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Microscopic pressure tensor for hard-sphere fluids
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The microscopic pressure tensor, which is not uniquely defined, is analyzed for a uniform hard-sphere fluid
in Cartesian and spherical coordinates. Two popular definitions, one due to Irving and Kirkikodd. H.
Irving and J. G. Kirkwood, J. Chem. Phyk8, 817 (1950 ] and the other due to Harasiniid) [A. Harasima,
Adv. Chem. Physl, 203(1958], were used in this work. The IK definition is found to give the same ensemble
average of the local pressure in Cartesian and spherical coordinates for a homogeneous hard-sphere system.
The pressure obtained from the H definition gives, on the other hand, different results in the two coordinate
systems. In Cartesian coordinates, the H pressure is identical to the IK pressure, but in spherical coordinates,
the pressure depends &n(the distance from the originTherefore the H definition does not give a proper
pressure tensor.
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I. INTRODUCTION JI(R,1)
=~ VPR 1)

Computation of the microscopic pressure ten$qrin a
system of atoms or molecules is not trivial due to its ambigu-The ambiguity arises because any tefi(R,t) with the
ous definition[1-3]. Schofield and Henderson showed thatronerty V. 5P(R,t)=0 may be added t®(R,t) without
this ambiguity may be expressed as an arbitrary choice of ag3nging the momentum conservation. Schofield and Hend-
integration contourC;; , connecting the positions of two par- o500 showed that this ambiguity is equivalent to an ambi-

ticles, r; andr; [3]. They qualified their statement with the . ; ; ;
reservation that further physical conditions might exist,gtuaig[lg].the contour integral shown in E¢2) for a stationary

which would lead to a restricted choice of contours. Wajnryb

et al. [4] claimed to have found such additional criteria that

uniquelydefineP. Their main argument was th& must be Pﬁ-‘ﬁ(R)z —f d3rf dlﬁfi‘}ﬁ(R—ri—Iij)ﬁ(r—rij)
invariant with respect to particle labeling and the origin of a Cij

Cartesian coordinate system in homogeneous fluids. This is

certainly a valid argument, but it is not clear why it leads to _ u’(rij) dIEre S(R—r— 1) )

a unique definition of and how it applies to other coordi- ry Jo; Y v

nate systems. Whether additional criteria that uniquely define

P exist or not is, in our opinion, still an open question.  where P#(R) is the configurational contribution from the
A somewhat simpler question is whethaty contourC;;  pairi,j to the a, 3 component of the pressure tensorRat

is valid. Two choices were used in computer simulations by

Thompsonet al. [5]: The Irving-Kirkwood (IK) definition 1

[1] and the HarasiméH) definition[2]. Based on the results, P*#(R)=n(R)KgT 8,5+ §< > > PﬁB(R)>- ()
it was not possible to justify a preference of one above the b

other. Blokhuis and Bedeau®] subsequently showed that

the H definition violates microscopic sum rules, whereas the __... - : . .
IK definition does not. %osmons of particles andj, respectively along which thex

We show in this paper that the H definition leads to acomponent of the forcej, betwee/gi.andj is evaluated. In
pressurep=1Tr P, that is not uniform for a homogeneous Ed-(2), lij is a point on the contout;; is the 8 component of

hard-sphere fluid, as it should be. Our result corroborates thé , j iS the @ component ofrjj=r;—r;, rjj=|rj],
of Blokhuis and Bedeaux, and it sheds some lightutythe (- - -) is the Dirac delta function, and’(r) is the deriva-

The ambiguity is thaCj; may be any line fronr; to r; (the

H defintion fails. tive of the interparticle potential with respectrtoln Eq. (3),
n(R) is the number density &, kgT is Boltzmann’s con-
IIl. THE MICROSCOPIC PRESSURE TENSOR stant multiplied by the temperaturd,; is the Kroneker

The pressure tensd?(R, 1), is given at some pointR,t) delta function, and- - - ) denotes an ensemble average. The

in space and time by the rate of change of the momenturfi]” defined by Eq.(2) is slightly different from that of
density,J(R,t) [3,7-9, Schofield and Henderson in th} is here part of the inte-

grand in the line integral, whereas in R¢R] it was not.
Since fjj varies along the contour in spherical coordinates
*On sabbatical leave from Department of Chemistry, Norwegian(@lthough f;; itself is constant this consequence of the
University of Science and Technology, N-7491 Trondheim, Norway.spherical coordinate system must be taken into account.
Electronic address: bjorn.hafskjold@phys.chem.ntnu.no Currently, three methods are being used to determine the
"Electronic address: t.ikeshoji@aist.go.jp local pressure from the intermolecular forces in heteroge-
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P(x)=PN(x)[&e]+PT(X)[6,6+ e8], (4)

r, i
r wheree, is the unit vector ina direction and the surface is
located atx= const. It is assumed here that all possible

surfaces are normal to theaxis and have the same ar@a
andP i (%) andP j(x) are the normal and transverse compo-
nents, respectlvely, of the pressure tensor at some distance
X from the planex=0.

