple size
model reduces to the worm model originally introduced togjstribution (the probability of finding a ripple of mags at

extinction step, the sand ripple model is also similar to a=m~1G(m/(m)), where the scaling functionG(x)
zero-range proceg$—8|. Both models are defined in terms _ 1 — x4

. . . . —§7TX28
of conserved, integer mass variableg which interact

h h th h £ uni b . Alength conserving mapping is obtained by considering
t roug the exc ange o unit masses etvyeen ne'arest ne'gmiﬂ'e model with ripple extinction but without the removal of
bor sites of a lattice. The key difference is that in a zero-

h f i f . f1h empty lattice sites. To avoid creation of new ripples mass is
range process the mass transfer rate Is a function of the Mmag3\sfered over these sites. In the exclusion process this cor-
at the site ofdeparture while in the sand ripple model it

depends on the mass at faegetsite. This reverses the sign responds to a hop of a particle over all the particles in the
; ; : same cluster, which can be considered as moving a cluster of
of the right hand sides of Eq$l) and (2), and hence the 9

tabilit i fth del. Th ina behavior i articles as a wholdgsee Fig. 3. In this way our model
stabiiity properties of the model. The coarsening benavior Iy, e maps to a cluster-cluster aggregation process where

zero-range proces_ses_with a nonmonotonic robber function 'Sach cluster moves with a rate that depends on the distance

relt;:_\;]ant to clustermgfm granul%rl gas[@. . . to its neighbofs). One-dimensional cluster-cluster aggrega-
e occurrence of irreversible extinction events in our; . 1 odels generally obey universal dynamical scalieg

flﬁ] and references therginwhich will be seen to be the

proposed in the context of glassy dynamjd®]. In these case also for the sand ripple model.

modelsM particles are distributed amorg boxes withm;
particles in theith box. In contrast to the ripple model, the
urn models have no spatial structure, i.e., mass transfer is
possible between any pair of boxes. In the standard dynami- It is known from the mean-field analysis 5] that for

cal scheme one of the balls is chosen at random and a mowe=—1 the average ripple size grows gsny(t)~In(t

to another box is attemptgd0]. In our setting this corre-  +&™O)_ ntuitively, the slow growth follows from the fact
sponds to a mass transfer ratém;) ~m;, wherei is the site  that, for y<0, the ripples near extinction are those with the
of departure in this respect the urn models are related tohighest incoming mass rates. Therefore the disappearance of
zero-range processes. The extinction corresponds to dynan-ripple involves a rare fluctuation; within the approach of
cal rules, where boxes are not refilled once they have beconjg], the mass of a ripple evolving in a background of mean
empty. This is the case, for example, in the backgammomnass(m)(t) performs a random walk that is biased away
model[11] at zero temperature. from zero.

The sand ripple model can also be mapped to an exclusion We base our theoretical analysis on this observation. In
process7,12,13 along the lines of14]. The mapping can what follows, we will assume that at long times, i.e., for
be done in two ways which differ in how the disappearancqarge (m), the extinction of a ripple is such a rare event that
of ripples is taken into account. The first alternative is scheit does not affect the ripple size distribution. Neglecting ex-
matically presented in Fig. 2. One constructs a new latticginctions, we show that the steady state distribution is given
with L(t)=M+N(t) sites. The mass variables; of the by a product measure. After validating the quasistatic ap-
ripples turn tom; consecutive holes separated by particles orproximation by simulations, we use it to show that to leading
sitesi+X=,_;m [i=1,... N(t)]. Moving one mass unit order in t the average ripple mass grows &sn)
from one ripple to its neighbor corresponds to a hop of a~—y~lIn(t). Finally we consider the approach to the
particle, and the loss of a ripple becomes a coalescence @foduct measure by studying nearest neighbor correlations.

