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Resonances via deterministic and stochastic perturbations: A comparative study
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We study periodic and coherence resonances invoked by aperiodic yet deterministic perturbations. Chaotic
perturbations with varying levels of intrinsic correlations are superimposed parametrically on an excitable
chemical model. This enables us to analyze the system response and characterize the induced resonances as a
function of correlation in the perturbing signal. Using standard measures such as normalized variance and
normalized number of peaks, dynamics for different deterministic signals are quantified and eventually com-
pared to resonances invoked via stochastic perturbations.
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I. INTRODUCTION Sec. IV. Finally, a brief discussion of the obtained results is
presented in Sec. V.

Stochastic resonand&R) [1] is a term used to define a
process in which addition of a randofmoise function to a
preexisting subthresold deterministic signal, results in the The model system under consideration involves passiva-
amplification of the deterministic signal. An optimum ampli- tion of the reactive surface of a metal electrode in an elec-
fication (intensity and fidelity of the previously weak deter- trochemical cell. The chemical kinetics of the passivation
ministic signal is achieved for a particular level of superim-model include formation of a surface filnv)OH, whereM
posed noise intensity. Subsequent to an initial latency periodepresents the metal atdii]. The chemical kinetics lead to
this field has attracted a lot of attention, and SR has beeffle following dimensionless equatiofis2]:
detected and analyzg@,3] in a number of physical4],
chemical[5], and biological 6] systems. More re_cently, an- Y=p(1—6on)—qY, (1)
other related resonance effect has been investigaieco-
herence resonand€R) records the inception of maximum .
coherence in noise excited oscillations for an optimum noise Oon=Y(1— bon) —[exp(— Bbon) 1 0on, 2

amplitude[7]. It is observed in noise driven excitable sys-\yherey is the concentration of metal ions in the electrolyte,
tems, where an interplay between statistical properties of exqnq g, is fraction of the metal surface covered by metal
citatory and refractory period¥] with external noise results hydroxide. The system parametqusand q are related to
in the emergence of coherentegularity. The two reso- chemical rate constants, agrepresents the non-Langmuir
nance effects are different as in CR, there is no externahature ofMOH film formation. The system has been studied
deterministic signal being enhanced by virtue of superimin some detai[12] and is oscillatory subsequent to a Hopf
posed noise. bifurcation for the parameter value®,€,8)=(1.327 76

All of these previously mentioned results involving sto- X 10" %,1.0x10"%, 5.0). Designating this bifurcation point
chastic and coherence resonances used white noise witha§ the parameter threshold, we chogsg < 1.32776
Gaussian distribution as the perturbing function. HoweverX 10" %, such that the system exhibits steady state dynamics.
there exists some works in the existing literature that studypubsequently, external perturbations are parametrically su-
the resonance invoked via deterministic perturbation€liMpPosed on the system parameigenabling us to ana-

[8-1Q]. Specifically, the work of Carroll and Pecof8§,9] yze the invoked resonances.

using chaotic signals was motivated by the fact that reso- IIl. INVOKED COHERENCE RESONANCE

nances induced by deterministic signals could perhaps be

understood using the concepts of nonlinear dynamics and The set point of the autonomous model systepy (
bifurcation theory. In this paper, we study both periodic and<1.327 76<10 %) is such that the dynamical response is a
coherence resonances using chaotic perturbations with diffestable fixed point. Aperiodic perturbations are generated
ent correlations. Using standard measuresmalized vari-  from the time series of Lorenz attractfit3]. By choosing
ance and number of pegksve compare the induced deter- successively larger sampling intervals, perturbations with
ministic resonances, eventually comparing them withworsening correlations can be generated. For example, start-
resonances invoked via a stochastic perturbati®aussian ing from the chaotic time series of the Lorenz attractor, if
white noise. The paper is organized as follows: The excit- one samples every hundredth point of the original time se-
able chemical system used to study the different resonances, a time series with a weaker correlatighan the origi-

is presented in the following section. Coherence resonancesl) would be generated. Continuing with this strategy,
induced via deterministiaperiodig and stochastic perturba- intrinsic correlation of the perturbing signal can be system-
tions are compared in Sec. lll. Periodic resonances invokedtically varied. The system parametfers continuously var-

by deterministic and stochastic perturbations are compared iied in the following manner,

II. NUMERICAL MODEL
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2, that deeper minimas in the coherence resonance curves are
observed for deterministic perturbations with stronger corre-
lations. It implies that, more regular spike trains can be in-
where dp is the aperiodic time series of the Lorenz attractor’VOkEd for perturbations with stronger intrinsic correlations.
generated as explained above. Finally, optimum value of the perturbation amplitude at
The dynamical response of the model to the superimpose@hich maximal coherence is observedinima of the reso-
perturbations varying in amplitude and correlations is quaniance curvg is larger for perturbations with stronger corre-

tified using normalized variance/() [7]. It is defined as lations. To summarize, it is possible to observe coherence
resonance for deterministic perturbations. Moreover, calcu-

pP=po(1+p), (3

Vy = Vvar(tp), (4) *?  detay 10
<tp> 0.8 + delay = 10.0
® white noise
wheret, is the time between successive peaks. The uppel o7
part of Fig. 1, shows the calculat&, [7] as a function of g
the amplitude of perturbing signal. Théy function is a § 06 - PP
U-shape curve, where the minima corresponds to the maxi% = ol
mal coherence induced. The lower part of Fig. 1, shows the'g T ”..M"
time series of a system variablgy invoked by superim- 2,1 “WH"”"
posed perturbations. The three profiles presented correspor
to the three points demarcated on the U-shaped normalize o3
variance curve. It indicates that for an optimum value of W e
perturbation amplitude, regular spiking is induced via aperi- %[ i
odic perturbations. Figure 2 shows the resonance curve:

