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Steady-state properties of a mean-field model of driven inelastic mixtures
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We investigate a Maxwell model of inelastic granular mixture under the influence of a stochastic driving and
obtain its steady-state properties in the context of classical kinetic theory. The model is studied analytically by
computing the moments up to the eighth order and approximating the distributions by means of a Sonine
polynomial expansion method. The main findings concern the existence of two different granular temperatures,
one for each species, and the characterization of the distribution functions, whose tails are in general more
populated than those of an elastic system. These analytical results are tested against Monte Carlo numerical
simulations of the model and are in general in good agreement. The simulations, however, reveal the presence
of pronounced non-Gaussian tails in the case of an infinite temperature bath, which are not well reproduced by
the Sonine method.
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[. INTRODUCTION tivation of our study relies on the fact that granular materials
being mesoscopic objects are often constituted by assemblies
Granular materials, a term coined to classify assembliesf grains of different sizes and/or different physical and me-
of macroscopic dissipative objects, are ubiquitous in naturehanical properties. The study of granular mixtures has at-
and play a major role in many industrial and technologicaltracted so far the attention both of theoreticigd$ and of
processes. experimentalistg2]. In particular Garzoand Dufty have
Interestingly, when a rarefied granular system is vibratedtudied the evolution of a mixture of inelastic hard spheres in
some of its properties are similar to those of molecular fluidsthe absence of external driving forces, a process termed free
while others are unique and have no counterpart in ordinargooling because it is associated with a decrease of the aver-
fluids [1]. A spectacular manifestation of this difference canage kinetic energy of the system, i.e., of its granular tempera-
be observed in a driven mixture of granular particles: if oneture. During the cooling of a mixture, which can be homo-
measures the average kinetic energy per particle, propogeneous or not, according to the presence of spatial density
tional to the so called granular temperature, one finds thend velocity gradients, each species may have different
surprising result that each species reaches a different valugranular temperatures, although these may result asymptoti-
Such a feature, observed in a recent experini@htis in  cally proportional, i.e., they might decrease at the same rate.
sharp contrast with the experience with other states of matter. Menon and Feitosa instead studied several mixtures of
At a more fundamental level such a behavior is in conflictvibrated inelastic grains and reported their failure to reach
with the zeroth law of thermodynamics. This principle statesthe same granular temperature.
that when two systems globally isolated are brought into In the present paper our interest will be concentrated on
thermal contact they exchange energy until they reach a stake statistically stationary state obtained by applying an en-
tionary state of mutual equilibrium, characterized by theergy feeding mechanism represented by a stochastic driving
same value of their temperatures. A corollary to such a prinforce.
ciple is the statement that the thermal equilibrium between The most widely used model of granular materials is, per-
systemsA and B, i.e., TA=Tg, and betweerA andC(T,  haps, the inelastic hard sphere modélS) [5], which as-
=T¢) implies the thermal equilibrium betweéhandC [3].  sumes the grains to be rigid and the collisions to be binary,
On the contrary, when two granular systénandB sub-  instantaneous, and momentum conserving. The dissipative
ject to an external driving force exchange energy they mayature of the collisions is accounted for by values less than 1
reach in general a mutual equilibrium, characterized by twmf the so called restitution coefficient Even such an ideal-
constant but different granular temperatuiesand Tg. In ized model represents a hard problem to the theorist and one
addition even whem\ and C are in equilibrium at the same has to rely on numerical methods, namely, molecular dynam-
temperaturel - and B and C also have the temperatuiig: ics or event driven simulation, or to resort to suitable trun-
one cannot conclude th&tand B would be in mutual equi- cation schemes of the hierarchy of equations for the distri-
librium at the same temperature. In other words, one of thdution functions. One of these schemes is represented by the
most useful properties of the temperature, i.e., the indeperBoltzmann equation based on the molecular chaos hypoth-
dence from the thermal substance is lost when one deals witsis, which allows to study the evolution of the one-particle
granular materials. distribution function. Its generalization to the two-
In the present paper we shall investigate the properties afomponent mixture of inelastic hard spheres has been re-
a simple model of two-component granular mixture. The mo-cently considered by Garzand Dulfty.
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Our treatment will depart from previous studies, becausested in the rapid granular flow regime, we model the colli-
we have chosen an even simpler approach based on the simns as instantaneous binary events, similar to those occur-
called gases of inelastigpseudg-Maxwell molecules. The ring in a hard-sphere system.
inelastic Maxwell model has recently been the object of The presence of the frictional, velocity dependent term in
vivid interest because it illustrates in a transparent fashiomddition to the random forcin§l5], not only mimics the
the non trivial role of inelasticity on the properties of the presence of friction of the particles with the container, but
system. These gases are natural extensions to the inelaséitso is motivated by the idea of preventing the energy of a
case of the models of Maxwell molecul¢6], where the driven elastic systemy—1), to increase indefinitely.
collision rate is independent of the relative velocity of the Let us observe that in the absence of collisions the veloc-
particles. Such a feature greatly simplifies both the analyticaity changes are described by the following Ornstein-
structure of the Boltzmann equation and the numericalUhlenbeck process:
implementation of the algorithm simulating the gas dynam-
ics. Although the constant collision rate is somehow unreal- mdwi(t)=—Tov;(t) + & (1), 2
istic one may hope to be able to capture some salient features
of granular mixtures, and in particular to reach a better unwhere the stochastic acceleration term is assumed to have a
derstanding of their global behavior, because the model lend&hite spectrum with zero mean,
itself to analytical studies.

