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Features of the extension of a statistical measure of complexity to continuous systems
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We discuss some aspects of the extension to continuous systems of a statistical measure of complexity
introduced by Lo´pez-Ruiz, Mancini, and Calbet@Phys. Lett. A209, 321~1995!#. In general, the extension of a
magnitude from the discrete to the continuous case is not a trivial process and requires some kind of choice. In
the present study, several possibilities appear available. One of them is examined in detail. Some interesting
properties desirable for any magnitude of complexity are discovered on this particular extension.
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I. INTRODUCTION

In recent years, manycomplexity measureshave been pro-
posed as indicators of the complex behavior found in diff
ent systems scattered in a broad spectrum of fields. Som
them come from physics such as the effective measur
complexity @1#, the thermodynamical depth@2#, and the
simple measure of complexity@3#. Other attempts arise from
the field of computational sciences such as algorithmic co
plexity @4,5#, Lempel-Ziv complexity @6#, and e-machine
complexity@7#. Other works try to illuminate this question i
many other contexts: ecology, genetics, economy, etc.,
instance, the complexity of a system based on its diver
@8# and the physical complexity of genomes@9#.

Most of these proposals coincide in using concepts s
as entropy~in physics! or information~in computational sci-
ences! as a basic ingredient for quantifying the complexity
a phenomenon. There is also a general belief that the no
of complexity in physics must start by considering the p
fect crystal and the isolated ideal gas as examples of sim
models with zero complexity. Both systems are the extrem
in an entropy/information scaleand, therefore, some funda
mental ingredient would be missing if one insisted on d
scribing complexity with only the ordinary information o
entropy.

It seems reasonable to adopt some kind of distance to
equipartition, or the disequilibrium of the system, as a n
ingredient for defining an indicator of complexity. Goin
back to the two former examples, it is readily seen that th
are extremes in adisequilibrium scaleand, therefore, dis-
equilibrium cannot be directly associated with complexity

The recently introduced Lo´pez-Ruiz–Mancini–Calbe
~LMC! statistical measure of complexity@10# identifies the
entropy or information stored in a system and its distance
the equilibrium probability distribution~the disequilibrium!
as the two ingredients giving the correct asymptotic prop
ties of a well-behaved measure of complexity. In fact, it va
ishes for both completely ordered and completely rand
systems. Besides giving the main features of an intuitive
tion of complexity, it has been shown that LMC complexi
successfully enables us to discern situations regarde
complex in discrete systems out of equilibrium: one insta
of a local transition to chaos via intermittency in the logis
1063-651X/2002/66~1!/011102~6!/$20.00 66 0111
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map @10#, the dynamical behavior of this quantity in a sim
plified isolated gas@11#, and another example of classic
statistical mechanics@12#.

A possible formula of LMC complexity for continuou
systems was suggested by Lo´pez-Ruizet al. @10#. Anteneodo
and Plastino@13# pointed out some peculiarities concernin
such an extension for continuous probability distributions
is the aim of this work to offer a discussion of the extensi
of LMC complexity for continuous systems. A slightly mod
fied extension generates interesting and very striking pro
ties, and some of the Anteneodo and Plastino questions
resolved with the proposed definition.

In Sec. II, the extension of information and disequilibriu
concepts for the continuous case are discussed. In Sec
the LMC measure of complexity is reviewed and possi
extensions for continuous systems are suggested. We
present some properties of one of these extensions in Sec
Finally, we establish our conclusions.

II. ENTROPY OR INFORMATION AND DISEQUILIBRIUM

Depending on the necessary conditions to fulfill, the e
tension of an established formula from the discrete to
continuous case always requires a careful study and, in m
situations, some kind of choice between several possibilit
Next, we carry out this process for the entropy and diseq
librium formulas.

A. Entropy or information

Given a discrete probability distribution$pi% i 51,2,̄ ,N sat-
isfying pi>0 andS i 51

N pi51, the Boltzmann-Gibss-Shanno
formula @14# that accounts for the entropy or informationH
stored in a system is defined by

H~$pi%!52k(
i 51

N

pi log pi , ~1!

wherek is a positive constant. Some properties of this qu
tity are ~i! positivity: H>0 for any arbitrary set$pi%; ~ii !
concavity: H is concave for arbitrary$pi% and reaches the
extremal value for equiprobability (pi51/N ; i ); ~iii ! addi-
tivity: H(AøB)5H(A)1H(B), whereA andB are two in-
©2002 The American Physical Society02-1
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dependent systems; and~iv! continuity: H is continuous for
each of its arguments. Conversely, it has been shown tha
only function of $pi% verifying the latter properties is give
by Eq. ~1! @14,15#. For an isolated system, theirreversibility
property is also verified, that is, the time derivative ofH is
positive,dH/dt>0, reaching equality only for equilibrium.