T . . . 0.1 L
computed for deterministic perturbations with varying corre- 0 2

lations. Also plotted is the coherence resonance curve
induced by stochastic perturbations. It is observed, as FiG. 2. Various coherence curves computed for deterministic
expected, that the curves obtained for deterministic perturbaand stochastic perturbations. Figure legends indicate the different
tions with weaker correlations tend to the one generated videlay times(dimensionless model unjtsised to generate determin-
stochastic perturbation. It is also evident from Fig.istic perturbations with varying correlations.
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FIG. 3. The normalized num-
ber of spikes curve computed for a
chaotic Lorenz time series with a
time delay of 0.1(dimensionless
model timg. The maximum peri-
odicity induced corresponds to the
maxima of the resonance curve.
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of the figure. Also presented in
this figure is the superimposed
perturbation, a composite of the
subthreshold sinusoidal signal and
the chaotic fluctuations.
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lated resonance curves for low-correlation deterministic sig- The induced responses are quantified using normalized
nals and stochastic perturbations tend to converge.

IV. INVOKED PERIODIC RESONANCE

number of spikegNNS) [14,15. The upper part of Fig. 3,
shows a typical resonance curve obtained, plotting NNS, a
function of the amplitude of the deterministic perturbation.
The maxima of the curve represents the optimum amplifica-

Similar to the case of c9£1erence resonance, the model tfon of the subthreshold periodic signal for a particular am-
placed at pp<1.327 76< 10" "), such that the dynamical re- plitude of the aperiodic signal. Three representative time se-

sponse is a stable fixed point. The system parametisr

continuously varied

p=po[l+asin(owt)+sop],

©)

ries (corresponding to three points demarcated in the
resonance curyef the invoked system dynamics are shown

in the lower graphs. Also superimposed is the subthreshold
sinusoidal signal. The optimal amplification of the subthresh-

wherea sin(wt) is the subthreshold periodic signal such thatold signal is evident for the time series in the midtterre-
Po(1+a)<1.327 76<10 * and p are the aperiodic pertur- sponding to the pointb) of the resonance curyeFigure 4
bations generated from the time series of Lorenz attractoshows different resonance curves computed for varying in-
[13]. Intrinsic correlation of the perturbing function are var- trinsic correlations. Also shown are the results obtained for

ied using the recipe described in the preceding section.
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FIG. 4. Various periodic resonance curves computed for deter-
ministic (with varying correlations and stochastic perturbations.
Figure legends indicate the different delay tim@smensionless

white noise[14,15. Similar to the results of the preceding
section, resonance curves for deterministic signals with weak
correlations approach the curve for stochastic perturbations.
Moreover, as expected, maxima of the resonance curve is
higher for signals with stronger correlations.

V. DISCUSSION

As indicated by our results, resonance phenomena ob-
served in the presence of stochastic perturbations can also
emerge for deterministic perturbations. This is consistent
with the results of Carroll and Pecof8,9]. Using standard
measures such as normalized variance and normalized num-
ber of spikes, we were able to compare and contrast reso-
nances observed for stochastic and deterministic perturba-
tions (with varying level of intrinsic correlations We
propose using different sampling intervals as an efficient way
of varying the correlation of the superimposed signal. Sig-
nals with varying correlations invoke distinct system re-
sponses as manifested by the shifts in the induced resonance
curves.

ACKNOWLEDGMENT

model unit$ used to generate deterministic perturbations with vary-

ing correlations.

This work has been supported by CONACyYT, Mexico.

067203-3



BRIEF REPORTS PHYSICAL REVIEW E 65 067203

[1] R. Benzi, A. Sutera, and A. Vulpiani, J. Phys. ¥, 453 [9] T.L Carroll and L.M. Pecora, Phys. Rev.&, 3941(1993.

(1981). [10] Tsuyoshi Hondou and Yasuji Sawada, Phys. Re%4E3149
[2] P. Jung, and G. Mayer-Kress, Phys. Rev. L&4.2130(1995. (1996.
[3] P. Jung and G. Mayer-Kress, ChagsA58 (1995. [11] J.B. Talbot and R.A. Oriani, Electrochim. Acta0, 1277
[4] F. Moss, A. Bulsara, and M.F. Shlesinger, J. Stat. PAgs1 (1985.

(1993. [12] J.K. McCoy, Punit Parmananda, R.W. Rollins, and Alan
[5] A. Guderian, G. Dechert, K.P. Zeyer, and F.W. Schneider, J. J. Markworth, J. Mater. Res8, 1858(1993.

Phys. Chem100, 4437(1996. [13] E.N. Lorenz, J. Atmos. ScR0, 130 (1963.

[6] F. Moss, D. Pigrson, and D. O’'Gorman, Int. J. Bifurcation [14] W. Hohman, J. Mler, and F.W. Schneider, J. Phys. Chem.
Chaos Appl. Sci. Eng4, 1383(1994). 100, 5388(1996.

[7] Arkady S. Pikovsky and Jgen Kurths, Phys. Rev. LetZ8, [15] Takashi Amemiya, Takao Ohmori, Masarau Nakaiwa, and

775 (1997). . .
[8] T.L Carroll and L.M. Pecora, Phys. Rev. Let, 576 (1993. Tomohiko Yamaguchi, J. Phys. Chem.182, 4537(1998.

067203-4