IIl. NOISE-INDUCED COARSENING (y<0)
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A. Mass distribution

Without extinctions the ripple size distribution can be
solved exactly. This is due to the short range of interactions
between ripples: The mass transfer rate depends only on the
mass at the target site. As was noted above in Sec. Il B, this
is similar to the zero-range process, where the rate depends
only on the site of departure. The most important character-
istic of a zero-range process is that its steady state is de-
scribed by a product measui@]. This was shown to gener-
alize to processes where the transition rate is a product of
functions of the occupation numbers at the site of departure
and the target sitgl7]. As our model is a special case of this
class of models, the results pf7] apply here as well. For
completeness we give a brief derivation.

The _produpt measure property impljes that the stati(_)nary FIG. 4. The ripple size distributions obtained from simulations
probability distributionP({m;}) of finding the system in ¢, y=—1 at t=4 (X),256 (¢),16384 ), and 2097152

50

configuration{my,m,, ... ,my} factorizes as (O) together with the analytical resuisolid lines [Eqgs.(A2) and
(A3)]. The initial distribution at=0 is a random one and simula-
P({m})= 1T p(my), (3)  tions are averaged over 2000 runs for a system of lize50 000.
i The dashed line shows the asymptotic solution given by(&dor
t=2097 152.
wherep(m;) is the probability of finding mas®; at sitei. In
the steady state there are no correlations between the ripple _y p(mp)I'(my)  p(m—HI(mi;—1)
sizes. Starting from the master equation ¢{m;}) and ¥ =T mA L) o(m o) , (6

using the product measu(8), one obtains for the asymmet-
ric case(the calculation is not presented here since up to

index changes it is identical to that presentedidh wherea must be a constant. Denotim0)=p, and recur-
sively iterating Eq(6), we obtain

p(m)p(mi )I'(my)=p(m;+1)p(m; ;=)' (mMj 1~ 1()4) -

p(m)=poe™ [ T()=poe(m-111, (7

The condition(4), known as pairwise balandé 8], gen- '

eralizes the detailed balance condition familiar from equilib-
rium statistical mechanics. It has a simple interpretation. Thavhere the product fom=1 is defined to give unity and the
left hand side of Eq(4) represents the mass transfer to thelast form follows from the definitiod’(m)=m".
sitei, which has to be balanced by a transfer out of this site  The unknown constants, and @ can be determined by
(the right hand sidein order to be in the steady state. The the normalizatior=,_,p(m)=1 and the expectation value
first two terms give the probability to find a mass at sitei (m)==7_o,mp(m). Explicit results fory=—1 and—2 can
with a right neighbor with mass;; ; and the last term de- be found in the Appendix A; foy=—1, Eq.(7) is a(shifted
scribes the rate at which the sitgains mass from its neigh- Poisson distribution. In general, the distribution {on)>1
bor. We emphasize that, provided a solution to @jcan be can be written as
found, this proves that the product meas(Bgeis anexact
stationary solution of the master equation; on the basis of _ »(m —ym— (1= NI2[ [ y
general arguments, this solution is then also expected to be p(m)=Ca(y)e ><m> (M=% ®)

unique.

Proceeding similarly for the symmetric dynamics giveswhere the explicit form ofC,(y) is not important for our
(transitions  { ... m_;,m ,M,q,...}—={....m_;.m purposes. Using the form given in E@®), it is easy to show
+1m1—1,...} and {...m_;—1m+1mi 4, ...} that the widtho:=\{(m?)—(m)? of the distribution behaves
—{.. . m_,m,m_qg, ...} aso~+/(m) independent ofy.