This type of approach to granular gases had recently a (&'(1))=0 )
surge of activity since the work of Ben-Naim and Krapivsky )

[7,8], our group[9—11], Ernst and co-workeril2], and Cer- and variance

cignani and co-workergl3,14], and is providing a series of ayer 2Byt ,

important results concerning the energy behavior and the (&'(DE(1)=2D 38, g6 jo(t—t") (4)
anomalous velocity statistics of granular systems. .

The paper is organized as follows: in Sec. Il we define the BY ZreQeflnlng the bath constants,=I'/m, and D,
model and deduce the associated Boltzmann equations gov:P/Ma it is straightforward to obtain the probability dis-
erning the evolution of the velocity distribution functions of tributions of the velocity of each specieB,(v,t). In fact,
the two species and set up their moment expansion; in Sefe Fokker-Planck equations associated with the pro@ss
Il we shall determine the exact values of the stationary
granular temperatures; in Sec. IV we consider the moments

up to the eighth order and compute the distribution functions . . o L
by means of the so called Sonine expansion. In Sec. V wRossess the following stationary distribution functions:

simulate on a computer the dynamics of the inelastic mixture
. L . . m 5
and compute numerically the distribution functions and com- P.(v)= [ M e~ (Mw?)/(2Ty) (6)
pare these with the theoretical predictions. Finally in Sec. VI “ 27Ty

we present our conclusions.

P o(0,1) =T 40, [VP(v,1) ]+ D 4P, (v,t) (5

whereT,=D/T" represents the temperature of the heath bath,
that we fix to be the same for the two specisge also
II. DEFINITION OF THE MODEL Appendix B.
In order to represent the effect of the collisions on the
Fvolution of the system we assume that the velocities change
Instantaneously according to the rules

In the following we shall consider a mixture of Maxwell
inelastic molecules subject to a random external driving. Le
us consider an assembly Wf; particles of species 1 ard,
particles of species 2. For the sake of simplicity we assume m
the velocitiesv*, with «=1,2, to be scalar quantities. The v/ ¥=pf—[1+r ]_ﬁ(v_a_vﬁ) (7a)

. ! . i i af m.+m i IRA
two species may have different masses, and m, and/or aTHp
constant restitution coefficients that depend on the nature of

the colliding grains but not on their velocities, i.e4, 5, U,—'ﬁzvf+[1+rag] ©(pEyBy, (7H)
andr5=roq. m,+mg J

The mixture evolves according to the following set of
stochastic equations: where the primed quantities are the postcollisional velocities

and the primed are the velocities before the collisions. A

finite fraction of the kinetic energy of each pair is dissipated
=F;+f;+&(1), (1)  during a collision. Between collisions the velocities perform

a random walk due to the action of the heat bath. In such a

model the typical timer, between particle-particle collision
where the total force acting on particleis made of three is an adjustable parameter and is assumed to be small com-
contributions: the impulsive forc&; due to mutual colli- pared to the heat bath relaxation times, which agg
sions, the velocity dependent forée= —I'v; due to the fric- =ml/'=1M"; andr,,=m,/I"=1T",. WhenI'—0 we must
tion of the particles with the surroundings and the stochastialso takeD — 0 in performing the elastic limit, otherwise the
force & due to an external random drive. Since we are interkinetic energy would diverge asymptotically. In fact in Sec.

dUi
s
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V we shall discuss the situation of inelastic particles with
vanishing friction, a case already considered in Rigfsl3].

