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Localized vegetation patches: A self-organized response to resource scarcity
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We show that spatial self-organization allows vegetation to survive greater resource limitation. Isolated
vegetation patches observed in nutrient-poor territories of South America and West Africa are interpreted as
localized structures arising from the bistability between the bare state and the patchy vegetation state.
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Spatio-temporal patterning is a central problem in ec
ogy, scaling up from individuals and populations to who
ecosystems@1#. In vegetation, plants showing spatial pa
terns, i.e., nonuniform, nonrandom phytomass distributio
is the rule rather than the exception@2#. Considering their
origin, three classes can be distinguished: morphological
terns, reflecting plant structure and growth; environmen
patterns, developed in response to a key factor gradient;
sociological patterns, produced by interactions betw
plants@3#.

Periodic and aperiodic vegetation patches obser
worldwide in water-limited and/or nutrient-poor territorie
belong to this third class. Striped, spotted, or arc-shaped
terns are known to be widespread in arid as semiarid reg
of Africa, Australia, North America, and Middle East. Th
annual rainfall~50–750 mm! is low in regard to potentia
evapo-transpiration (PET>1.5 103mm). Sparsely populated
or bare areas alternate with dense vegetation patches.
are made of either herbs and grasses (l: wavelength
'10 m) or trees and shrubs (l'100 m) @4#. Such patterns
mark the transition between homogeneous savannas
deserts. Similarly, in Africa and South America, patches
trees on a grassy background, see Fig. 1, are found a
transition between tropical rain forests and grasslands in
mid yet nutrient-poor environments@5#. For both resource-
limited contexts, there is no evidence of any edaphic or
pographic discrepancy preexisting the pattern. Hence,
latter is likely to stem from biotic interactions.

In contrast with models for which some anisotropy is ne
essary@6#, Lefever and Lejeune@7# have proposed a gener
interaction-redistribution model of vegetation dynamic
which is able to generate patterns even under strictly ho
geneous and isotropic environmental conditions. It
grounded on a spatially explicit formulation of the balan
between facilitation and competition@8#, which has been re
cently recognized as a governing factor for most plant co
munities @9#. It involves a Turing-like symmetry breakin
instability @10# that is a classical mechanism to explain mo
phogenesis in biology@11#. Recently, this theoretical ap
proach of vegetation patterning has been developped in
framework of models of reaction-diffusion type@12#.

In this Rapid Communication, we account for the form
tion of aperiodic vegetation patterns such as those obse
in nutrient-poor environments. Indeed, stable localized str
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tures corresponding to isolated vegetation patches are
possible outcome of the model. This kind of structures
well known in chemistry@13#, hydrodynamics@14#, and in
optics @15#. Here, in the context of plant ecology, they a
interpreted as a spatial compromise between the patchy
etation and bare stable states. In addition, the analytica
furcation diagram of vegetation states as a function of
control parameter measuring environmental adversity is c

FIG. 1. ~Color online! Pattern of isolated dense tree patches t
marks the transition from the tropical rain forest to grasslands.~a!,
~b! Ground pictures from French Guiana~South America!. ~c!
Aerial photograph from Marahoue´ National Park in Ivory Coast
~West Africa!: woody vegetation is dark gray, whilst grassland
light gray. Both locations are characterized by nutrient-poor s
~Pleistocene fluvial sands! and by a climate with a ratio of rainfall
PET between 0.9~Marahoue´! and 1.9~Guiana!.
©2002 The American Physical Society01-1
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structed. In agreement with numerical integration, the bra
of patterns may extend beyond the one of homogeneous
tributions. Spatial self-organization appears therefore a
natural response of vegetation to resource limitation.

For the idealized situation of a strictly isotropic and h
mogeneous environment, the phytomass densityr(r ,t)
evolves according to the dimensionless kinetic equation

]r

]t
5~12m!r1~L21!r22r31

1

2
~L22r!Dr2

1

8
rD2r,

~1!

whereD is the two-dimensional Laplacian. The single sta
variable is defined as total plant biomass per unit area,
compassing all species present, divided by the carrying
pacity of the territory. It is assumed that species multiplic
as well as genetic variations, phenotypic differences and
class effects in monospecific subpopulations are not esse
to vegetation patterning. The equation is derived in a l
density and weak gradient limit from a generalized logis
equation@16# describing nonlocal interactions@17#. This ap-
proximation is suitable to resource-poor contexts where
erage phytomass density is low with respect to the carry
capacity ~closed-packing density! of unstressed vegetation
and for which pattern wavelengths are large in compari
with the average size of the dominant plant form.