Calculation ofH for a continuous probability distribution
p(x), with support on@2L,L# and *2L

L p(x)dx51, can be
performed by dividing the interval@2L,L# into small equal-
length pieces—Dx5xi2xi 21 , i 51,...,n, with x052L and
xn5L—and by considering the approximated discrete dis
bution $pi%5$p( x̄i)Dx%, i 51,...,n, with x̄i a point in the
segment@xi 21 ,xi #. This gives us

H* 5H~$pi%!

52k(
i 51

n

p~ x̄i !log p~ x̄i !Dx2k(
i 51

n

p~ x̄i !log~Dx!Dx.

~2!

The second summation term ofH* in expression~2! grows
as logn whenn goes to infinity. Therefore, it seems reaso
able simply to take the first and finite summation term ofH*
as the extension ofH to the continuous case:H„p(x)…. It
characterizes, with a finite number, the information contain
in a continuous distributionp(x). In the limit n→`, we
obtain

H„p~x!…5 lim
n→`

F2k(
i 51

n

p~ x̄i !log p~ x̄i !DxG
52kE

2L

L

p~x!log p~x!dx. ~3!

If p(x)>1 in some regions, the entropy defined by Eq.~3!
can become negative. Although this situation is mathem
cally possible and coherent, it is unfounded from a phys
point of view. See@16# for a discussion on this point. Le
f (p,q) be a probability distribution in phase space with c
ordinates (p,q), f >0, anddp dq having the dimension o
an action. In this case, the volume element isdp dq/h, with
h the Planck constant. Suppose thatH( f ),0. Because
*(dp dq/h) f 51, the extent of the region wheref .1 must
be smaller thanh. Hence, a negative classical entropy aris
if one tries to localize a particle in phase space in a reg
smaller thanh, that is, if the uncertainty relation is violated
Consequently, not every classical probability distribution c
be observed in nature. The conditionH( f )50 could give us
the minimal width that is physically allowed for the distribu
tion, hence the maximal localization of the system un
study. Thiscuttingproperty has been used in the calculatio
performed in Ref.@12#.

B. Disequilibrium

Given a discrete probability distribution$pi% i 51,2,...,N sat-
isfying pi>0 and S i 51

N pi51, its disequilibriumD is the
quadratic distance of the actual probability distribution$pi%
to equiprobability:
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D~$pi%!5(
i 51

N S pi2
1

ND 2

. ~4!

D is maximal for fully regular systems and vanishes for co
pletely random ones.

In the continuous case, with support on the interva
@2L,L#, the rectangular functionp(x)51/(2L), with 2L
,x,L, is the natural extension of the equiprobability dist
bution of the discrete case. The disequilibrium could be
fined as

D* 5E
2L

L S p~x!2
1

2L D 2

dx5E
2L

L

p2~x!dx2
1

2L
.

If we redefineD, omitting the constant summing term inD* ,
the disequilibrium reads

D„p~x!…5E
2L

L

p2~x!dx. ~5!

D.0 for every distribution and it is minimal for the rectan
gular function, which represents the equipartition.D also
tends to infinity when the width ofp(x) narrows signifi-
cantly and becomes extremely peaked.

III. STATISTICAL MEASURE OF COMPLEXITY

LMC complexityC has been defined@10# as the interplay
between the informationH stored in a system and its disequ
librium D. Calculation ofC for a discrete distribution$pi%,
with pi>0 andi 51,...,N, is given by the formula

C~$pi%!5H~$pi%!D~$pi%!

52kS (
i 51

N

pi log pi D F(
i 51

N S pi2
1

ND 2G . ~6!

This definition fits the intuitive arguments and verifies t
required asymptotic properties: it vanishes for both co
pletely ordered systems and fully random systems.C has
been successfully calculated in different systems out of e
librium: one instance of a local transition to chaos in a u
dimensional mapping@10#, the time evolution ofC for a
simplified model of an isolated gas, the ‘‘tetrahedral’’ g
@11#, some statistical features of the behavior of LMC co
plexity for DNA sequences@17#, and a modification ofC as
an effective method by which to identify the complexity
hydrological systems@18#.

