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Features of the extension of a statistical measure of complexity to continuous systems
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We discuss some aspects of the extension to continuous systems of a statistical measure of complexity
introduced by Lpez-Ruiz, Mancini, and Calb@Phys. Lett. A209, 321(1995]. In general, the extension of a
magnitude from the discrete to the continuous case is not a trivial process and requires some kind of choice. In
the present study, several possibilities appear available. One of them is examined in detail. Some interesting
properties desirable for any magnitude of complexity are discovered on this particular extension.
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I. INTRODUCTION map[10], the dynamical behavior of this quantity in a sim-
plified isolated gag11], and another example of classical
In recent years, mangomplexity measurdsave been pro-  statistical mechanicgl2].
posed as indicators of the complex behavior found in differ- A possible formula of LMC complexity for continuous
ent systems scattered in a broad spectrum of fields. Some 8¥stems was suggested byfez-Ruizet al.[10]. Anteneodo
them come from physics such as the effective measure ¢ind Plastind13] pointed out some peculiarities concerning
complexity [1], the thermodynamical deptf2], and the such an extension for continuous probability distributions. It
simple measure of complexif3]. Other attempts arise from is the aim of thi; work to offer a discussion of the extensi_on
the field of computational sciences such as algorithmic com0f LMC complexity for continuous systems. A slightly modi-
plexity [4,5], Lempel-Ziv complexity[6], and e-machine fied extension generates interesting and very striking proper-
complexity[7]. Other works try to illuminate this question in ties, and some of the Anteneodo and Plastino questions are
many other contexts: ecology, genetics, economy, etc., foiesolved with the proposed definition.
instance, the complexity of a system based on its diversity In Sec. Il, the exten.sion of information.and disequilibrium
[8] and the physical complexity of genomis. concepts for the continuous case are d_|scussed. In Sec. I,
Most of these proposals coincide in using concepts sucHe LMC measure of complexity is reviewed and possible
as entropy(in physicg or information(in computational sci- €xtensions for continuous systems are suggested. We the
ence$ as a basic ingredient for quantifying the Compiexity of present some properties of one of these extensions in Sec. IV.
a phenomenon. There is also a general belief that the notioninally, we establish our conclusions.
of complexity in physics must start by considering the per-
fect crystal and the isolated ideal gas as examples of simplg, ENTROPY OR INFORMATION AND DISEQUILIBRIUM
models with zero complexity. Both systems are the extremes

in an entropy/information scalend, therefore, some funda-  Depending on the necessary conditions to fulfill, the ex-

scribing complexity with only the ordinary information or continuous case always requires a careful study and, in many

entropy. situations, some kind of choice between several possibilities.
It seems reasonable to adopt some kind of distance to tHd€xt, we carry out this process for the entropy and disequi-

equipartition, or the disequilibrium of the system, as a newiPrium formulas.

ingredient for defining an indicator of complexity. Going

back to the two former examples, it is readily seen that they A. Entropy or information

are extremes in aisequilibrium scaleand, therefore, dis-

equilibrium cannot be directly associated with complexity.
The recently introduced lpez-Ruiz—Mancini—Calbet

(LMC) statistical measure of complexifit0] identifies the

entropy or information stored in a system and its distance t

the equilibrium probability distributiorithe disequilibrium N

as the two ingredients giving the correct asymptotic proper- H({p}H= —kE p;logp;, (1)

ties of a well-behaved measure of complexity. In fact, it van- i=1

ishes for both completely ordered and completely random

systems. Besides giving the main features of an intuitive nowherek is a positive constant. Some properties of this quan-

tion of complexity, it has been shown that LMC complexity tity are (i) positivity H=0 for any arbitrary se{p;}; (ii)

successfully enables us to discern situations regarded a&encavity H is concave for arbitranfp;} and reaches the

complex in discrete systems out of equilibrium: one instancextremal value for equiprobabilityp{=1/N Vi); (iii) addi-

of a local transition to chaos via intermittency in the logistic tivity: H(AUB)=H(A) +H(B), whereA andB are two in-

Given a discrete probability distributidp;};-1 ... y sat-
isfying pj=0 andX . ;p;=1, the Boltzmann-Gibss-Shannon
formula[14] that accounts for the entropy or informatiéh
gtored in a system is defined by
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dependent systems; aifig) continuity H is continuous for N 2
each of its arguments. Conversely, it has been shown that the D{p;H) =2, (pi - —) . 4
only function of{p;} verifying the latter properties is given =1 N
by Eq.(1) [14,15. For an isolated system, tleeversibility
property is also verified, that is, the time derivativetbfis
positive,dH/dt=0, reaching equality only for equilibrium.
Calculation ofH for a continuous probability distribution
p(x), with support on —L,L] andeLp(x)dxz 1, can be
performed by dividing the intervdl—L,L] into small equal-
length pieces-Ax=x;—X;_1, i=1,...n, with x,=—L and

D is maximal for fully regular systems and vanishes for com-
pletely random ones.