The phenomenon is characterized by three positive
fined parameters:m is the decrease-to-growth rate ratio;L is
the facilitation-to-competition susceptibility ratio;L is the
facilitation-to-competition range ratio. Plants interact by
tering their nearby environment. The susceptibility is the a
plitude of the response of the environment to plants. N
that the control parameterm can be viewed as an indirec
measure of resource scarcity. Indeed, a less favorable e
ronment implies usually a lower rate of phytomass prod
tion, and possibly a higher rate of phytomass decrease@18#.
Vegetation patterning is interpreted as the outcome of
interplay between short-range facilitative and long-ran
competitive plant interactions. Indeed, in adverse envir
ments aerial parts of established plants have generally a p
tive effect on the growth of other plants, by providin
shadow, nutrient-rich litter, and protection against fire or h
bivores @19#. On the other hand, in the presence of wa
and/or nutrient shortage, superficial roots are known to tr
scarce resources far away from the limits of epigenous pa
thereby resulting in competitive effects that are long rang
in comparison with facilitative influences@20#.

The homogeneous steady states of Eq.~1! arer050 and
r65@L216A(L21)214(12m)#/2. The first solution,
r0, represents a territory totally devoid of vegetation. Ob
ously, it exists for all values of the parameters. The two ot
solutions, r6 , correspond to uniform plant distribution
when they are real and positive. Two cases must be dis
guished according to the value of the parameterL. If L
<1, only the homogeneous steady stater1 defines a phyto-
mass density, form<1. It decreases monotonously withm
~i.e., adversity! and vanishes atm51. If L.1, the branch of
physical solutionsr1 extends up to the turning pointm
5m* 511(L21)2/4.1. In the range 1<m<m* , the
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lower stater0 and the upper stater1 coexist with an inter-
mediate stater2 . Overcoming facilitation (L.1) allows
vegetation community to survive where individual plan
could not (m.1). This situation corresponds to the vege
tion systems presented in Fig. 1. Indeed, isolated trees ha
resist fire while patches may survive thanks to mutual p
tection.

The homogeneous steady stater1 undergoes a Turing-
like pattern formation instability when the phytomass dens
reaches the critical valuerc satisfying the equation 2rc

2(1
2L12 rc)5(L22rc)

2. At this threshold, the critical wave
number iskc5A2(12L2/rc). Beyond that bifurcation point
the evolution ofr towards a stationary, spatially period
distribution is spontaneously triggered by inherent fluctu
tions. For simplicity and without important loss of generali
the analysis is restricted to stripes, or equivalently to o
dimensional systems, in the strong facilitation case,L.1.
Such kind of solutions can be written as a truncated Fou
mode expansionr(r ,t)5c0(t)1 1

2 @c1(t) ei (f1(t)1k.r )1c.c.#,
where c.c. denotes the complex conjugate. The homogen
term c0 is the average phytomass density^r&. The inhomo-
geneous term is characterized by an amplitudec1 and a
phasef1. The modulus of the wave vector is the critic
wave number,uku5kc . Application of standard nonlinea
analysis leads to the following amplitude equations

dc0

dt
5c0S a01b0 c02c0

22
3

2
c1

2D1b̃0 c1
2 , ~2!

dc1

dt
5c1S a11b̃1 c02

3

4
c1

223 c0
2D , ~3!

where a0512m, a15a02L2 kc
2/2, b05L21, b̃05b0/2

1kc
2/42kc

4/16, andb̃15b012 b̃0. These ordinary differen-
tial equations are independent of the phase that evolves
cording to the equationc1 df1 /dt50. Equations~2! and~3!
admit two classes of stationary solutions. The first one,c0s

H

5rs[$r0 ,r6% and c1s
H 50, corresponds to the homoge

neous steady states of the phytomass density. The se
one, c0s

P Þrs and c1s
P Þ0, corresponds to spatially periodi

vegetation patches. On the other hand, the stationary ph
f1s , is a constant determined by the initial condition.

The results of the nonlinear analysis are summarized
the bifurcation diagram displayed in Fig. 2~a!, where we plot
the extrema values of the phytomass density,rmin andrmax,
together with its average value,^r&, for stripe patterns. When
increasing the adversity parameterm from the regionm
,mc , the branch of pattern solution emerges supercritica
at the instability pointm5mc . The unstable homogeneou
steady stater1 exists only form<m* . However, as a con-
sequence of the interaction between the critical (uku5kc) and
the homogeneous (uku50) modes, the branch of vegetatio
patterns exists even beyond the turning point, up to the li
point m5m lp .

In the region 1,m,m lp of the bifurcation diagram Fig.
2~a!, the system exhibits a bistable behavior between
uniformly zero and the spatially periodic states. In that d
main, another type of solution, the localized structure~LS!,
1-2
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connects smoothly these two stable states. A single LS
plotted together with the corresponding Turing-like pattern
Fig. 2~b!. Periodic boundary conditions are used for nume
cal integration. The maximum phytomass density of the
reached in the core of the vegetation patch, is nearly equ
the one of the coexisting spatially periodic pattern. On
other hand, the width of the LS is approximately given
half its wavelength. Moving away from the peak, the phy
mass density decreases quickly and becomes vanish
small. The stationary LS can be interpreted as a nonlin
front that undergoes a self-trapping~pinning effect! between
the spatially periodic vegetation and the absence of veg
tion. Hence, the size of an isolated patch is intrinsically
termined by the vegetation dynamics and not by some sp
variation of the environment. It neither grows in spite
available free space, nor decreases in spite of adverse c
tions. An example of localized pattern~LP! formed of sev-
eral LS’s is shown in Fig. 2~c!; it is obtained for the same
parameter values as Fig. 2~b!. The number of peaks gene