Feldman and Cruchtfield@19# presented as a main draw
back thatC vanishes, and that it is not an extensive varia
for finite-memory regular Markov chains when the syste
size increases. This is not the general behavior ofC in the
thermodynamic limit, as has been suggested by Calbet
López-Ruiz @11#. On the one hand, whenN→` and k
51/ logN, LMC complexity is not a trivial function of the
entropy in the sense that for a givenH there exists a range o
complexities between 0 andCmax(H), whereCmax is given by

@Cmax~H !#N→`5H~12H !2. ~7!
2-2



be
th
las
d
in

pr

f

o
ca
n

-

s
a
s

ny
r

n

g

s
fo
f t

d

.

.

also
on-

e

FEATURES OF THE EXTENSION OF A STATISTICAL . . . PHYSICAL REVIEW E 66, 011102 ~2002!
Observe that in this caseH is normalized, 0,H,1, because
k51/ logN. On the other hand, nonextensivity cannot
considered as an obstacle since today it is well known
there exists a variety of physical systems for which the c
sical statistical mechanics seems to be inadequate, an
which an alternative nonextensible thermodynamics is be
hailed as a possible basis of a theoretical framework ap
priate to deal with them@20#.

According to the discussion in Sec. II, the expression oC
for the case of a continuum number of statesx with support
on the interval@2L,L# and*2L

L p(x) dx51 is defined by

C„p~x!…5H~p~x!!D„p~x!…

5S 2kE
2L

L

p~x!log p~x!dxD S E
2L

L

p2~x!dxD .

~8!

Anteneodo and Plastino@13# pointed out thatC can become
negative. Obviously,C,0 impliesH,0. Although this situ-
ation is coherent from a mathematical point of view, it is n
physically possible. Hence, a negative entropy means lo
izing a system in phase space into a region smaller thah
~Planck constant!. This would imply a violation of the uncer
tainty principle~see discussion in Sec. II A!. Then, a distri-
bution can broaden without any limit, but it cannot becom
extremely peaked. The conditionH50 could indicate the
minimal width thatp(x) is allowed to have. Similarly to the
discrete case,C is positive for any situation and vanishe
both for an extreme localization and for the widest deloc
ization embodied by the equiprobability distribution. Thu
LMC complexity can be straightforwardly calculated for a
continuous distribution by Eq.~8!. It has been applied, fo
instance, for quantifyingC in a simplified two-level laser
model in Ref.@12#.

At any rate, the positivity ofC for every distribution in
the continuous case can be recovered by taking the expo
tial of H. If we defineĤ5eH, we obtain a new expressionĈ
of the statistical measure of complexity given by

Ĉ„p~x!…5Ĥ„p~x!…D„p~x!…5eH„p~x!…D„p~x!…. ~9!

In addition to the positivity,Ĉ encloses other interestin
properties that we describe in the next section.

IV. PROPERTIES OF Ĉ

The quantityĈ, given by Eq.~9!, has been presented a
one of the possible extensions of the LMC complexity
continuous systems. We now proceed to present some o
properties that characterize such a complexity indicator.

A. Invariance under translations and rescaling
transformations

If p(x) is a density function defined on the real axisR,
*Rp(x) dx51, anda.0 andb are two real numbers, we
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denote bypa,b(x) the new probability distribution obtaine
by the action of ab translation and ana-rescaling transfor-
mation onp(x),

pa,b~x!5ap@a~x2b!#. ~10!

Whena,1, pa,b(x) broadens, whereas ifa.1, it becomes
more peaked. Observe thatpa,b(x) is also a density function
After making the change of variabley5a(x2b) we obtain

E
R
pa,b~x!dx5E

R
ap@a~x2b!#dx5E

R
p~y!dy51.

The behavior ofH under the transformation given by Eq
~10! is the following:

H~pa,b!52E
R
pa,b~x!log pa,b~x!dx

52E
R
p~y!log@ap~y!#dy

52E
R
p~y!log p~y!dy2 logaE

R
p~y!dy

5H~p!2 loga.

Then,

Ĥ~pa,b!5eH~pa,b!5
Ĥ~p!

a
.

It is straightforward to see thatD(pa,b)5aD(p), and to
conclude that

Ĉ~pa,b!5Ĥ~pa,b!D~pa,b!5
Ĥ~p!

a
aD~p!5Ĉ~p!.

~11!

Observe that translations and rescaling transformations
keep the shape of the distributions. Then it could be reas
able to denote the invariant quantityĈ as theshape complex-
ity of the family formed by a distributionp(x) and its trans-
formed pa,b(x). Hence, for instance, the rectangularP(x),
the isosceles-triangle shapedL(x), the GaussianG(x), or
the exponentialJ(x) distributions continue to belong to th
sameP, L, G, or J family, respectively, after applying the
transformations defined by Eq.~10!. Calculation of Ĉ on
these distribution families gives us

Ĉ~P!51,

Ĉ~L!5
2

3
Ae'1.0991,

Ĉ~G!5Ae

2
'1.1658,
2-3
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Ĉ~J!5
e

2
'1.3591.