In the continuous case, with support on the interval
[—L,L], the rectangular functiop(x)=1/(2L), with —L
<x<L, is the natural extension of the equiprobability distri-
bution of the discrete case. The disequilibrium could be de-

fined
X,=L—and by considering the approximated discrete distri- ned as
bution {p;}={p(X;)Ax}, i=1,..n, with X; a point in the L 1\2 Lo, 1
segmen{x;_4,%;]. This gives us D*= fL( p(x)— Z) dx= Jle (x)dx— T
H*=H{pi})

If we redefineD, omitting the constant summing term @i,
n n the disequilibrium reads

= —kgl p(X)log p(Yi)Ax—ki; p(X)log(Ax)Ax. )
() D(p(x))= f_Lpz(X)dX- (5

The second summation term bif* in expression2) grows
as logn whenn goes to infinity. Therefore, it seems reason-
able simply to take the first and finite summation terntHdf
as the extension ofl to the continuous cased(p(x)). It
characterizes, with a finite number, the information containe
in a continuous distributiorp(x). In the limit n—«, we

D >0 for every distribution and it is minimal for the rectan-
gular function, which represents the equipartitid.also
tends to infinity when the width op(x) narrows signifi-
&antly and becomes extremely peaked.

Ill. STATISTICAL MEASURE OF COMPLEXITY

obtain
n LMC complexity C has been defined 0] as the interplay
— lim | — - - between the informatioH stored in a system and its disequi-
H =lim| —k i)lo A
(P(x)) HI_,J izl P(x)logp(x)Ax librium D. Calculation ofC for a discrete distributiodp;},
with p;=0 andi=1,...N, is given by the formula
L
=k f _ POologp(xjdx ® c{ph=H({pHD({pi})
N N 2
. . . 1
If p(x)=1 in some regions, the entropy defined by E3). -k 1 _ ( o _) 6
can become negative. Although this situation is mathemati- ;1 Pi1ogp; izl PN/ | ©

cally possible and coherent, it is unfounded from a physical
point of view. Se€/16] for a discussion on this point. Let This definition fits the intuitive arguments and verifies the
f(p,q) be a probability distribution in phase space with co-required asymptotic properties: it vanishes for both com-
ordinates p,q), f=0, anddp dq having the dimension of pletely ordered systems and fully random syste@shas
an action. In this case, the volume elemendsdg/h, with been successfully calculated in different systems out of equi-
h the Planck constant. Suppose thd(f)<0. Because librium: one instance of a local transition to chaos in a uni-
f(dp dg/h)f=1, the extent of the region whefe>1 must  dimensional mapping10], the time evolution ofC for a
be smaller tham. Hence, a negative classical entropy arisessimplified model of an isolated gas, the “tetrahedral” gas
if one tries to localize a particle in phase space in a regioh1l], some statistical features of the behavior of LMC com-
smaller tharh, that is, if the uncertainty relation is violated. Plexity for DNA sequencefl7], and a modification o€ as
Consequently, not every classical probability distribution caran effective method by which to identify the complexity in
be observed in nature. The conditibi{f )=0 could give us hydrological system§18.
the minimal width that is physically allowed for the distribu- ~ Feldman and Cruchtfielfl9] presented as a main draw-
tion, hence the maximal localization of the System unde|baCk thatC VaniSheS, and that it is not an extensive variable
study. Thiscutting property has been used in the calculationsfor finite-memory regular Markov chains when the system
performed in Ref[12]. size increases. This is not the general behavio€ af the
thermodynamic limit, as has been suggested by Calbet and
Lopez-Ruiz [11]. On the one hand, whehN—« and k
=1/logN, LMC complexity is not a trivial function of the
Given a discrete probability distributiofp;}i—1, n Sat-  entropy in the sense that for a giveithere exists a range of
isfying p;=0 and=L, p;=1, its disequilibriumD is the  complexities between 0 ar@,.,(H), whereC,.,is given by
quadratic distance of the actual probability distributiqm}
to equiprobability: [Cral H) In_we=H(1—H)2. (7)