The calculated distributions are compared to numerics in

p(m;— 1) p(my) p(m; 4 1) I'(my) Figs. 4 and 5. The average ripple mass is not a constant as

the simulations include also ripple extinctions. The excellent
=p(mi_1=p(mi+)p(mi )I'(mi_1—=1). (5  agreement at long times shows that indeed these become so
rare that between subsequent extinctions the system has time
Sincep(m; ;) cancels out we end up with E@). Therefore  to equilibrate to the steady state. Note that all initial distri-
the steady state distribution is independent of the asymmetrgutions converge to the universal distributipm;t) given
of the dynamics. by Eq. (8), where the time dependence enters only through
Equation(4) can be recast as the mean ripple massn)(t).
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FIG. 5. The ripple size distributions obtained from simulations

for y=—0.5 att=4 (X),128 (<),4096 (V), and 131072 [J)
together with the analytical resulolid lines [Eq. (7)]. The initial
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FIG. 6. The growth of the average ripple mass a function of time
for y=-05 (*),-0.75 (¥),—-1 (A),—-15 (©O), and -2
(O). The least squares fits are shown by solid lines. The inset

distribution att=0 is a random one and simulations are averagedcompares the fitted prefactor©j to the analytic result—y~*

over 500 runs for a system of siad =50000. The dashed line
shows the asymptotic solution given by E§) for t=131072.

B. Coarsening law

Next we proceed to calculate the mean ripple siz
(m)(t) using an approach similar to the analysis of the bac
gammon mode[10]. We assume that, at long times, the
probability for a given ripple to vanish is equal to the prob-
ability p(0) obtained by extrapolating the steady state prob
ability distribution (8) to m=0. The numbem of ripples
then decays according tdN/dt~—p(0)N. Since {m)(t)
=M/N(t) we obtain

w~p(0)<m>(t)~e7<m><m>*‘1fy>’2, 9
which to leading order in gives
(m)(t)~—y~tIn(t). (10)

Simulations with different initial conditions are in accord
with Eq. (10) (Fig. 6).

C. Decay of correlations

The product measure for the ripple size distribution im-

plies that there are no correlations between neighboring

ripples. This is true only asymptotically. To study the ap-
proach to the product measure distribution we consider th
normalized nearest neighbor time correlation function

.:<mimi+1>_<m>2

0= (1

(solid ling). The system sizes range from 50000 to 100000 and
averages are taken over at least 50 independent runs.

g(t)~—t~ 2 (12

kefor both symmetric and asymmetric dynamics.

At first sight one may be tempted to relate the decay of
correlations to the extinction events that perturb the product
measure. However, as was shown in Sec. Il B, the probabil-
ity of extinction events decays ap(0)~eXM®~t~1
which is much faster than the numerically observed decay
law (12). This implies that the power laWl?2) is associated
with the dynamics between extinction events, which can be
described using standard hydrodynamic fluctuation theory
for a one-dimensional system with a single conserved den-
sity.

Let ¢(x,t) denote the coarse grained mass fluctuations in
the (quasij steady state of mean ma@s). The long wave-
length behavior ofp is governed by a Langevin equation of
the generic fornj19]

-0.01

5 -0.02

e
-0.03
-4 | .
-0.04 it A0 T o
10° 10" 10 100 10*  10°

As is clear from Fig. 7, the early time behavior is sensitive t0 i 7. The nearest neighbor correlation functigft) for y

the details of the initial distribution. In this regime it is pos-

=-—1. The initial condition is randon{(m)(0)=2,1;{m)(0)

sible to have positive correlations between neighboring—1 2m], monodisperse[m(0)=5,0] or Poisson distributed

ripples, but at long times there will always be anticorrela-
tions, i.e.,g(t)<<0. The numerically observed correlations

[(m)(0)=5,0;(m)(0)=10A]. Open(filled) symbols correspond
to asymmetrigsymmetrig dynamics. The inset shows the decay at

seem to be independent of the initial conditions and vanish ifate times for the random case. The solid and dashed lines are

a universal manner as

guides to the eye with slopes1/2 and— 2/3, respectively.
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i P ib oy havior is expected to set in only beyond a crossover time
i o il vl vl (13 scalet, ~v®/(D?u*) [23], which for the ripple model takes
IX XX the formt, ~(m)3~ 7~ (Int)3”. For the casey=—1 con-
. , ) ) , ) sidered in Fig. 7, this implies that superdiffusive behavior
where 7(x,t) is Gaussian white noise with covariance .o pe expected only for times such thigtn ty’>1. The left
(7(x, 1) n(x",t"))=D(x=x") 8(t—t"). For u#0, EQ.(13  pang gide of this inequality becomes equal to unity for
is the noisy Burgers equafidiz0], which has been widely _g500 ang reaches the value 10 only fer235000. The
studied in the context of driven diffusive systefri®] and slight deviation of the simulation data from the'? behav-