The evolution equations for the probability densities of
finding particles of species with velocity v at timet for the
system subject both to external forcing and to collisions are

. . . 1.
3Pk, t)=—D,k?P,(k,t) — T,k P,(k,t)— T—[Pz(k,t)
C

— (1= P) P2 y2K, VP (1= ¥20)k,t]

simply obtained by adding the two effects, —pPy(Yaik, 1) P1[ (1= Y20k, t]] (11b
— 2
&tpa(v,t)_raav[vPa(vvt)]—’_DaaUPa(th) Wlth
1
+ - Qu(P1,P2), tS) 1T
c Yos =52 (123
where the collision integral®, consist of a negative loss
term and a positive gain term respectively,
Qu(P1PY)=~Py(v.0) |1 Fg(l‘ylz)}’ 120
2v—(1-rq9u
e J duP;(u, t)Pl(%,t) 3
fu 1 ya=| 1= = 1(1= 712 |, (129

(1=p) m+m;

f duPy(u,t)P,

1+ry, my
m;+m, (ml )
“m, Y w2
2 P
2(1-p)
Qx(P1,Py)=—Py(v,t) + — 1+r duP,(u,t)P,
I22
2v—(1—r5)u
X( v—( 22) ,t)
1+ry,
p mp+m;
T4r, m J’duPz(u,t)P1
m;+m, m,
m v — W—rlz u
X ! . ], (9D

1+ry,

where p=N;/(N;+N,). In writing Egs. (9) we have as-

with {=mq/m,
The mathematical structure of Eqggll) is particularly
simple and in fact there exists a standard method of solution.

It consists in expanding the Fourier transfoi(k,t) of the
distributionsP ,(v,t) in a Taylor series around the origkn
:0’

()”

P (kt)= 2

#a() (13

and substituting Eq(13) into Egs.(11).

Equating like powers ok we obtain a hierarchy of equa-
tions for thew,(t) which can be solved by a straightforward
iterative method. At this stage one can appreciate the math-
ematical convenience of the Maxwell model. In fact, the co-
efficients of the Taylor series represent the moments of the
velocity distributions,

sumed that the collisions occur instantaneously and that col-
lisions involving more than two particles simultaneously can

be disregarded. Moreover, all pairs are allowed to exchange
impulse regardless of their mutual separation, in the spirit of

,u,ﬁ'(t)=Jjo dvv"P,(v,1). (14

a mean-field model. In order to proceed further it is conve-
nient to take Fourier transforms of Eq®) and employ the
method of characteristic functiof46] defined as

k0= | doep, w0 (10

The resulting equations read
P (k,t)=—Dk?Py(k,t) —T 1k Py (k,t)
1 . “ ~
- T_{Pl(kJ) —pP1(y1K,)P1[ (1= y1Dk,t]
C

—(1=p)P1(y1K, P (1=K t]}, (118

Since the evaluation of the moments of a given order

requires only the knowledge of the moments of lower order

one can proceed without excessive difficulty to any desired

order. In practice, we carried on our calculation up to the

eighth moment, assuming that the initial distributions were

even, so that the odd moments vanish. In order to render the
reading of the paper more expeditious we shall report the
equations determining the stationary value of the moments in
the Appendix.

IIl. TWO-TEMPERATURE BEHAVIOR

In order to determine the granular temperatures we equate
the coefficients of ordek? in Egs.(11) and obtain the gov-
erning equations for the second moments,
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w02y vam 1= (1P 1) ok ot anayaig e betvirofthe Masied s
—27 0+ (1-p)(1—Y10) 20D+ 27D, approaches its stationary vallig exponentially,
(15a T1(t)=Ty(0)e 2/7+ Ty(o0)[1—e~ 2], (16)
@_ (i1 a2 where the constant represents a combination of the two
Tedpz = 1(1= P[22 22~ D] P(1 = 720) characteristic times of the process given by
—27el b+ (L= P+ 27D, _oyuloyw T an
(15b) T ¢ m;’

The right-hand side of Eq<15) represent the balance which shows thafl, is an upper bound to the granular tem-

between the energy dissipation due to inelastic collisions angerature. \?Vehalzo (r)]btai(r; ?]simple Irelation between the tem-
friction and the energy input due to the bath. We define thd€rature of the bath and the granular temperafyre

global and the partial granular temperatures respectively as D, D
Ty=pT1+(1-p)T, and T,=3m,(v%), where the average T1m=m1W$F=Tb- (18
is performed over the nois§ . Since the energy dissipation r,— Aarat =7

and the energy supply mechanisms compete, the system un- Te

der the influence of a stochastic white noise driving achieves Qn the other hand, when the two components are not
asymptotically a statistical steady state. Notice that Eff9.  jdentical Egs.(15) show that the equilibrium macrostate is
feature only the second moments of the velocity distribu-specified by two different partial granular temperatures, both
tions, so that the solution is straightforward. Such a state ofroportional to the heath-bath temperature. This means that
affairs should be contrasted with the analog problem of dethe ratio of the two temperatures is independent from the
termining the partial temperatures in Boltzmann modléls  driving intensityD. This is also seen from the formula

oy (1P 2yal 1 7)1+ P(L- ) + 2 + (1= p) 2(1=71)?
Loz Tbz . (19

T 4 - c 3 -
2 % pl2ym(1— y1) ]+ (1-p)(1- v%2>+2:—m+p§ 2(1-75)?