B. Disequilibrium
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Observe that in this cade is normalized, 6<H<1, because denote byp, 5(x) the new probability distribution obtained
k=1/logN. On the other hand, nonextensivity cannot beby the action of g3 translation and am-rescaling transfor-
considered as an obstacle since today it is well known thatation onp(x),

there exists a variety of physical systems for which the clas-

sical statistical mechanics seems to be inadequate, and for Pa,p(X)=apla(x—pB)]. (10)
which an alternative nonextensible thermodynamics is bein

hailed as a possible basis of a theoretical framework appré;l\/he”‘)‘<1 Pa,p(X) broadens, whereas if>1, it becomes
priate to deal with theri20]. more peaked. Observe thaf 5(x) is also a density function.

According to the discussion in Sec. II, the expressiogof After making the change of variable= a(x— ) we obtain
for the case of a continuum number of statesith support

on the interval —L,L] and [Z p(x) dx=1 is defined by Lpa,ﬁ(x)dx: Lap[a(x—ﬁ)]dx= Lp(y)dy: 1.

C(p(x))=H(p(x))D(p(x)) _ . .
The behavior ofH under the transformation given by Eq.
L L . . .
:( _kf p(x)logp(x)dx)(f pg(x)dx). (10) is the following:
-L -L
) H(Pa,p) = Jpaﬂ(x)logpaﬁ(X)dx

Anteneodo and Plastind 3] pointed out thatC can become
negative. ObviouslyC<0 impliesH <0. Although this situ- = J RIO(y)log[ozp(y)]dy
ation is coherent from a mathematical point of view, it is not

physically possible. Hence, a negative entropy means local-

izing a system in phase space into a region smaller than = —J p(y)log p(y)dy—logaf p(y)dy
(Planck constant This would imply a violation of the uncer- R R

tainty principle (see discussion in Sec. I)AThen, a distri- =H(p)—loga.

bution can broaden without any limit, but it cannot become

extremely peaked. The conditiad=0 could indicate the Then,

minimal width thatp(x) is allowed to have. Similarly to the

discrete caseC is positive for any situation and vanishes . 1(p)

both for an extreme localization and for the widest delocal- H(paﬁ)=eH(pa,B>: —_—

ization embodied by the equiprobability distribution. Thus, @

LMC complexity can be straightforwardly calculated for any

continuous distribution by Eq®8). It has been applied, for

instance, for quantifyingC in a simplified two-level laser

model in Ref.[12]. fep)
At any rate, the positivity ofC for every distribution in A 0 _ 1) _A

the continuous case can be recovered by taking the exponen- C(Pap)=H(Pa,p)D(Pa,p) = a aD(P)=C(p).

tial of H. If we defineH=e", we obtain a new expressi@ (11
of the statistical measure of complexity given by

It is straightforward to see thdd(p,,z)=aD(p), and to
conclude that

Observe that translations and rescaling transformations also
keep the shape of the distributions. Then it could be reason-

able to denote the invariant quantﬁyas theshape complex-
R ity of the family formed by a distributiop(x) and its trans-
In addition to the positivity,C encloses other interesting formedp, z(x). Hence, for instance, the rectangula(x),
properties that we describe in the next section. the isosceles-triangle shapédx), the Gaussiad'(x), or
the exponentiakE (x) distributions continue to belong to the
samell, A, T', or E family, respectively, after applying the
transformations defined by E¢10). Calculation ofC on

The quantityC, given by Eq.(9), has been presented as these distribution families gives us
one of the possible extensions of the LMC complexity for R
continuous systems. We now proceed to present some of the C(In)=1,
properties that characterize such a complexity indicator.