interface gro_w_tk[21—2:§. L ior seen aftet= 10" may indicate the beginning of the cross-
The coefficientsy, u, andD appearing in the long wave-

g . . ver
length description can be related to the microscopic dynam-
ics of the sand ripple model as follows. The nonlinear term
on the right hand side of Eq13) is generated by the asym-
metry, and its coefficient is given by=j"({m)), wherej is For y>0 the homogeneous state is linearly unstable be-
the steady state mass current. Since in our gasE, we  cause the largest ripples are those with the highest growth
conclude thafu~(m)?~2. In the symmetric casp=0 and  rate. Ripple extinction is then no longer a rare event, and the
the diffusion coefficientr is proportional tol'’~(m)*~*  product measure solution derived in Sec. Ill A becomes in-
[this can be seen by expanding Efj) around the homoge- valid. On the other hand, it is plausibland will be con-
neous state Finally, owing to a fluctuation-dissipation theo- firmed by simulations, see belgwhat the linear instability
rem[20], the equal time correlations of E(1.3) are Gaussian supersedes the noise in the time evolution, so that the deter-
with covariancg ¢(x) ¢(x'))~(D/v) 5(x—x") independent ministic equation1) and(2) and the stochastic ripple model
of u. As we have shown above in Sec. Il A, in the ripple show the same behavior.
model the variance of the mass fluctuations is always of or- In what follows, we first develop a mean-field theory for
der(m), henceD/v~(m). the deterministic model in the simplest case of a linear rob-
We want to use Eq(13) to describe the approach to the ber function (y=1). Simulations show that the mean-field
steady state, starting from some initial conditi@ng., the theory is not quantitatively correct, presumably due to the
monodisperse staig=0) specified at=0. The analysis of neglect of spatial fluctuations. In the nonlinear regime 0
Eq. (13) shows that at long times, and fer#x’, the pair  <y<1 we use scaling analysis to derive the coarsening law.
correlation function takes the scaling foft#2,23

IV. UNSTABLE COARSENING (y>0)

A. Mean-field analysis for y=1
D 1

v &b

Here G is a scaling function and(t) denotes the dynamic
correlation length. The prefactor of the scaling function on
the right hand side of Eq14) is fixed by the requirements
that (i) the steady state density fluctuations are proportionaltS average by\,. o . .
to D/v and(ii) the integral over the pair correlation function ~ The mean-field approximation consists of replacing the
is constant due to mass conservation. The correlation lengtiPples surrounding an arbitrary ripple of sixeby ripples of
grows diffusively asé(t)~ (vt)¥2 for =0 and superdiffu- the average sizé\), such that the evolution equation be-
sively asé&(t) ~[(D/v)Y2ut]?? for u+#0. comes

Keeping|x—x’| fixed and takingt—, we see that the ~
pair correlationg14) decay as D/v)G(0)&(t) 1. Express- —=T(\)=T((\))=x—{(\). (16)
ing v andD/v in terms of the mean ripple mass, we con- dt
clude that in the symmetric casg € 0) the normalized cor-
relation function(11) should decay as

GEM) Yx=x"]). (19 We start our analysis from the deterministic equati@hs
and(2). For y=1 these become linear but the system is still
nontrivial due to the ripple extinction. As the system is de-
terministic, the only randomness lies in the initial condition.
We denote the initial ripple size distribution Bq(\y) and

(d(x,) (X", 1)) =

On this level there is no difference between symmetric and
asymmetric mass transfer. The solution of Ef6) reads
(M)~ @92 ()= A(Ng,t)=€[No—F(t)], where the function