Formula in Eq(19) illustrates the two-temperature behav-  In Fig. 2 the ratio of the temperatures of the two species is
ior of an inelastic mixture subject to external driving. Notice plotted in the case of an asymmetry in the restitution coeffi-
that the temperature ratio in the driven case is different frontients parametrized by the formg,=r1;—x with ry,=(r,;
the corresponding quantity in the cooling undriven case, fortr11)/2, for p=1/2, identical masses and three different val-
the same model system. In the undriven case we found thates of the coefficient; as shown in figure. In Fig. 3 we
the homogeneous cooling state was characterized by two diflisplay the same quantity as a function of concentratitor
ferent exponentially decreasing temperatures, but whose ralifferent choices of the other parameters. One sees that the
tio was constant. However, no simple relation exists between
the ratio relative to the two cases, on account of the fact that e e :
the energy exchanges involved are rather different. In the
presence of a heath bath the inelastic mixture displays the
two-temperature behavior already reported in the free cool-
ing casg4,17] and in experimentf2]. This feature seems to
be a general property of inelastic systems. In Fig. 1 we dis-
play the temperature ratio as a function of the mass ratio
for two different values of the inelasticity. Notice that the
temperature of the heavier component is lower than the one
of the lighter species. Finally we notice that in the cooling
case the temperature ratio was a increasing functiog, of
while in the present model it is a decreasing function of the
same variable. Such an effect depends crucially on the cho-
sen form of the heat bath. In Appendix B we discuss another F|G. 1. Temperature ratio as a function of the mass ratio for
choice of the heat-bath parameters that makeéT, an in- different choices of the inelasticity parameter, for0.5, andr;;
creasing function of. =r,,=r1,=r=0.95(solid line) andr =0.5 (dashed ling

— 1,,=1,,=1,=0.5
—- I =T,=T,,=0.95

011301-4



STEADY-STATE PROPERTIES OF A MEAN-FIELD . .. PHYSICAL REVIEW B6, 011301 (2002

13 — T T T T models with vanishing viscosity I{=0) should display
Gaussian-like tails. However, this prediction is in contrast
—r1,=0%9 ] with the argument, employed by Ernst and van Noije in the
ok e 1 =09 i case of IHS, which consists in estimating the tails of the
""""""""""""""" - =04 distribution by linearizing the master equatié® by ne-

T/T, | ] glecting the gain term. This assumption simplifies the analy-

sis and allows us to reach the conclusion that the velocity
L= 7 distribution for largev should vanish as

o ] lim P(v)xexp—v/vg), (20

v— ™

T, /T
= with v3=D .. Clearly such a result is in sharp contrast with

FIG. 2. Temperature ratio as a function of the asymmetrythe result of Ref[7] and seems to indicate that the Sonine
r,,/ri for p=0.5, ¢=1, and different choices of the inelasticity expansion does not reproduce faithfully the high-velocity
parameter,;, from top to bottom this is respectively 0.99, 0.9, 0.4 tails in the case of Maxwell models with vanishing viscosity.
(line). The test of the limi(20) will be shown in Sec. VI, where we

illustrate the results of our numerical simulations.
variation of T, /T, is much smaller than the corresponding  On the other hand, the same kind of asymptotic analysis
variation with respect to the mass asymmetry shown in Fig. kketched above, allows us to conclude that the presence of a
in agreement with the experimental observation of R&f.  viscous damping is the redeeming feature that renders con-
It seems reasonable to conclude that the mass asymmetry\ergent the Sonine expansion and the associated Gaussian
the larger source of temperature difference between the twils. In fact, with a finite value oF the asymptotic solution
components. is of the form