C(p(x))=H(p(x))D(p(x))=e"P)D(p(x)). (9

IV. PROPERTIES OF C

N 2
. . . C(A)= 3 \Je=1.0991,
A. Invariance under translations and rescaling 3

transformations
If p(x) is a density function defined on the real aRs &)= \ﬁml 1658
Jrp(x) dx=1, anda>0 and B are two real numbers, we 2 7 '
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. e where. More strictly speaking, let be a positive real num-
C(E)= 5~1.3591. ber. It will be said that two density functiorf§x) andg(x)
defined on the intervdle R are 5-neighboring functionsn |
Note that the family of rectangular distributions has a smalleif the Lebesgue measure of the points | verifying |f(x)

C than the rest of the distributions. This fact is true for every g(x)|= 4 is zero. A real mapT defined on density func-
distribution and it will be proved in Sec. IV D. tions on I_ will be called near—cont!nuousf for any €>0
there exists 6(e)>0 such that if f(x) and g(x) are
&-neighboring functions oh then|T(f) —T(g)|<e.

_ It can be shown that the informatidt, the disequilibrium
Lloyd and Pagel$2] recommend that a complexity mea- p an the shape complexify are near-continuous maps on
sure should remamAessentlaIIy unchanged under replicatiory, o space of density functions defined on a compact support.
We now show thatC is a replicant invariant, that is, the At this point, we must stress the importance of the compact-
shape complexity ofm replicas of a given distribution is ness condition of the support in order to have near-
equal to the shape complexity of the original one. continuity. Take, for instance, the density function defined on

Suppose thap(x) is a compactly supported density func- the interval[ —1,L],
tion, [Z..p(x) dx=1. Taken copiespn(x), m=1,...n, of
p(x)' 1-6 if —1=x<0

B. Invariance under replication

= — if 0<x<L
Prm(X) = }pwﬁ(x—xm)], l=m=n, 9o (X) L TEUssER (13)
n

0 otherwise
where the supports of all thg,,(x), centered ak,,s points,

m=1,..n, are all disjoint. Observe thaf”_ p,(x) dx
=1/n, which make the union

with 0<é6<1 andL>1. If we calculateH and D for this
distribution we obtain

n S
H =—(1-6)log(1—-6)—Slog| —|,
Q(X):; Pm(X) (9s5)=—( )log( ) 9( L)
2
also a normalized probability distributiorf,”_.q(x) dx=1. D(gs.)=(1—8)2+ —
For everyp,,(x), a straightforward calculation shows that oL L’

1 1 Also consider the rectangular density function
H(pm) = - H(p)+ —logyn,

1 if —1=x<0

0 otherwise (14)

1 X[—l,O](X):[
D =—=D(p).

(Pm) nin (P) B
If 0<06<o6<1, then g;. (x) and x;_1g(x) are

Taking into account that then replicas are supported on g—neighboring functions. Whené—0, we have that

disjoint intervals orR, we obtain lim 5095 (X) = x[-1,(X). In this limit process the support
is maintained and near-continuity manifests itself as the fol-
H(q)=H(p)+log Vn, lowing,
1 i 6 — 6 -
_ = limC(gs.)|=Clx[-10)=1. (15
D(a)= =D(p). i M} (-0
Then, But if we allow the support to become infinitely large, the
A A compactness condition is not_verified and, although
C(q)=C(p), (12 lim_ . gs(x) and x;_1(x) are -neighboring distribu-

. tions, we have that
which completes the proof of the replicant invarianceCof

[( lim é(ga,L))—’w}¢C(X[—1,0])=1- (16)

L—o

C. Near-continuity

Continuity is a desirable property of an indicator of com- o .
plexity. For a given scale of observation, similar systemslhen near-continuity in the m&p is lost due to the noncom-
should have a similar complexity. In the continuous casePactness of the support whén- . This example suggests
similarity between density functions defined on a commorthat the shape complexit§ is near-continuous on compact
support suggests that they take close values almost evergupports. This property will be rigorously proved elsewhere.
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D. The minimal shape complexity IZ(Nies i) A2

k
- . ——————=—Nlogh+ <=t ar=0. (20
If we calculateC on the example given by E@13), we Ay kc10G M E}Ll,uj)\j ARk 20

can verify that the shape complexity can be as large as we
want. Take, for instancej= 1. The measur€ now reads ~ DPiViding Eq. (19) by x and Eq.(20) by A, we get