~ (19

9(t)~ {112 t1/2 ¢
F(t):zj dre” (\)(7) a7

For y=—1 the logarithmic factor disappears and E#5) °

becomes a pure power law with exponenl/2, in accor-  has to be calculated self-consistently. Note that at this point
dance with the simulation results shown in Fig. 7. Moreoverye do not explicitly restrict\(t) to be non-negativethis

the explicit calculation for the diffusive case shows that thegonstraint will enter latér OnceF(t) is known, the ripple
scaling functiong in Eq. (14) is negative, hencg(t)<<0 as  sjze distribution at time can be obtained by inverting the

is observed numerically. . _ solution for\(\o) and inserting this into the initial distribu-
In the asymmetric case the fluctuation theory predicts agjon, with the result

asymptotic decay ag(t)~ 1/£(t)~t~ 23 with logarithmic
corrections due to the growth ¢fm)(t). However, this be- p(N;t)=e 'Poe !N+ F(1)). (18
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Thus in the mean-field approximation the ripple size distri- m/<m> or A/<A>
bution preserves its initial shape but gets scaled and shifted. o0 5 10 15
It is possible to derive a differential equation for the un- 10 ) ' ' ' 2 1
known functionF(t). The fractionp(t) of surviving ripples 310-25_ 3
is equal to the probability that(t)>0, = F
510" - .
p(t)=f0 d?\p()\;t)=L(t)deo(x)::Pg(F(t)), (19 Eio'F A
. . . S 10-3§ l . . | 3
where the last equation defines the cumulative distribution 1o
. . . . - T
Pg. The average ripple size is given By )(t)=Xo/p(t). .k b) ¢
Inserting this into the definition of (t) and differentiating :*10’2‘— AR —"
once gives = .t AR L
si7 R ]
—tN ’.‘:.\ E [ l\\\ E
dF(t): e \o . (20) §10-6; LAy 3
dt S(F(t)) sF . | . 1 . L E
1079 5 10 15
Hence the problem reduces to solving the differential equa- m/<m> or M<\>

tion (20) for a given initial distributionPy(\).
For example, for an exponential initial distribution  FIG.8. Th? )Comp|emem5 of the cumula:if\ée ripple S;)Ze distribu-
=1 N /N - 3 Tt tion for y=1. (a) The distributions for randortexponentigl initial
v?/%(ei\rg)a; );oor Z fI;t ;i's\gﬁ)ﬂggn':(t)_)\ot and(A)(t) =o€’ distribution with noisy (deterministi¢ dynamics are denoted by
solid (dashedl lines. (b) The distributions for monodispergéat)
— — initial distribution with noisy(deterministi¢ dynamics are denoted
Po(Ng) = (2N0) % No=2Ao, 1) by solid (dashed lines. The curves are shown at times1, ...,9
oo 0, otherwise, and/(tk;e thick solid lines in both figures represent the function
e~ mm,

the solution is given byF(t)=2\q(1—e ") and (\)(t)
=)\oe"2 As the rate of exponential growth is different in ~ Similarly, in the discrete, noisy ripple model the random
these two cases, we conclude that the coarsening behavior itial distribution quickly converges towards an exponential
the mean-field mod€l16) is nonuniversal. scaling function[Fig. 8@); solid lined. The monodisperse
In general, the exponential growth rate of the mean rippldnitial condition spreads out and approaches the same form
size is governed by the extremal statistics of the initial dis{Fig. 8b); solid lineg. Again, the mean ripple size grows as
tribution Py,. If the initial ripple sizes are bounded by a maxi- (m)(t)~e€' for both initial distributions.
mal size Npax, and Po(Ng) ~ (A max—No)? for No—Nmax Since the deterministic model behaves in a similar manner
then the analysis of Eq(20) shows thatt~'In(\)(t)—(a  @s the noisy one, we conclude that, in contrast to the case
+1)/(a+2), while for fat initial distributions with a power ¥<0, the noise is irrelevant. The discrepancy between the
law tail, po()\o)~)\5(b+1), we findt~tIn(\)(t)—b/(b—1). mean-field theory and the full deterministic system suggests
To compare the predictions of the mean-field theory tothat the spatial fluctuations are important, as is often the case