Note that the family of rectangular distributions has a sma
Ĉ than the rest of the distributions. This fact is true for eve
distribution and it will be proved in Sec. IV D.

B. Invariance under replication

Lloyd and Pagels@2# recommend that a complexity mea
sure should remain essentially unchanged under replica
We now show thatĈ is a replicant invariant, that is, th
shape complexity ofm replicas of a given distribution is
equal to the shape complexity of the original one.

Suppose thatp(x) is a compactly supported density fun
tion, *2`

` p(x) dx51. Taken copiespm(x), m51,...,n, of
p(x),

pm~x!5
1

An
p@An~x2lm!#, 1<m<n,

where the supports of all thepm(x), centered atlm8 s points,
m51,...,n, are all disjoint. Observe that*2`

` pm(x) dx
51/n, which make the union

q~x!5(
i 51

n

pm~x!

also a normalized probability distribution,*2`
` q(x) dx51.

For everypm(x), a straightforward calculation shows that

H~pm!5
1

n
H~p!1

1

n
logAn,

D~pm!5
1

nAn
D~p!.

Taking into account that them replicas are supported o
disjoint intervals onR, we obtain

H~q!5H~p!1 logAn,

D~q!5
1

An
D~p!.

Then,

Ĉ~q!5Ĉ~p!, ~12!

which completes the proof of the replicant invariance ofĈ.

C. Near-continuity

Continuity is a desirable property of an indicator of com
plexity. For a given scale of observation, similar syste
should have a similar complexity. In the continuous ca
similarity between density functions defined on a comm
support suggests that they take close values almost ev
01110
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y
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where. More strictly speaking, letd be a positive real num-
ber. It will be said that two density functionsf (x) andg(x)
defined on the intervalI PR ared-neighboring functionson I
if the Lebesgue measure of the pointsxPI verifying u f (x)
2g(x)u>d is zero. A real mapT defined on density func-
tions on I will be called near-continuousif for any e.0
there exists d(e).0 such that if f (x) and g(x) are
d-neighboring functions onI then uT( f )2T(g)u,e.

It can be shown that the informationH, the disequilibrium
D, and the shape complexityĈ are near-continuous maps o
the space of density functions defined on a compact supp
At this point, we must stress the importance of the compa
ness condition of the support in order to have ne
continuity. Take, for instance, the density function defined
the interval@21,L#,

gd,L~x!5H 12d if 21<x<0

d

L
if 0<x<L

0 otherwise

, ~13!

with 0,d,1 and L.1. If we calculateH and D for this
distribution we obtain

H~gd,L!52~12d!log~12d!2d logS d

L D ,

D~gd,L!5~12d!21
d2

L
.

Also consider the rectangular density function

x@21,0#~x!5H 1 if 21<x<0

0 otherwise
. ~14!

If 0 ,d, d̄,1, then gd,L(x) and x@21,0#(x) are
d̄-neighboring functions. Whend→0, we have that
limd→0gd,L(x)5x@21,0#(x). In this limit process the suppor
is maintained and near-continuity manifests itself as the
lowing,

F lim
d→0

Ĉ~gd,L!G5Ĉ~x@21,0#!51. ~15!

But if we allow the supportL to become infinitely large, the
compactness condition is not verified and, althou
limL→` gd,L(x) and x@21,0#(x) are d̄-neighboring distribu-
tions, we have that

F S lim
L→`

Ĉ~gd,L! D→` GÞĈ~x@21,0#!51. ~16!

Then near-continuity in the mapĈ is lost due to the noncom
pactness of the support whenL→`. This example suggest
that the shape complexityĈ is near-continuous on compac
supports. This property will be rigorously proved elsewhe
2-4
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D. The minimal shape complexity

If we calculateĈ on the example given by Eq.~13!, we
can verify that the shape complexity can be as large as
want. Take, for instance,d5 1

2 . The measureĈ now reads

Ĉ~gd51/2,L!5
1

2
ALS 11

1

L D . ~17!

Thus, Ĉ becomes infinitely large after taking the limitsL
→0 or L→`. Note that even in the case wheregd,L has a
finite support,Ĉ has no upper bound. The density functio
g(d51/2),(L→0) and g(d51/2),(L→`) of infinitely increasing
complexity have two zones with different probabilities.
the caseL→0 there is a narrow zone where probability ris
to infinity, and in the caseL→` there exists an increasingl
large zone where probability tends to zero. Both kinds
density functions show a similar pattern to distributions
maximal LMC complexity in the discrete case, where the
is a state of dominating probability, and where the rest of
states have the same probability.

