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Microscopic pressure tensor for hard-sphere fluids
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The microscopic pressure tensor, which is not uniquely defined, is analyzed for a uniform hard-sphere fluid
in Cartesian and spherical coordinates. Two popular definitions, one due to Irving and Kirkwood~IK ! @J. H.
Irving and J. G. Kirkwood, J. Chem. Phys.18, 817 ~1950!# and the other due to Harasima~H! @A. Harasima,
Adv. Chem. Phys.1, 203~1958!#, were used in this work. The IK definition is found to give the same ensemble
average of the local pressure in Cartesian and spherical coordinates for a homogeneous hard-sphere system.
The pressure obtained from the H definition gives, on the other hand, different results in the two coordinate
systems. In Cartesian coordinates, the H pressure is identical to the IK pressure, but in spherical coordinates,
the pressure depends onR ~the distance from the origin!. Therefore the H definition does not give a proper
pressure tensor.
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I. INTRODUCTION

Computation of the microscopic pressure tensor,P, in a
system of atoms or molecules is not trivial due to its ambi
ous definition@1–3#. Schofield and Henderson showed th
this ambiguity may be expressed as an arbitrary choice o
integration contour,Ci j , connecting the positions of two pa
ticles, r i and r j @3#. They qualified their statement with th
reservation that further physical conditions might exi
which would lead to a restricted choice of contours. Wajnr
et al. @4# claimed to have found such additional criteria th
uniquelydefineP. Their main argument was thatP must be
invariant with respect to particle labeling and the origin o
Cartesian coordinate system in homogeneous fluids. Th
certainly a valid argument, but it is not clear why it leads
a unique definition ofP and how it applies to other coord
nate systems. Whether additional criteria that uniquely de
P exist or not is, in our opinion, still an open question.

A somewhat simpler question is whetherany contourCi j
is valid. Two choices were used in computer simulations
Thompsonet al. @5#: The Irving-Kirkwood ~IK ! definition
@1# and the Harasima~H! definition @2#. Based on the results
it was not possible to justify a preference of one above
other. Blokhuis and Bedeaux@6# subsequently showed tha
the H definition violates microscopic sum rules, whereas
IK definition does not.

We show in this paper that the H definition leads to
pressure,p5 1

3 Tr P, that is not uniform for a homogeneou
hard-sphere fluid, as it should be. Our result corroborates
of Blokhuis and Bedeaux, and it sheds some light onwhy the
H defintion fails.

II. THE MICROSCOPIC PRESSURE TENSOR

The pressure tensor,P(R,t), is given at some point (R,t)
in space and time by the rate of change of the momen
density,J(R,t) @3,7–9#,
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]t
52“•P~R,t !. ~1!

The ambiguity arises because any termdP(R,t) with the
property“•dP(R,t)50 may be added toP(R,t) without
changing the momentum conservation. Schofield and He
erson showed that this ambiguity is equivalent to an am
guity in the contour integral shown in Eq.~2! for a stationary
state@3#:

Pi j
ab~R!52E d3rE

Ci j

dl i j
b f i j

a d~R2r i2 l i j !d~r2r i j !

52
u8~r i j !

r i j
E

Ci j

dl i j
b r i j

a d~R2r i2 l i j !, ~2!

where Pi j
ab(R) is the configurational contribution from th

pair i , j to thea,b component of the pressure tensor atR,

Pab~R!5n~R!kBTdab1
1

2 K (
i

(
j Þ i

Pi j
ab~R!L . ~3!

The ambiguity is thatCi j may be any line fromr i to r j ~the
positions of particlesi andj, respectively! along which thea
component of the force,f i j

a , betweeni and j is evaluated. In
Eq. ~2!, l i j is a point on the contour,l i j

b is theb component of
l i j , r i j

a is the a component of r i j 5r j2r i , r i j 5ur i j u,
d(•••) is the Dirac delta function, andu8(r ) is the deriva-
tive of the interparticle potential with respect tor. In Eq. ~3!,
n(R) is the number density atR, kBT is Boltzmann’s con-
stant multiplied by the temperature,dab is the Kroneker
delta function, and̂•••& denotes an ensemble average. T
Pi j

ab defined by Eq.~2! is slightly different from that of
Schofield and Henderson in thatf i j

a is here part of the inte-
grand in the line integral, whereas in Ref.@3# it was not.
Since f i j

a varies along the contour in spherical coordina
~although f i j itself is constant!, this consequence of th
spherical coordinate system must be taken into account.