simulations we prefer to show the cumulative distribution for low-dimensional systems. In particular, the numerical re-
sults indicate that, in contrast to the mean-field prediction,

o )Y the behavior of the full system is universal with respect to
|(7\Jt)==f pr(X;t):f(W), (22)  the initial ripple size distribution. This universality is pro-

» duced also by another type of mean-field thef2p,26,
which is more appropriate for the analysis of high-

where the | ion defines th ling funcfipg. A . :
ere the last equation defines the scaling funcfiEg dimensional systems.

similar definition applies top(m;t) with the integral re-
placed by a sum. In the case of an exponential distribution
p(\;t) also the functionf(x) is exponential whereas for a
flat p(\;t) it is linear.

We solved the deterministic equatiofly and(16) using As the mean-field equation is not readily solvable for
the fourth-order Runge-Kutta methf24]. As a check of the #1 and probably would not describe the problem correctly
algorithm, we reproduced the soluti¢h8) of the mean-field anyway, here we present a simple scaling argument for the
equations. For the full noiseless systéin the exponential growth of the mean ripple size in the regimec@<<1. We
initial distribution remains unchangefFig. 8@a); dashed start from the observation that in the linearly unstable case
lines] but also a flat initial distribution presumably ap- [I''(\)>0], predominantly every second ripple grows and
proaches the exponential offéig. 8b); dashed lineg This  every second one shrinkd]. Therefore we may consider a
is in conflict with the mean-field prediction. In both cases thesimplified system consisting of two ripples of initial sizes
average ripple size grows &) (t)~e". )\2> )\g. We calculate the timé&* at which the average size

B. Coarsening law for 0<y<1
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has doubled. It is given by the conditiong(t*)=\+\5  coarsening is driven by the linear instability of the homoge-
and \,(t*)=0. Since the mass is conserved we have neous state. Ripple extinctions become frequent, anq the
=\ (1) + A »(t) = const. product measure is no longer relevant. The average ripple
Applying Eq. (1) gives size grows algebraically a8(*~? for 0< y<1. The behav-
ior at y=0 is discontinuous sincém)(t)~t2 for y=0,
A=A]=\7, which follows from the mapping to coalescing random walk-
ers. Fory=1, (m)(t)~e€' and the scaling function of the
ripple size distribution appears to be a simple exponential.
The dynamical noise, which is necessary to have coarsening
dor y=<0, is irrelevant fory>0. The mean-field theory de-
veloped fory=1 reproduces the exponential growth of the
mean ripple size, but is insufficient to describe the universal-
"y (0 dx ity of the growth !aw and the ripple size distribution which is
t:f S — (24)  observed numerically.
A XY= (A—x)? It is interesting to compare the results to the behavior in
one-dimensional cluster-cluster aggregation. Recall that the
which together with the definition df implies the homoge- model treated here can be mapped to cluster-cluster aggrega-
neity relation tion with hopping rates of clusters depending algebraically
_ _ on the distance between thd®ec. Il B. When the hopping
t*(arg,an)=a' " "t* (] \). (25  rates depend aE(m)~m” on the massesof clusters, the
_ S _ S growth of the average cluster size is algebraic it (t)
Assuming that the evolving ripple size distribution is gov- —t¥(2-% for all y<2 [16]. Thus the behavior for non-
erned by a single size scale, it follows that the doubling timenegative values of is rather similar in the two models, but
depends on the mean ripple sizetés-(\)*~”. The inverse  for <0 one finds a drastic difference due to the repulsive
of the doubling time is the growth rate af). Hence we may  interaction between clusters in the ripple model.