H 2
IV. VELOCITY DISTRIBUTION FUNCTIONS lim P(v)cexp(—Cv?). (21)

v
An interesting aspect of granular systems concerns the
nature of the single particle velocity distributions. The in-  We shall test such a prediction in the remaining part of
elasticity, in fact, causes marked departure® gfv,t) from  this section and study the velocity distributions of the indi-
the Gaussian form which characterizes gases at thermal equiidual species wheh # 0 by constructing the solution to the
librium. In undriven gases these deviations are particularlymaster equation using the Sonine polynomial expansion
pronounced and one observes inverse power law highmethod, one of the traditional approaches to the solution of
velocity tails both in gases of pseudo-Maxwell moleculesthe Boltzmann equatiof20].
[17] and in IHS[18]. In the driven case, i.e., in systems  We shall also investigate whether the two partial distribu-
subject to Gaussian white noise forcifgimilar to that rep- tions can be cast into the same functional form upon rescal-
resented by Eq2) with I'=0] exponential tails of the form ing the velocities with respect to the partial granular thermal
exp(-v®?) have been predicted theoretically in inelastic velocity, in other words if it is possible to have a data col-
hard-sphere model§18] and tested by direct simulation lapse for the two distributions.
Monte Carlo of the Enskog-Boltzmann equatidr®]. Have We shall first obtain the steady-state values of the first
these non-Gaussian tails a counterpart in Maxwell models@ight moments as illustrated in the Appendix and then com-
Ben-Naim and Krapivsky7] on the basis of a resummation pute the approximate form of the distribution functions by
of the moment expansion concluded that the scalar Maxwekssuming that these are Gaussians multiplied by a linear
combination of Sonine polynomials.

I Let us begin by writing the following Sonine expansion of
: ] the distribution functions:
95} 1 <
i f (c)=—=e |1+ >, a’S,(c?)|, (22
» Jn =
i Ny ] wheref ,(c) is the rescaled distribution defined by
ossl fo(C)=2u5P,(v) (23)
T R—Y T T E—T

and c?=v2/2u%. The expansion gives the distributions in
FIG. 3. Temperature ratio as a function of the molar fracgion terms of the coefficientsa; of the Sonine polynomials

for different choices of the inelasticity parameter-ry;=r,,  Sn(C?). In practice, one approximates the seri2g) with a

=r,,, and of the mass ratiof. finite number of terms. Since the leading term is the Max-
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FIG. 4. Second coefficient of the Sonine expansgnfor each
component as a function of the mass rafio m;=1 and forp
=0.5 andr;=r»=r,,=0.5. We have also fixed L= r,,=200
and .= 25.

wellian, the closer the system is to the elastic limit, the less a
terms suffice to describe the state. The expression of the first

polynomials is

So(c?) =1, (24a
Si(c?)=5—c?, (24b)
3 3 1
2N _ _ 2, A4
S,(c?) 8 20 +2c, (240
5 15 . 5 1
2 Y Y2, .4 .6
S;(c9) 16 8c+4c 6C’ (244d)
35 35 . 35 7 1
Sy(€?) = 55— —RC*+ == b+ 55cB (240

~128 16°  16° 12" ' 24

In order to obtain the firsti valuesay,, we need to com-
pute the rescaled momens") , of the distribution functions

up to order Zn. These moments are evaluated in Appendix
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0.05 rrr e e

\. —— Component 1
N ---- Component 2

1....2....3....4....5.. .6....7....8....9....10

FIG. 6. Fourth coefficient of the Sonine expansin for each
component as a function of the mass ratid’he remaining param-
eters are as in Fig. 4.

o (5n(c))a
n— Nn .

Equation(25) can be proved by imposing the consistency
condition

(25

(c™,= f:dcc“fa(c) (26)

in conjunction with the orthogonality property of the Sonine
polynomials,

o 1 )
Jw—ﬂ_ec Sn(Cz)Sm(Cz):Nnam,m (27)

where),, is a normalization constant. Notice that in order to
obtain our results we have not assumed weak inelasticity,
therefore these hold for any value of the restitution coeffi-
cients.

The coefficientsay, up to the fourth order in terms of the
rescaled moments read

by means of a straightforward iterative method. At the end,

knowing the rescaled moments, one obtains the following

relation for the coefficients:

0.02 e
0.01F
of
a, [
-0.01¢ ,-'. —— Component 1
[ I." .=~ Component 2
0.02f/ 7 .
| | | | | | 1 1

FIG. 5. Third coefficient of the Sonine expansiag, for each
component as a function of the mass ratid’he remaining param-
eters are as in Fig. 4.

ag=0, (283
4
as=|1-4(c?,+ §(c4>a : (28b)
8
ag: 1_6<Cz>a+4<c4>a_ 1_5<06>a ) (280
25| L 8(¢%), + B(EY0 20(C)art 5x(Ea .
(28d

In Figs. 4—6 we display the behavior of the Sonine coef-
ficients for both components in the case of equal restitution
coefficientsr =0.5 as a function of the mass ratio.

In Figs. 7-9 we illustrate the variation of the Sonine co-
efficients for the two components as a function of the inelas-
ticity for two different values of the mass ratig=1 and{
=2. Notice that the coefficients are monotonic functions of
the inelasticity as already noticed in pure syst¢ify.