Currently, three methods are being used to determine
local pressure from the intermolecular forces in hetero

n
.
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neous systems;~1! Schofield and Henderson’s contour int
gration method@3#, ~2! the method of planes~MOP! by Todd
et al. @7#, and ~3! the thermodynamic method by Bardou
et al. @10#. Whereas methods 1 and 2 give the mechan
pressure tensor, method 3 gives the local pressure. The
two methods suffer from the~inevitable! ambiguity dis-
cussed here, whereas the thermodynamic method does
give the full tensorial properties of the pressure. The f
tensor is needed, e.g., in calculations of the microscopic
flux. The status of the local pressure is therefore not enti
satisfactory.

In the present work, we discuss the choice of conto
used in method 1 for a homogeneous hard-sphere fluid.
are only concerned with the diagonal elements ofP. The
discussion is also relevant for the MOP, which impleme
the IK contour~the IK gauge! @7#.

III. THE IRVING-KIRKWOOD AND HARASIMA
INTEGRATION CONTOURS

The IK contour for a particle pairi , j is defined as the
straight line from i to j. The definition of the H contour
depends on the choice of coordinate system, which in t
depends on the symmetry of the system. Suppose the sy
has a surface of constant density,n(R)5 const @11#. It is
natural to choose Cartesian coordinates for planar surfa
spherical coordinates for spherical surfaces, etc. Conside
surface on whichr i is located, and the normal fromr j onto
this surface. Letr' be the location of this normal’s root. Th
H contour is defined as the line fromr i along the surface to
r' and fromr' along the normal tor j ~see Fig. 1!.

In Cartesian coordinates, we consider the pressure te

FIG. 1. The Irving-Kirkwood~left! and Harasima~right! defini-
tions of the integration contourCi j in Cartesian~top! and spherical
~bottom! coordinates. The positions ofi and j are the same in al
cases.
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P~x!5PN~x!@ êxêx#1PT~x!@ êyêy1êzêz#, ~4!

whereêa is the unit vector ina direction and the surface i
located atx5 const. It is assumed here that all possib
surfaces are normal to thex axis and have the same areaA,
andPi j

N(x) andPi j
T (x) are the normal and transverse comp

nents, respectively, of the pressure tensor at some distanx
from the planex50.

The contribution to the pressure from the interaction b
tween i and j can be determined in Cartesian coordina
with the result@7,12#

Pi j
N~x!52

1

A

uxi j u
r i j

u8~r i j !h~x;xi ,xj ! ~5!

for both the IK and H contours and

Pi j
T ~x!55 2

1

A

~r i j
a !2

r i j uxi j u
u8~r i j ! h~x;xi ,xj ! ~ IK !

2
1

A

~r i j
a !2

r i j
u8~r i j !d~x2xi ! ~H!,

~6!

wherea5y or z. Theh(q;a,b) is defined by

h~q;a,b!5QS q2a

b2aDQS b2q

b2aD

5
0 for

q

b2a
,

a

b2a
or

q

b2a
.

b

b2a

1 for
a

b2a
,

q

b2a
,

b

b2a
,

~7!

whereQ(•••) is the Heaviside step function.
In spherical coordinates, we consider the pressure ten

P~R!5PN~R!@ êRêR#1PT~R!@ êuêu1êfêf#, ~8!

where the surface is located atR5 const. The normal~ra-
dial! and transverse~angular! components for the pairi , j are
given by

Pi j
N~R!55 2

m~R!

4pR3
u8~r i j !ci j ~IK !

2
u8~r i j !

4pR2

r j•r i j

r j r i j

r j2r i

ur j2r i u
h~R;r i ,r j ! ~H!

~9!

and
3-2
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Pi j
T ~R!55 2

m~R!

8pR3
u8~r i j !ci j F S R

ci j
D 2

21G ~IK !

2
u8~r i j !

8pR2

~r i1r j !

r i j
S 12

r i•r j

r i r j
D r jd~R2r j ! ~H!.

~10!

Here,m(R) is the number of intersections between the s
face of a sphere of radiusR and the liner i1lr i j (0,l
,1) and ci j is half the length of the chord given by th
intersection between the sphere’s surface and the linr i

1lr i j (2`,l,`). We note thatPi j
N(R) is of orderR22

for both IK and H contours in spherical coordinates.~For the
IK contour,ci j R

23 is of orderR22.!
The IK choice for Pi j

T (R) diverges when the liner i

1lr i j becomes a tangent to the surface of the sphere. H
ever, the ensemble average,^Pi j (R)&, or the coarse-grained
values of the pressure tensor, i.e.,

Pi j 5
3

4p~Rmax
3 2Rmin

3 !
E

Rmin

Rmax
dR Pi j ~R!4pR2 ~11!

do not have this divergence.