Ao=A}—1\7, (23)

where the dot denotes derivative with respect to time. Th
solution is implicitly given byx,(t)=\—X(t) and

write We conclude by adducing some open problems for future
studies. One of the most interesting issues is to understand

d(\ (1) _ 1 Nt 26 the coarsening and the final ripple size selection in the case

dt t_*< )0, (26 of a nonmonotonic robber function. This has direct applica-

tions in the coarsening of vortex ripples, where the robber

which yields(\ )(t) ~t? with z=1/(1— y). This is confirmed function has recently been measufed Initially these sys-
by simulations, which give=1.32+0.02 and 1.98 0.03 for ~ tems are in the unstable regime, where the transfer function
y=0.25 and 0.50, respectively. We also numerically checkeds monotonically increasing. As we have seen in the present
the universal scaling behavior of the ripple size distributionPaper, even this is a harder problem than the case where the
for 0<y<1, but in this region the scaling function is more dominant cqntrlbutlon to coarsening comes from thg dynami-
complicated than a simple exponential. cal fluctuations. For nonmonotonic robber functions one
needs an understanding of both coarsening mechanisms.
Therefore the starting point into this direction would be to
better understand the>0 case.

In this paper we have studied a one-dimensional model
for sand ripple evolution, where mass is transferred between
neighboring sites with algebraic rates, and sites containing ACKNOWLEDGMENTS
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ferred, the system is similar to a zero-range process. Thus tqggrilgcjlsgeﬁfgggtgg iop'[ﬁlelmkliﬂ?j%c\alse;istglayogmﬁemggili/s;gﬁ;
{Q’Ztggdg/ys;agfoguﬁemaet:’;?ge :;;gg:gtii);ﬁ:;i%?: éznctihnir:gtteogf Es_sen where the main part of this r_esearch_was _performed.
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hold for algebraically decaying mass transfer rates<Q),

since the extinctions are exponentially rare at late times. As roblem, and to M. R. Evans for mentioning the backgam-
P y ' on model. Financial support by Vilho, Yijaand Kalle

consequence the average ripple size grows to leading ordgfy Foundation, DFG within SFB 237, and the Academy

logarithmically slowly with the prefactor 1/y. : ; }
For y<0 the approach o the steady state product me of Finland’s Center of Excellence program are gratefully ac

V. CONCLUSIONS

sure is algebraic. The correlations between masses of neig nowledged.

boring ripples decay universally, i.e., independent of the ini-

tial distribution, ast 2 and t*2’3. for symmetric and APPENDIX: CALCULATION OF MASS

asymmetric mass _transfer, respecnvely. In the asymmetric DISTRIBUTIONS FOR y=—1 AND —2

case the asymptotic regime is preceded by a long crossover,

wheret Y2 decay is observed. Here we calculate the explicit form of the mass distribu-

For algebraically growing robber functiongy$0) the tion
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m—1

a(at+1)e*l(1+ ae®) for y=—-1
|o(m>=|ooozmi[[1 [(i)=poa™(m—-1)!77, (A1) (m)=

1+ al(2Va)1g(2\a) for y=-2

(A3)

for I'(m)=m?” in the casesy=—1 and—2. Form=1 the

product in Eqg.(Al) is defined to be unity, and we set
(—=1)!=1. The normalization condition>_,p(m)=1

gives

Using the expansiom,(x)=e*/\2mx+O(1/x) for a— o,
these formulas simplify tam)~a and (m)~\a for y
=—1 and- 2, respectively. Hence fdm)— o the distribu-
tions become

(1+ ae®) ta™(m—1)! for y=—1

IoL2Va)a™ Y[(m=1)11% for y=—2, ~[er™(m)mt(m-1)! for y=-1
(A2) p(m)~ 2\/;e—z<m)<m>2mf3/2/[(m_1)!]2 for y=-2,

wherel ,(x) is the modified Bessel function of the first kind. (A4)
The parameterr is related to the expectation valyen)
=3, _omp(m) by which are of the general form indicated in H§).

p(m)=
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