In Fig. 10 we show the distribution functions for the
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FIG. 7. Second coefficient of the Sonine expansignfor each FIG. 9. Fourth coefficient of the Sonine expansay for each
component as a function of the inelasticity=r;;=r,,=r,,, for ~ component as a function of the inelasticity=r;,=r=r;,, for
p=0.5 andm;=1 and{=2 and{=1. The remaining parameters P=0.5 andm;=1 and{=2 and/=1. The remaining parameters
are as in Fig. 4. are as in Fig. 4.

heated system with nonvanishing viscosity. The tails become (i) Time is discretized, i.et=nXdt.
fatter with increasing order of the approximation, i.e., the (ii) Update all the velocities to simulate the random forc-
high-energy tails are overpopulated. Moreover, one sees théitg and the viscous damping,
whenp=1/2 and the restitution coefficients are all equal the
species with the larger tails is the lighter. On the other hand, , =p¥(t)e” Wt (T (1—e D)
for a system with the same masses, but different restitutiof’ (trdn=vi()e” T+ VTp(1-e DIV,
coefficients, the more elastic species displays the larger tails.
We also show the numerical data obtained by simulating thevhereW(t) is a normally distributed deviate with zero mean
the dynamics. The agreement is quite satisfactory and valiand unit variance.
dates the approximation method employed. (iii ) Choose randomli}N(dt)/(27.) pairs of velocities and

On the other hand, it is also evident, that the two distri-update each of them with the collision ru. In this way a
butions fail to collapse one over the other after the rescalingnean collision timer, per particle is guaranteed.
of the velocities. This fact is consistent with the different  (jv) Change the time counterand restart fronii).
values assumed by the coefficieafsandaZ . However, this In other words, at every step each particle experiences a
effect is rather small and can be appreciated only by studyingGaussian kick thus receiving energy from the bath, whereas
the high-velocity region of the distribution functions. it dissipates energy by collision and by damping. For ex-
ample, by choosinglt=1, m;/T"=7,;,=200, and7,=25,
we obtain that each particle in the average experiences 25
Gaussian kicks between two successive collisions and that

To investigate the validity of the previous results and inthe resulting average kinetic energy is stationary. In order to
particular to test the convergence of the Sonine expansion icompare our numerical simulations with the theoretical pre-
different situations we shall present in this section numericatlictions we fixed the temperature of the bath toTee=1,
results obtained by simulating an ensembleNoparticles i.e., choserD=TI". The results of such simulations are pre-
subject to a Gaussian forcing, viscous friction, and inelastiGented in Fig. 10 and show a very good agreement between

collisions. the theory and the simulation.
The scheme consists of the following ingredients,

(29

V. NUMERICAL SIMULATIONS

: : i : : LT L B e L
ok T — o=1 (Theory)

L g 10»1= -- 0=2 (Theory)

L0.01F E - Gaussian
L [ o o=1 (Simulation, t=1000)
002k ',/‘:, 102 3 o o=2 (Simulation, t=1000)
2 00877 — W
0.04 -=-= {=2, Component 1 o [

L --- {=2, Component 2 10*F 3
-0.05 B E E
-0.06] . 10°¢ 3
_007- . 1 . 1 . 1 . 1 . ] 10-6-....I.... Ll N

0 02 04 B 0.6 0.8 1 1 1.5 2 2.5 c 3 35 4 4.5

FIG. 8. Third coefficient of the Sonine expansiag, for each FIG. 10. Rescaled distribution functions for the two components
component as a function of the inelasticity=r;=r,,=rq,, for for a model system characterized byy=1, m,=0.5 and equal
p=0.5 andm;=1 and/{=2 and{=1. The remaining parameters inelasticitiesr=0.5, T,=1 and the remaining parameters as in
are as in Fig. 4. Fig. 4.
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10’ T T T o e ey The distributions were obtained by computing exactly the
Simulati =0 B . . .
o Smlation (3000 N moments up to the eighth order and then imposing that the
1078 T cheory (steady value) corrections to the Maxwell distribution stemming from the
-~ Exponential Tail ¢ ***[] inelasticity are Gaussians multiplied by a linear combination