2\
) 1 1 ’ L
C(g§1/2,L):§\/E(1+ E) (17) m"_a 1 |Og)\k

Thus, C becomes infinitely large after taking the limits k +a=log\
—0 or L—«. Note that even in the case whegg, has a }‘zl,uj)\j? k:

finite support,@ has no upper bound. The density functions
9(s=1/2),—0) and g(s=12),—=) Of infinitely increasing
complexity have two zones with different probabilities. In n
thg c§1§é_—>0 there is a narrow zone where prgbability rises A= 2 Mj7\j2 for all k.
to infinity, and in the casé —« there exists an increasingly i=1
large zone where probability tends to zero. Both kinds of ) ) )
density functions show a similar pattern to distributions of Thereforefis a rectangular function taking the same value
maximal LMC complexity in the discrete case, where therefor every intervalEy, that is, f is the rectangular density
is a state of dominating probability, and where the rest of thdunction
states have the same probability. 1 1

The minimalC given by Eq.(17) is found whenL=1, f=\y_ with A= —

n i)
that is, whengs becomes the rectangular density function i—imi L

X(-14- In fact, the valueC=1 is the minimum of the pos- \ypare| s the Lebesgue measure of the support.
sible shape complexities and it is reached only on the rect- - . . .
As a result,C(f )=1 is the minimal value for a density

angular distributions. We now show some steps that prov i .
9 P P ?unctlon composed of several rectangular pieces because, as

Solving these two equations for evexy, we have

this result. . - .
Suppose we know from the example given by E(L7), C(f) is not
upper bounded for this kind of distribution.
n Furthermore, for every compactly supported density func-
f:kEl NkXE, (18)  tion g and for everye>0, it can be shown that near-

continuity of C allows us to find as-neighboring density
is a density function consisting of several rectangular pieceiinction f of the type given by expressiofi8), verifying
Ex, k=1,...n, on disjoint intervals. Ifu is the Lebesgue |C(f)—C(g)|<e. The arbitrariness of the election af

measure of,, calculation ofC gives leads us to conclude th&(g)=1 for every probability dis-
tribution g. Thus, we can conclude that the minimal value of

C is 1, and it is reached only by the rectangular density

C(f )=klj1 (M*“‘k)( gl Nk

functions.
The Lagrange multipliers method is used to find the real V. CONCLUSIONS
vector (uq,M2,---4niN1,N2,...,\y) that makes extremal _ _ _
the quantityf?(f ) under the conditio®_ ;A u,= 1. This is Complexity theory of discrete systems has been equipped

. . ~ . with a function that not only vanishes for perfectly ordered
equivalent to studying Ehe extrema of 16gf ). We define the and disordered systems, but has also been helpful in detect-
function z(\ ., ) =log C(f ) + a(Zy L\ — 1), then ing complexity in patterns produced by a process. Thus,
LMC complexity has been shown to be very useful in quan-
tifying complex behavior in local transitions to chaos in dis-
crete mapping$10] and permitting us to advance the con-
cept ofmaximum complexity patin the field of systems far
from equilibrium [11]; furthermore, an attempt to quantify
: complexity in a model of a two-level laser system was per-
formed in Ref[12].

Differentiating this expression and making the result equal to Another remarkable feature of LMC complexity is the

n

Z(Ny, ) = —kzl i logh+log

n

A2
= Mk

+a

n
> N1
e

zero, we obtain extensionC to the continuous case. Results found in both the
discrete and continuous cases are consistent: extreme values
N ] _ 2N p ~0 of C are observed for distributions characterized by a peak
o MkIOgN T it S = - : : -
k j=1MjN] superimposed onto a uniform sea. Other merits of this exten-

(19 sion have been studied and explained in the present work.
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First, we find that this quantity is invariant under transla-been strictly established and demonstrated with an example.

tions and rescaling transformatioifs does not change if the ~ Finally, complexity should be minimal when the system
scale of the system is modified while its shape is maintained?@s reached equipartition. We demonstrate that the minimum
It has been calculated on different families of distributionsof C is found on the rectangular density functions. Its value
invariant under those transformations. The result allows us tgs €=1. Moreover,C is not an upper bounded function and

considerC as a parameter that characterizes every family oft can become infinitely large.
distributions. We believe and hope that the present discussion on the

Second, it seems reasonable and intuitive that the conextension of LMC complexity to the continuous case may
plexity of mreplicas of a given system should be the same asrigger some practical future considerations in the area of
the original one. We show th& embodies this property and complex systems theory.
that it is invariant under replication.

Third, continuity is not an evident property for such a
map C. Thus, the compactness of the support of the distri-
butions is an important requirement in order to have similar R. G. Catala acknowledges Spanish DGES for partial
complexity for neighboring distributions. This condition has financial support{Project No. PB98-0551
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