The contribution to the pressure from the interaction be-
tweeni andj can be determined in Cartesian coordinates
with the resulf7,12]

i
PH(x)——Kﬁu (riph(Xx; x;) 5

for both the IK and H contours and

-
.

\\\\\

1 ( IJ)
T AT u’(rij)) h(xx; %) (1K)
FIG. 1. The Irving-Kirkwood(left) and Harasimaright) defini- PE(X): ) (6)
tions of the integration contouE;; in Cartesiantop) and spherical 1(r .Cf) H)
(bottom coordinates. The positions ofandj are the same in all A u (r”)&(x Xi) (H),

cases.

h = . Theh(q;a,b) is defined b
neous systemg;l) Schofield and Henderson’s contour inte- wherea=y or z Theh(q;a,b) is defined by

gration method3], (2) the method of planedviOP) by Todd

et al. [7], and (3) the thermodynamic method by Bardouni h(q;a,b)=©

et al. [10]. Whereas methods 1 and 2 give the mechanical

pressure tensor, method 3 gives the local pressure. The first

two methods suffer from thdinevitable ambiguity dis- a b

cussed here, whereas the thermodynamic method does not 0 for g or 9 >

give the full tensorial properties of the pressure. The full b-a b-a b-a b-a

tensor is needed, e.g., in calculations of the microscopic heat (7)

flux. The status of the local pressure is therefore not entirely 1 for a q b

satisfactory. b—a b—a b-a’
In the present work, we discuss the choice of contours

used in method 1 for a homogeneous hard-sphere fluid. W\‘f\’/here(-

are only concerned with the diagonal elementsPofThe

discussion is also relevant for the MOP, which implements

the IK contour(the IK gauge [7].

b—q
b—a

q—a

b—a )

--) is the Heaviside step function.
In spherical coordinates, we consider the pressure tensor

P(R)=PN(R)[erér]+ PT(R)[ €€+ 4841,  (8)

Ill. THE IRVING-KIRKWOOD AND HARASIMA .
INTEGRATION CONTOURS where the surface is located Bt= const. The normalra-

dial) and transverséngulaj components for the paitj are
The IK contour for a particle pair,j is defined as the given by
straight line fromi to j. The definition of the H contour
depends on the choice of coordinate system, which in turn

depends on the symmetry of the system. Suppose the system m( R) — = U(r)G (IK)
has a surface of constant densin¢R)= const[11]. It is 4rR3

natural to choose Cartesian coordinates for planar surfaces, pN(R)=

spherical coordinates for spherical surfaces, etc. Consider the . u’(r--) ool e

surface on whictr; is located, and the normal from onto ”2 L) h(R i ry) (H)
this surface. Let, be the location of this normal’s root. The 4mR? Ty Irj— |

H contour is defined as the line from along the surface to ©)

r, and fromr, along the normal ta; (see Fig. 1
In Cartesian coordinates, we consider the pressure tensand
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m(R) | R\? N
- 7TR3U (rij)cij (C_”) _1} (IK) deSrZPlz(R)n(rl,rz)
LR P
_ u,(rijz) (ritry) - ri'r")er‘(R—rj) (H). :_477(I)?2j0 dcpfo dr o 3,u' (1) g(r ) f(ry),
87R Fij rir;
(10 (14)

Here,m(R) is the number of intersections between the sur-Where
face of a sphere of radiuR and the liner;+Arj; (O<A

<1) andc;; is half the length of the chord given by the Tjwdﬁsinex/Rz—rf(l—cosze) (IK)

intersection between the sphere’s surface and the rine RJo

+Arjj (—o<A<®). We note thaIPi“j'(R) is of orderR™2 f(rip=

for both IK and H contours in spherical coordinaté=or the g . fo—ry )

IK contour,c;;R™? is of orderR™2) Jo d03|n0005w|r2_r1| h(Riry.ra) (H),
The IK choice for PE(R) diverges when the line; (15)