E of Sonine polynomials with amplitudes determined self-
] consistently.
3 The model predicts a steady two-temperature behavior
] that is in qualitative agreement with existing experimental
\ 3 results. The granular temperatures can be obtained by very
3 R simple algebraic manipulations for arbitrary values of the
107 e e e control parameters.
By numerical simulations we demonstrated that the veloc-
FIG. 11. Rescaled distribution functions for a one componentty distributions are well described by our series representa-
system p=1) with vanishing viscosity =0), D=0.0008,r tion in the case of systems in contact with a bath at finite
=0.5, and7.=250. We show the initial Gaussian distribution ( temperaturel},, whilst the series expansion breaks down in
=0) and the asymptotict &3000) stationary distribution. Notice the case of systems in contact with bath at infinite tempera-
the presence of high-velocity tails. For the sake of comparison weyre j.e., with zero viscosity.
report the theoretical estimate of the distribution obtained by means \y/hat can be learned from such a simple model of granu-

of the Sonine expansion. lar mixture? Besides obtaining a global picture of the behav-

h h b h . ior of the system with a minimal numerical effort both in the
On the contrary, the agreement between the Sonine expaggjing and in the driven case, the model displays the novel

sion and' the simulation is not completgly sapsfactory Wh,er}eature of two different distribution functions, which remain
we consider a system subject to a white noise acceleratiogjigerent even after rescaling by the associated partial granu-
but without viscous friction, a dr|V|_ng proposed by_ SOME |ar temperatures. Of course the detailed form of the probabil-
authors [21,23. This can be considered as the limit . \eiocity distributions are strictly model dependent, i.e.,
—0, Ty,—, keeping constanD =T,I", in the model de- yoeng on the assumption of a constant collision rate inher-
fined by Egs.(8): note that in this case the elastic limit ot iy Maxwell models. The vectorial character of the veloci-
—1 cannot be performed without taking also the lidit  tjes could be included at the cost of a moderate additional
—0 as discussed at the beginning, in order to avoid a diverafort. A more interesting and difficult problem would be that
gence of kinetic energy. For the sake of simplicity, we Simu-of including in the mixture case a collision frequency pro-
lated a one-component systep1 andm=1) with van- portional to an appropriate function of the kinetic granular
ishing viscosityl'=0, butD=0.000 8,7.=250, andr =0.5. temperatures, generalizing the work of Cercigridra].

Such a choice yields a granular temperatlige= 16/15, as Finally we might ask the general question of the meaning
predicted by our formula18). Notice that in this case the of granular temperature. Our findings seem to indicate that it
heath-bath temperature diverges and the gas does not havesasti|| the main statistical indicator of the model granular
proper elastic limit, since all moments diverge wher-0.  gystem we studied. However, with respect to the temperature
We observed that the tails of the velocity distribution func-q 5 perfectly elastic system it fails to satisfy a very basic

tion are strongly non-Gaussian. These decay as a simple exsquirement which is known as the zeroth principle of ther-
ponential as predicted by our simple analysis of the precedydynamics.

ing section. In Fig. 11 we report our simulation results
against the Sonine approximation. We observe that the theo-
retical estimate, in spite of incorporating the exact values of
the first eight moments, deviates from the numerical data in
the large velocity region. In particular the Sonine expansion This work was supported by Ministero dell'lstruzione,
can only give Gaussian tails, whereas the simulation indidel’Universita e della Ricerca, Cofin 2001 Prot.
cates a slower exponential decay. The reason for such a digo01023848.

crepancy is to be ascribed to the slow convergence of the

expansion wher'=0.
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APPENDIX A

VI. DISCUSSION AND CONCLUSIONS . -
In the present Appendix we sketch the derivation of the

To summarize we have studied the behavior of a modelyarious moments of the distribution functions. By equating
which perhaps represent the simplest description of a drivethe equal powers df in the master equatiofll) we obtain
inelastic gas mixture, namely, an assembly of two types o& set of linear coupled equations for the moments. The
scalar pseudo-Maxwell molecules subject to a stochastimethod of solution is iterative, because the higher moments
forcing. We have obtained the velocity distributions for arbi- depend on the lower moments. Thus, for instance, to evaluate
trary values of the inelasticity, of the composition and of thethe lowest-order moments of the distribution functions we
masses by solving the associated Boltzmann equation hyust solve the following equations for the steady-state value
means of a controlled approximation, the moment expansiorof the fourth moments:
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(dfY =470 uD+dP P+ agy(ub) >+ agusud?) a1,=6(1-p)[(1— 712171212, (ASC)

12D 7opafV=0, (A12) 801=6p[ (1~ 720 721l (A5d)

Finally, the coefficients;; are given by
b11=15p¥5(1— 1) [ i+ (1= 71)?], (A6

bao=151—P) ¥aA 1= 720 Yoot (1= 720,

(85— AT 570) @+ df D+ ago pf?) *+ agaufuf?
+12D,7,u$?=0. (Alb)