IV. THE ENSEMBLE AVERAGE OF THE MICROSCOPIC
PRESSURE TENSOR FOR A HOMOGENEOUS

HARD-SPHERE SYSTEM

The ensemble average in Eq.~3! may be expressed in
terms of correlation functions,

K (
i

(
j Þ i

Pi j
ab~R!L 5E

V
d3r1E

V
d3r2 P12

ab~R!n~r1 ,r2!,

~12!

wheren(r1 ,r2)d3r1d3r2 is the probability of finding a par-
ticle in d3r1 and another particle ind3r2 at the same time
The probability density is the two-particle correlation fun
tion. For a uniform fluid with spherically symmetric pa
ticles, this density isn(r1 ,r2)5n0

2g(r 12) where n0 is the
uniform one-particle density andg(r 12) is the radial distri-
bution function. Asn(r1 ,r2) in this case depends onr 12
rather thanr1 andr2 independently, Schofield and Henders
concluded that any contourCi j may be used for homoge
neous fluids@3#. This is certainly true for Cartesian coord
nates, with the result

p5
1

3
@PN~x!12PT~x!#

5n0kBT1
2pn0

2kBT

3
s3g~s1 !. ~13!

We shall now reexamine Eq.~12! in spherical coordinates
for the homogeneous hard-sphere fluid. Substitutingr25r1
1r12 and using spherical coordinates centered onr1 gives
for the second integral in Eq.~12!
01120
-

w-

E
V
d3r2P12

N ~R!n~r1 ,r2!

52
n0

2

4pR2E0

2p

dwE
0

`

dr12r 12
2 u8~r 12!g~r 12! f ~r 12!,

~14!

where

f ~r 12!55
m

RE0

p

du sinuAR22r 1
2~12cos2u! ~IK !

E
0

p

du sinu cosv
r 22r 1

ur 22r 1u
h~R;r 1 ,r 2! ~H!,

~15!

u is the angle betweenr1 and r12, and v is the angle be-
tween r2 and r12. The general result for
*Vd3r2P12

N (R)n(r1 ,r2) is rather complicated and involve
integrals of the formg(n)(a,b)5*a

bdr12r 12
n u8(r 12)g(r 12).

Considerably simpler forms are found for the homogene
hard-sphere system where the integralsg(n)(a,b) reduce to
simple functions of the contact value ofg(r 12), g(s1).
When these results are substituted into Eq.~12!, the final
result for the homogeneous hard-sphere system is

PN~R!5n0kBT1
2pn0

2kBT

3
s3g~s1 ! f N~R/s!, ~16!

where f N(R/s)51 for the IK contour and

f N~R/s!55 2
1

5 S R

s D 3

1S R

s D for R,s

12
1

5 S s

RD 2

for R.s

~17!

for the H contour. The corresponding result forPT(R) is

PT~R!5n0kBT1
2pn0

2kBT

3
s3g~s1 ! f T~R/s!, ~18!

where f T(R/s)51 for the IK contour and

f T~R/s!5H 2
1

2 S R

s D 3

1
3

2 S R

s D for R,s

1 for R.s

~19!

for the H contour. The results forPN(R) and PT(R) are
illustrated in Fig. 2. We note that the two pressure com
nents satisfy the condition of mechanical equilibrium,

PT~R!5PN~R!1
R

2

dPN~R!

dR
~20!

for both contours.
The local pressure may now be found as
3-3
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p5
1

3
@PN~R!12PT~R!#

5n0kBT1
2pn0

2kBT

3
s3g~s1 ! f ~R/s!, ~21!

where f (R/s)51 for the IK contour and

f ~R/s!55 2
2

5 S R

s D 3

1
4

3 S R

s D for R,s

12
1

15S s

RD 2

for R.s

~22!

FIG. 2. The normal components of the Irving-Kirkwood an
Harasima pressure tensors for a homogeneous hard-sphere flui
packing fraction ofh50.4.
er.

y

R

01120
for the H contour. It appears that the IK contour gives
constant pressure as one should expect, whereas the H
tour gives a pressure that tends to the ideal-gas value,
p(R)→n0kBT asR→0.

The reason for the unphysical behavior of the H definiti
is that the ensemble average of the functionh(R;r i ,r j )→0
whenR→0. This feature stems from the condition that o
of the particles must be inside the surfaceR5const in spheri-
cal coordinates. Because the particle insideR becomes more
and more confined asR→0, its local surroundings~i.e.,
within the range of the potential! are not uniform even in a
homogeneous fluid. The argument used by Schofield
Henderson is therefore not valid in this limit.

V. CONCLUSION

We have shown that the IK contour gives a uniform pre
sure for the homogeneous hard-sphere fluid in spherical
ordinates. This is not the case for the H contour, where
configurational parts ofPN(R) andPT(R) both tend to zero
asR tends to zero. The H definition is therefore not a phy
cally valid pressure tensor.
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