+\rj; becomes a tangent to the surface of the sphere. How- )
ever, the ensemble averad®,;(R)), or the coarse-grained ¢ iS the angle between, andry,, andw is the angle be-
values of the pressure tensor, i.e., tween r, and ry,. The general result for
deSrZPTZ(R)n(rl,rZ) is rather complicated and involves
_ 3 e integrals of the formg(™(a,b)=/0drriu’(r12)g(r).
Pij= ﬁj dR R;(R)47R*> (11)  Considerably simpler forms are found for the homogeneous
47 (Rinax~ Rinin) 7 Rmin hard-sphere system where the integgf8(a,b) reduce to
simple functions of the contact value of(r.,), g(o+).
When these results are substituted into ELR), the final
result for the homogeneous hard-sphere system is

do not have this divergence.

IV. THE ENSEMBLE AVERAGE OF THE MICROSCOPIC
PRESSURE TENSOR FOR A HOMOGENEOUS N 23k T ,
HARD-SPHERE SYSTEM PY(R)=ngkgT+ —3 ¢ g(o+)fn(RIo), (16)

The ensemble average in E(B) may be expressed in

: . wherefy(R/o)=1 for the IK contour and
terms of correlation functions,

L)
—=|= —| for
<2 > Pﬁﬁ<R>>=f r. [ o PRI ), 5\0) o v
Ea v v f (Rlo)= 1
(12) n(R/o) L2 (17)
1——(—) for R>o
wheren(ry,r,)d%r,d%, is the probability of finding a par- S\R

ticle in d®r, and another particle id%r, at the same time.
The probability density is the two-particle correlation func-
tion. For a uniform fluid with spherically symmetric par-
ticles, this density isn(r1,r2)=n(2)g(r12) where ng is the PT(R)=nokgT+
uniform one-particle density angl(r,) is the radial distri-
bution function. Asn(r,,r,) in this case depends on
rather tharr; andr, independently, Schofield and Henderson

for the H contour. The corresponding result RF(R) is

2mn3ksT

To3g(o+)fT(R/o), (19

wheref(R/g)=1 for the IK contour and

concluded that any contolt;; may be used for homoge- 1/R\® 3/R

neous fluidg 3]. This is certainly true for Cartesian coordi- 5 ;) + 5(;) for R<o

nates, with the result fr(Rlo)= (19
1 for R>co

1
= =[PN(x)+2PT(x
P 3[ (x) (x)] for the H contour. The results foPN(R) and PT(R) are

illustrated in Fig. 2. We note that the two pressure compo-

2
=nokeT+ anngT o3g(o+). (13) nents satisfy the condition of mechanical equilibrium,
Y R dPY(R)
We shall now reexamine E¢L2) in spherical coordinates P (R)=P%(R)+ 2 dRrR (20)
for the homogeneous hard-sphere fluid. Substitutisgr,
+r4, and using spherical coordinates centeredrprgives  for both contours.
for the second integral in Eq12) The local pressure may now be found as
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for the H contour. It appears that the IK contour gives a
81 /PNaﬂdPT(IK) constant pressure as one should expect, whereas the H con-
tour gives a pressure that tends to the ideal-gas value, i.e.,
6 1 p(R)—ngkgT asR—O0.
im T H) The reason for the unphysical behavior of the H definition
§° 4 N\ is that the ensemble average of the functigik;r;,r;)—0
P whenR—0. This feature stems from the condition that one
5] of the particles must be inside the surfé&e const in spheri-
cal coordinates. Because the particle indtlleecomes more
and more confined aR—0, its local surroundinggi.e.,
0 0 ] 5 3 4 5 5 within the range of the potentijahre not uniform even in a

homogeneous fluid. The argument used by Schofield and
ric Henderson is therefore not valid in this limit.
FIG. 2. The normal components of the Irving-Kirkwood and
Harasima pressure tensors for a homogeneous hard-sphere fluid at a
packing fraction ofyp=0.4. V. CONCLUSION

We have shown that the IK contour gives a uniform pres-
sure for the homogeneous hard-sphere fluid in spherical co-
ordinates. This is not the case for the H contour, where the
configurational parts oPN(R) andPT(R) both tend to zero
asR tends to zero. The H definition is therefore not a physi-
cally valid pressure tensor.

p=5[PR)+2PT(R]

2’7Tn(2)kBT

= +
NokgT 3

ag(o+)f(Rlo), (22

wheref(R/a)=1 for the IK contour and
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