The minimal Ĉ given by Eq.~17! is found whenL51,
that is, whengd,L becomes the rectangular density functi
x@21,1# . In fact, the valueĈ51 is the minimum of the pos
sible shape complexities and it is reached only on the r
angular distributions. We now show some steps that pr
this result.

Suppose

f 5 (
k51

n

lkxEk
~18!

is a density function consisting of several rectangular pie
Ek , k51,...,n, on disjoint intervals. Ifmk is the Lebesgue
measure ofEk , calculation ofĈ gives

Ĉ~ f !5)
k51

n

~lk
2lkmk!S (

k51

n

lk
2mkD .

The Lagrange multipliers method is used to find the r
vector (m1 ,m2 ,...,mn ;l1 ,l2 ,...,ln) that makes extrema
the quantityĈ( f ) under the conditionSk51

n lkmk51. This is

equivalent to studying the extrema of logĈ(f ). We define the
function z(lk ,mk)5 log Ĉ(f )1a(Sk51

n lkmk21), then

z~lk ,mk!52 (
k51

n

mklk loglk1 logS (
k51

n

mklk
2D

1aS (
k51

n

lkmk21D .

Differentiating this expression and making the result equa
zero, we obtain

]z~lk ,mk!

]lk
52mk loglk2mk1

2lkmk

( j 51
n m jl j

2 1amk50

~19!
01110
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]z~lk ,mk!

]mk
52lk loglk1

lk
2

( j 51
n m jl j

2 1alk50. ~20!

Dividing Eq. ~19! by mk and Eq.~20! by lk , we get

2lk

( j 51
n m jl j

2 1a215 loglk

lk

( j 51
n m jl j

2 1a5 loglk .

Solving these two equations for everylk , we have

lk5(
j 51

n

m jl j
2 for all k.

Therefore,f is a rectangular function taking the same valuel
for every intervalEk , that is, f is the rectangular density
function

f 5lxL with l5
1

( i 51
n m i

5
1

L
,

whereL is the Lebesgue measure of the support.
As a result,Ĉ( f )51 is the minimal value for a density

function composed of several rectangular pieces becaus
we know from the example given by Eq.~17!, Ĉ( f ) is not
upper bounded for this kind of distribution.

Furthermore, for every compactly supported density fu
tion g and for every e.0, it can be shown that near
continuity of Ĉ allows us to find ad-neighboring density
function f of the type given by expression~18!, verifying
uĈ( f )2Ĉ(g)u,e. The arbitrariness of the election ofe
leads us to conclude thatĈ(g)>1 for every probability dis-
tribution g. Thus, we can conclude that the minimal value
Ĉ is 1, and it is reached only by the rectangular dens
functions.

V. CONCLUSIONS

Complexity theory of discrete systems has been equip
with a function that not only vanishes for perfectly order
and disordered systems, but has also been helpful in de
ing complexity in patterns produced by a process. Th
LMC complexity has been shown to be very useful in qua
tifying complex behavior in local transitions to chaos in d
crete mappings@10# and permitting us to advance the co
cept ofmaximum complexity pathin the field of systems far
from equilibrium @11#; furthermore, an attempt to quantif
complexity in a model of a two-level laser system was p
formed in Ref.@12#.

Another remarkable feature of LMC complexity is th
extensionĈ to the continuous case. Results found in both
discrete and continuous cases are consistent: extreme v
of Ĉ are observed for distributions characterized by a p
superimposed onto a uniform sea. Other merits of this ex
sion have been studied and explained in the present wo
2-5
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First, we find that this quantity is invariant under trans
tions and rescaling transformations.Ĉ does not change if the
scale of the system is modified while its shape is maintain
It has been calculated on different families of distributio
invariant under those transformations. The result allows u
considerĈ as a parameter that characterizes every family
distributions.

Second, it seems reasonable and intuitive that the c
plexity of m replicas of a given system should be the same
the original one. We show thatĈ embodies this property an
that it is invariant under replication.

Third, continuity is not an evident property for such
map Ĉ. Thus, the compactness of the support of the dis
butions is an important requirement in order to have sim
complexity for neighboring distributions. This condition h
A

01110
-
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to
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been strictly established and demonstrated with an exam
Finally, complexity should be minimal when the syste

has reached equipartition. We demonstrate that the minim
of Ĉ is found on the rectangular density functions. Its val
is Ĉ51. Moreover,Ĉ is not an upper bounded function an
it can become infinitely large.

We believe and hope that the present discussion on
extension of LMC complexity to the continuous case m
trigger some practical future considerations in the area
complex systems theory.
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