FIG. 2. 1D bifurcation diagram and localized structures.~a! Sta-
tionary states of the amplitude equations as functions of the con
parameterm for L51.2 andL50.2. The full and broken lines
correspond to stable and unstable solutions, respectively. The
stater0 becomes stable beyondm51. The branch of homogeneou
vegetation statesr6 , which extends up tom5m* .1, loses its
stability atm5mc . The supercritical branch of vegetation patter
emerging from that bifurcation point extends up tom5m lp.m* .
The maximum and minimum phytomass densities,rmax andrmin ,
are compared with the values obtained by numerical integra
~black disks!. The average of the phytomass density is given by
mean of its extrema values,^r&5(rmax1rmin)/2. ~b! A single LS
obtained form51.02 is plotted against the corresponding patte
~dashed line! that spatially oscillates betweenrmin and rmax. The
maximum phytomass densities almost coincide.~c! For the same
parameter values, a LP is formed by several LS’s.
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ated by the dynamics and their spatial distribution depe
only on the initial condition.

In two-dimensional~2D! systems, there is a large varie
of LP’s. A sample of them is displayed in Fig. 3. They a
obtained for the same parameter values; they only differ
the initial condition. A single stationary LS is shown in Fi
3~a!. The peaks forming the LP’s in Figs. 3~b,c! are spatially
self-organized because of their interaction. On the contr
in Fig. 3~d!, they are randomly distributed. All the peak
appearing in Fig. 3 are identical. Therefore, plant patche
specific size forming aperiodic patterns, see Fig. 1, may
more or less regular distributions of localized structures. T
study of the particular case of Fig. 1~c! supports this inter-
pretation. The size of vegetation patches ranges from 1
30 m. The space scale of Eq.~1! is the interplant competition
range. Its value is approximately given by the radius of
superficial root system of dominant trees. This value is e
mated to be of the order of 5 m. The half-height width of 2
localized structures has been determined numerically
1/10,L,1/2 and 1,L,2 in the vicinity of the turning
point m5m* .1. It varies between three and five dimensio
less space units, hence between 15 and 25 m. This interv
consistent with field observations. The time scale of Eq.~1!
is the inverse of the vegetation growth rate. It correspo
roughly to the time spent by dominant trees to reach ad
size. Its value is estimated to be of the order of 10 years.
generating time of 2D localized structures is typica
101–102 dimensionless units, hence 102–103 years. On that
time scale, the environment~rainfall, temperature, light,
wind, etc.! is likely to be constant on average.

As resource availability diminishes, we show that the ve
etation distribution goes through the following stages: hom
geneous cover, periodic pattern, or scattered patches of fi
size, no plant. It comes out that the average phytomass
sity of vegetation patterns, though decreasing with resou
shortage, may be higher than the one of the correspon
homogeneous steady state. This result broadens the per

ol

are

n
e

FIG. 3. 2D localized structures and patterns. Parameter va
arem51.02, L51.2, andL50.2. ~a! A single LS corresponding to
an isolated vegetation patch~black! on a bare soil.~b! Several LS’s
form a LP.~c! They can be self-organized.~d! Their distribution can
be random.
1-3
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tive about vegetation production in the presence of resou
limitations, an issue that has been up to now only addres
through source-sink models calling upon passive realloca
of scarce resources through wind or run-off@21#. Obviously,
spatial interactions between plants can, alone, account
scarce resource concentration and conservation resultin
productivity enhancement.
.

ts

01090
ce
ed
n

or
in

It is a pleasure to acknowledge fruitful and stimulatin
discussions with Professor Rene´ Lefever. O.L. and M.T. re-
ceived support from the FNRS~Belgium!. This research was
supported in part by Fonds Emile Defay. The support of
Instituts Internationaux de Physique et de Chimie Solv
and of the Center for Nonlinear Phenomena and Comp
Systems~ULB! is also acknowledged.
ys.

ol-
r.

i-
s.

.
r,

i.
@1# S.A. Levin, Ecology73, 1943~1992!.
@2# P. Greig-Smith, J. Ecol.67, 755 ~1979!.
@3# K.A. Kershaw, Ecology44, 377 ~1963!.
@4# L.P. White, J. Ecol.59, 615~1971!; C. Valentin, J.M. d’Herbe`s,

and J. Poesen, Catena37, 1 ~1999!; M.R. Aguiar and O.E.
Sala, TREE14, 273 ~1999!.

@5# D.U.U. Okali, J.B. Hall, and G.W. Lawson, J. Ecol.61, 439
~1973!; V.M. Ponce and C.N. Cunha, J. Biogeogr.20, 219
~1993!.

@6# A. Mauchamp, S. Rambal, and J. Lepart, Ecol. Modell.71, 107
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