In turn, the sixth moments are obtained by solving

(A9 =BT 70) )+ AP+ baapus )+ byl (A6b)
+ D1 g+ 3001 7o =0, (A22) b= 151-p[(1- 7)1 71al%  (A6O)
(6) (2) 4 g®) (1) 2 ,,(2) (1) (2) ~ ~
(Ao = BT ae) g ™ dai'pug ™+ Dzgied ™+ boan bi=151-pL(1-7) W2l (A6d)
+b5uPuP+ 30D, 7 uP=0. (A2b) ~ i~ 4
_ _ _ D21=15p[ (1= y20) ][ ¥21l" (AGe)
Finally the eight moments are the solutions of
, b2, =15p[ (1 — Y1) ][ Y2112 (A6f)
(df—8T 7o) g+ AP )+ cau§ g+ e1y(u§)? 2= 159l (1=72) [ 72l
/ " andc;; are
+ 01 ufd+ a2+ L) j
+56D, 7ol =0, (A3a) c11=28p¥5(1- y1) [ ¥t (1-y1)*l,  (A73)
ro_ 4
()~ 8T 570) )+ AP D+ o Pu@+ el uP)? C11=70p¥iy(1= 72", (ATb)
e g+ ol + o) co=281-PI(1- 7Tyl (ATO
+56D 2)=0, A3b ) - -
27eht (A3D) STl PI(L-T (Tl (ATd
where the general form of the coefficierts is given by 5 5
. . , Cp=281-pl(1-7) {722l (ATe)
dfY = — 14 p[ yir+ (1= 710"+ (1= ) ¥22l”, . . ,
(Ada) Coo=28(1—p) vol 1= ¥22) T ¥+ (1= ¥3)) ], (ATf)
dfY =(1-pI(1=7y1o)]" (A4b) Co2=T0(1—P) ¥3d 1= v20)*, (A79)
dSY=— 1+ (1= p)[ o+ (1= 722"+ p[ 2a]", Co1=280[ (1= 750 1 ¥21]% (A7h)
(A4c)
Chy=T0p[ (1= y20) 1T y21l*, A7i
and the coefficients;; are given by C51=28p[ (1~ 720 12 724]% (A7)
a;;=6p[ yi(1—v10)1%, (A5a) Itis useful to consider the behavior of the moments in the
one-component case. The major simplicity of the resulting
ay=6(1—p)[vox(1— ¥20) 1%, (A5b)  formulas allows us to obtain explicit expressions
|
_ D7, A8
MZ_FTC+’Y(1_7), ( a-)

12D 7opupt+ 692(1— 7))
pa=————— o (A8D)
AT 7.+ 1—y"—(1—7)

30D 7epq+ 15y (1= y)2(y?+(1—y)? Hatts
M= (A8c)
6l'r.+1— y (1- 'y)
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56D et 28Y7(1— 1)Ly + (1= 9) Ipopet 70V (1= 9)'u]

_ A8d
He 87l +1— 98— (1— )8 (A8d)

APPENDIX B ing and the stochastic force were the same for both compo-

Notice that, in order to reduce the number of free param-nems’ In Eq(B1) the viscous force and the noise variance

eters, we have assumed the constaftsand I', which are proportional to the mass of each species.

; . X X - Although Egs.(5) and (B1) admit the same equilibrium
specify the |nterac_t|on$ W't.h the bat_h to be Species Ir.]deendistribution functiong6), the relaxation processes are differ-
dent. Such a choice implies that in the elastic limit both

. ent. In addition, the presence of collisions will generate dif-
components reach the same granular temperature given lf

the temperature of the batfi.  However. such a require- erent results, in particular different temperature ratios.
P b ' q In fact, the Fokker-Planck foP,(v,t) for this second

ment could also be satisfied by a different procedure. Thi%
- X . . ase reads
second possibility consists of assuming the equation of evo-
lution in the absence of collisions to be given by KT
P (v, t)=kd, [P (v,t)]+ &2Pa v,t). (B2
M, dwi ()= —myxv(t)+ V2m T, W(t),  (B1) tPal wLoPav.b] m, * (

whereW(t) is a Gaussian noise with zero average and vari- For this alternative choice we only give the temperature
anced(t—t'). ratio and comment that it is a monotonically increasing func-

Thus in the case considered in Sec. Il the viscous dampion of £ in contrast with the behavior illustrated in Sec. IlI.

Ti_ (1-p)[272d1- y22 ]+ P(1—¥3) + 2k 76+ (1-p) *(1—y1)?
T2 pl2y1(1=y1)]+(1-p)(1=¥i) + 2k 7+ P (1= 207

The formula(B3) shows that the dependence on the mass ratio is much weaker than in the case considered in Sec. lll. The
growth of T, /T, with ¢ is similar to that of the homogeneous cooling, although no simple relation exists between the two
cases.

Other authors observed the same qualitative increasing f@&3)dHowever, only the experimental conditions one intends
to mimic can resolve the ambiguity relative to the choice of the heat-bath parameters.
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